BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Bull. Int. Math. Virtual Inst., Vol. **11**(1)(2021), 195-208 DOI: 10.7251/BIMVI2101195R

> Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

α -IDEALS IN 0-DISTRIBUTIVE ALMOST LATTICES

G. Nanaji Rao and R. Venkata Aravinda Raju

ABSTRACT. We introduce the concept of an α - ideal in a 0-distributive almost lattice. We give some examples of the α -ideals. We prove that the set of all α ideals in a 0-distributive almost lattice L forms a complete distributive lattice. We obtain necessary and sufficient conditions for an ideal in a 0-distributive AL to be an α -ideal. Finally, we establish a necessary and sufficient condition for the contraction of an α -ideal to be an α -ideal.

1. Introduction

In 1973, W. H. Cornish [2] introduced the concept of an α -ideal in a distributive lattice with 0 and studied many properties of these ideals. He characterised α -ideals in terms of annulets. The concept of almost lattice (AL) was introduced by G. Nanaji Rao and Habtamu Tiruneh Alemu [3] as a common abstraction of almost all lattice theoretic generalizations of Boolean algebra like distributive lattices, almost distributive lattices and established necessary and sufficient conditions for an AL to become a lattice. Also, G. Nanaji Rao and Habtamu Tiruneh Alemu [4] introduced the concept of ideals in an AL and proved that the set $\mathcal{I}(L)$ of all ideals in an AL L forms a lattice and proved the set of all principal ideals of L, denoted by $P\mathcal{I}(L)$ is a sublattice of the lattice $\mathcal{I}(L)$. Later, G. Nanaji Rao and R. Venkata Aravinda Raju [7] introduced the concept of annihilators of a nonempty subsets of almost lattices and proved some of their basic properties. Also, they introduced the concept of 0-distributive almost lattice and obtained necessary and sufficient conditions for an AL with 0 to become 0-distributive AL in terms of annihilators, ideals and pseudo-complementations.

²⁰¹⁰ Mathematics Subject Classification. 06D99, 06D15.

Key words and phrases. distributive lattice, complete lattice, almost lattice (AL), ideal, 0-distributive AL, α -ideal, annihilator preserving epimorphism, contraction.

Communicated by Daniel A. Romano.

In this paper, we introduce the concept of α -ideal in a 0-distributive AL Land give certain examples of α -ideals. Also, we obtain that if I is an ideal of a 0-distributive AL L then the set $\overline{I} = \{x \in L : (a]^* \subseteq (x]^* \text{ for some } a \in I\}$ is the smallest α -ideal containing I. We observe that the lattice $\mathcal{I}(L)$ of all ideals in an AL L need not be distributive. We prove that the set $\mathcal{I}_{\alpha}(L)$ of all α -ideals of L forms a complete distributive lattice but, in general, not a sublattice of the lattice $\mathcal{I}(L)$. We prove a set of identities for an ideal in a 0-distributive AL to become an α -ideal. We derive necessary and sufficient conditions for an ideal in a 0-distributive AL to become an α -ideal. Also, we characterize *-0-distributive almost lattice (*-0-DAL) in terms of α -ideals. Finally, obtain a necessary and sufficient condition for the contraction of an α -ideal to be an α -ideal.

2. Preliminaries

In this section we collect few important definitions and results which are already known and which will be used more frequently in the text.

DEFINITION 2.1. Let (P, \leq) be a poset. Then P is said to be lattice ordered set if for every pair $x, y \in P, l.u.b\{x, y\}$ and $g.l.b\{x, y\}$ exists.

DEFINITION 2.2. An algebra (L, \vee, \wedge) of type (2, 2) is called a lattice if it satisfies the following axioms. For any $x, y, z \in L$,

(1) $x \lor y = y \lor x$ and $x \land y = y \land x$. (Commutative Law)

(2) $(x \lor y) \lor z = x \lor (y \lor z)$ and $(x \land y) \land z = x \land (y \land z)$. (Associative Law) (3) $x \lor (x \land y) = x$ and $x \land (x \lor y) = x$. (Absorption Law)

It can be easily seen that in any lattice L,

 $x \lor x = x$ and $x \land x = x$ (Idempotent Law).

THEOREM 2.1. Let (L, \leq) be a lattice ordered set. If we define $x \wedge y$ is the g.l.b of $\{x, y\}$ and $x \vee y$ is the l.u.b of $\{x, y\}$ $(x, y \in L)$, then (L, \vee, \wedge) is a lattice.

THEOREM 2.2. Let (L, \lor, \land) be a lattice. If we define a relation \leq on L, by $x \leq y$ if and only if $x = x \land y$, or equivalently $x \lor y = y$. Then (L, \leq) is a lattice ordered set.

Important Note: Theorems 2.1. and 2.2. together imply that the concepts of lattice and lattice ordered set are the same. We refer to it as a lattice in future.

DEFINITION 2.3. Let L be a lattice. Then L is said to be a bounded lattice if L is bounded as a poset.

DEFINITION 2.4. A bounded lattice L with bounds 0 and 1 is said to be complemented if to each $x \in L$, there exists $y \in L$ such that $x \wedge y = 0$ and $x \vee y = 1$.

THEOREM 2.3. In any lattice (L, \lor, \land) the following are equivalent:

- (1) $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z),$
- (2) $(x \lor y) \land z = (x \land z) \lor (y \land z),$
- (3) $x \lor (y \land z) = (x \lor y) \land (x \lor z),$
- (4) $(x \wedge y) \lor z = (x \lor z) \land (y \lor z).$

DEFINITION 2.5. A lattice L is called a distributive lattice if it satisfies any one of the four conditions in the Theorem 2.3.

DEFINITION 2.6. A complemented distributive lattice is called a Boolean algebra.

DEFINITION 2.7. A lattice L is called a complete lattice if every nonempty subset of L has both l.u.b and g.l.b.

THEOREM 2.4. If P is a partial ordered set bounded above each of whose nonvoid subset R has an infimum, then each non-void subset of P will have a supremum, too, and by the definitions $\bigcap R = \inf R$, $\bigcup R = \sup R$, then P becomes a complete lattice.

THEOREM 2.5. Let L be a lattice. Then for any $x, y, z \in L$, the following conditions are equivalent:

(1) $x \lor (y \land z) = (x \lor y) \land (x \lor z),$ (2) $x \land (y \lor z) = (x \land y) \lor (x \land z),$ (3) $(x \lor y) \land z \leqslant x \lor (y \land z).$

DEFINITION 2.8. An algebra $(L, \lor, \land, 0)$ of type (2, 2, 0) is called an AL with 0 if, for any $a, b, c \in L$, it satisfies the following conditions:

 $\begin{array}{ll} (1) & (a \wedge b) \wedge c = (b \wedge a) \wedge c, \\ (2) & (a \vee b) \wedge c = (b \vee a) \wedge c, \\ (3) & (a \wedge b) \wedge c = a \wedge (b \wedge c), \\ (4) & (a \vee b) \vee c = a \vee (b \vee c), \\ (5) & a \wedge (a \vee b) = a, \\ (6) & a \vee (a \wedge b) = a, \\ (7) & (a \wedge b) \vee b = b, \\ (8) & 0 \wedge a = 0. \end{array}$

It can be easily seen that $a \wedge b = a$ if and only if, $a \vee b = b$ in an AL.

DEFINITION 2.9. Let L be an AL and $a, b \in L$. An element a is less than or equal to b and write $a \leq b$ if and only if $a \wedge b = a$ or equivalently $a \vee b = b$.

THEOREM 2.6. The relation \leq is a partial ordering on an AL L and hence (L, \leq) is a poset.

DEFINITION 2.10. Let L be any nonempty set. If we define $x \lor y = x = y \land x$ for any $x, y \in L$, then clearly L is an AL and it is called a discrete AL.

DEFINITION 2.11. Let L and L' be two ALs with zero elements 0 and 0' respectively. Then a mapping $f: L \to L'$ is called a homomorphism if it satisfies the following conditions.

(1) $f(a \lor b) = f(a) \lor f(b),$ (2) $f(a \land b) = f(a) \land f(b),$

(3) f(0) = 0'.

DEFINITION 2.12. Let L be an AL. Then a nonempty subset I of L is said to be an ideal of L if it satisfies the following conditions:

(1) If $x, y \in I$, then there exists $d \in I$ such that $d \wedge x = x$ and $d \wedge y = y$,

(2) If $x \in I$ and $a \in L$, then $x \wedge a \in I$.

LEMMA 2.1. Let L be an AL and I be an ideal of L. Then the following are equivalent:

(1) $x, y \in I$ implies $x \lor y \in I$.

(2) $x, y \in I$ implies there exists $d \in I$ such that $d \wedge x = x$ and $d \wedge y = y$.

COROLLARY 2.1. Let L be an AL and $a \in L$. Then $(a] = \{a \land x | x \in L\}$ is an ideal of L and it is called principal ideal generated by a.

DEFINITION 2.13. Let L be an AL. Then a nonempty subset F of L is said to be a filter if it satisfies the following:

(1) $x, y \in F$, implies $x \wedge y \in F$.

(2) $x \in F$ and $a \in L$, implies $a \lor x \in F$.

COROLLARY 2.2. Let L be an AL and a, $b \in L$. Then $a \in (b]$ if and only if $a = b \wedge a$.

COROLLARY 2.3. Let L be an AL and a, $b \in L$. Then $(a \wedge b] = (b \wedge a]$.

THEOREM 2.7. Let L be an AL. Then the set $\mathcal{I}(L)$ of all ideals of L forms a lattice under set inclusion in which the glb and lub for any $I, J \in \mathcal{I}(L)$ are respectively $I \wedge J = I \cap J$ and $I \vee J = \{x \in L : (a \vee b) \wedge x = x \text{ for some } a \in I \text{ and} b \in J\}.$

THEOREM 2.8. Let L be an AL. Then the set $P\mathcal{I}(L)$ of all principal ideals of L is a sublattice of the lattice $\mathcal{I}(L)$ of all ideals of L.

DEFINITION 2.14. Let L be an AL. Then for any ideal I in L, define $I^e = \{(a) : a \in I\}$.

LEMMA 2.2. Let L be an AL and I, J be ideals of L. Then we have the following.

(1) I^e is an ideal of the lattice $\mathcal{PI}(L)$,

(2) $I \subseteq J \Leftrightarrow I^e \subseteq J^e$,

(3) $(I \lor J)^e = I^e \lor J^e$,

 $(4) \ (I \cap J)^e = I^e \cap J^e,$

(5) I is prime $\Leftrightarrow I^e$ is prime.

DEFINITION 2.15. Let L be an AL with 0. Then for any nonempty subset A of L, define $A^* = \{x \in L : x \land a = 0 \text{ for all } a \in A\}$. Here, A^* is called an annihilator of A in L.

LEMMA 2.3. Let L and L' be two ALs with zero elements 0 and 0' respectively and $f: L \to L'$ a homomorphism. Then we have the following:

(1) If f is onto, then for any ideal I of L, f(I) is an ideal of L'.

(2) If J is an ideal of L', then $f^{-1}(J)$ is an ideal of L.

(3) ker(f) is an ideal of L.

COROLLARY 2.4. Let L be an AL with 0. Then for any ideals I, J of L. we have the following:

 $\begin{array}{ll} (1) \ I \cap I^* = \{0\}, \\ (2) \ I^* = \bigcap_{a \in I} (a]^*, \\ (3) \ (I \cap J)^* = (J \cap I)^*, \\ (4) \ I \subseteq J \Rightarrow J^* \subseteq I^*, \\ (5) \ I^* \cap J^* \subseteq (I \cap J)^*, \\ (6) \ I \subseteq I^{**}, \\ (7) \ I^{***} = I^*, \\ (8) \ I^* \subseteq J^* \Leftrightarrow J^{**} \subseteq I^{**}, \\ (9) \ (I \cup J)^* = I^* \cap J^* = (J \cup I)^*. \end{array}$

COROLLARY 2.5. Let L be an AL with 0. Then for any ideals I, J of L, we have the following:

- $(1) \ (I\cap J)^{**}=I^{**}\cap J^{**},$
- (2) $I \cap J = (0] \Leftrightarrow I \subseteq J^* \Leftrightarrow J \subseteq I^*.$

COROLLARY 2.6. Let L be an AL with 0. If $\{I_i : i \in \Delta\}$ is a family of ideals of L, then $(\bigcap_{i \in \Delta} I_i)^{**} = \bigcap_{i \in \Delta} (I_i)^{**}$.

THEOREM 2.9. Let L be an AL with 0. Then for any $x, y \in L$, we have the following:

 $\begin{array}{ll} (1) & (x] \cap [x]^* = (0], \\ (2) & [x]^* \cap [x]^{**} = (0], \\ (3) & (x]^* = [x]^*, \\ (4) & (x]^* \cap [x]^{**} = (0], \\ (5) & x \leqslant y \Rightarrow [y]^* \subseteq [x]^*, \\ (6) & [x \land y]^* = [y \land x]^*, \\ (7) & [x \lor y]^* = [y \lor x]^*, \\ (8) & (x] \subseteq [x]^{**}, \\ (9) & [x]^{***} = [x]^*, \\ (10) & [x]^* \subseteq [y]^* \Leftrightarrow [y]^{**} \subseteq [x]^{**}, \\ (11) & [x \land y]^{**} = [x]^{**} \cap [y]^{**}. \end{array}$

COROLLARY 2.7. Let L be an AL with 0. Then for any $0 \neq x \in L$, there exists a maximal filter F of L such that $x \in F$.

DEFINITION 2.16. Let L and L' be two ALs with 0 and 0' respectively. Then a homomorphism $f: L \to L'$ is called annihilator preserving if it satisfies $f(A^*) = (f(A))^*$, for any $\{0\} \subset A \subset L$.

DEFINITION 2.17. Let L be an AL with 0. Then L is said to be 0-distributive if for any $a, b, c \in L$, $a \wedge b = 0$ and $a \wedge c = 0$ imply $a \wedge (b \vee c) = 0$.

LEMMA 2.4. Let L be a 0-distributive AL. Then for any $x, y, z \in L$,

$$[(x \lor y) \land z]^* = [(x \land z) \lor (y \land z)]^*.$$

3. α -Ideals in 0-Distributive Almost Lattices

In this section, we introduce the concept of an α -ideal in a 0-distributive AL Land give certain examples of α -ideals. For any ideal I of an AL L with 0, we prove that $\overline{I} = \{x \in L : (a]^* \subseteq (x]^*$ for some $a \in I\}$ is the smallest α -ideal containing Iand also we prove some basic properties of \overline{I} . We prove that the set $\mathcal{I}_{\alpha}(L)$ of all α -ideals of L forms a complete distributive lattice. We derive a set of identities for an ideal in a 0-distributive AL to become an α -ideal. Also, we obtain a necessary and sufficient condition for an ideal in a 0-distributive AL to become an α -ideal. Finally, in this section we characterise the *-0-DAL in terms of α -ideals. First, we begin this section with the following definition.

DEFINITION 3.1. Let L be a 0-distributive AL and I be an ideal of L. Then I is called an α -ideal of L, if $(x]^{**} \subseteq I$ for all $x \in I$.

Note that we denote the set of all α -ideals in an AL L by $\mathcal{I}_{\alpha}(L)$. In the following, we give certain examples of an α -ideals.

EXAMPLE 3.1. Let $A = \{0, a\}$ and $B = \{0, b_1, b_2\}$ be two discrete ALs. Write $L = A \times B = \{(0, 0), (0, b_1), (0, b_2), (a, 0), (a, b_1), (a, b_2)\}$. Then clearly $(L, \lor, \land, 0')$ is an AL with zero under point-wise operations, where 0' = (0, 0). Now, put $I = \{(0, 0), (0, b_1), (0, b_2)\}$. Then clearly I is an ideal of L. Also, clearly $((0, 0)]^{**} = \{(0, 0)\}$ and $((0, b_1)]^{**} = ((0, b_2)]^{**} = \{(0, 0), (0, b_1), (0, b_2)\} \subseteq I$. Thus I is an α -ideal of L.

EXAMPLE 3.2. Let $L = \{0, a, b, c\}$ and define \lor and \land on L as follows:

V	0	а	b	с		\wedge	0	a	b	с
0	0	a	b	с		0	0	0	0	0
a	a	а	b	b	and	a	0	a	a	0
b	b	b	b	b		b	0	a	b	с
с	с	b	b	с		с	0	0	с	с

Then clearly $(L, \lor, \land, 0)$ is a 0-distributive AL. Now, put $I = \{0, a\}$. Then clearly I is an ideal in L. Also, clearly $(0]^{**} = \{0\}$ and $(a]^{**} = \{0, a\} \subseteq I$. Thus I is an α -ideal of L.

Next, we prove some basic properties of α -ideals in 0-distributive ALs.

THEOREM 3.1. Let L be a 0-distributive AL and let S be a nonempty subset of L which is closed under the operation \wedge . Then the set $I = \{x \in L : x \land y = 0 \text{ for some } y \in S\}$ is an α -ideal of L.

PROOF. Clearly $0 \in I$ and hence I is nonempty. Let $a, b \in I$. Then $a \wedge r = 0$ and $b \wedge s = 0$ for some $r, s \in S$. This implies $a \wedge (r \wedge s) = 0$ and $b \wedge (r \wedge s) = 0$. It follows that $(a \vee b) \wedge (r \wedge s) = 0$, we get $a \vee b \in I$. Again, let $x \in I$ and $r \in L$. Then $x \wedge s = 0$ for some $s \in S$. Now, consider $(x \wedge r) \wedge s = (r \wedge x) \wedge s = r \wedge (x \wedge s) = r \wedge 0 = 0$. Therefore $x \wedge r \in I$. Hence I is an ideal of L. Clearly, $I = \bigcup_{x \in S} (x]^*$. Let $a \in I$. Then $a \in (t]^*$ for some $t \in S$. This implies $(a] \subseteq (t]^*$. Thus $(a]^{**} \subseteq (t]^{***} = (t]^*$. Hence $(a]^{**} \subseteq \bigcup_{x \in S} (x]^* = I$. Therefore I is an α -ideal of L. COROLLARY 3.1. Let L be a 0-distributive AL and let F be a filter of L. Then the set $I = \{x \in L : x \land y = 0 \text{ for some } y \in F\}$ is an α -ideal of L.

THEOREM 3.2. The set union of any chain of α -ideals of a 0-distributive AL L is itself an α -ideal in L.

PROOF. Suppose $\{I_i\}_{i \in \Delta}$ be an arbitrary family of α -ideals of L. Now, put $I = \bigcup_{i \in \Delta} I_i$. Then clearly I is an ideal of L. Now, we shall prove I is an α -ideal of L. Suppose $x \in I = \bigcup_{i \in \Delta} I_i$. Then $x \in I_i$ for some $i \in \Delta$. This implies $(x]^{**} \subseteq I_i$, since each I_i is an α -ideal. It follows that $(x]^{**} \subseteq \bigcup_{i \in \Delta} I_i = I$. Therefore I is an α -ideal of L.

We now define an extension of an ideal I of a 0-distributive AL, which leads to a useful characterization of α -ideals.

DEFINITION 3.2. Let L be 0-distributive AL. Then for any ideal I of L, define $\overline{I} = \{x \in L : (a]^* \subseteq (x]^* \text{ for some } a \in I\}$

THEOREM 3.3. Let L be a 0-distributive AL. Then for any ideal I of L, \overline{I} is an ideal of L.

PROOF. By the definition of \overline{I} , it is clear that $I \subseteq \overline{I}$. Therefore \overline{I} is a nonempty subset of L. Let $x, y \in \overline{I}$. Then $(a]^* \subseteq (x]^*$ and $(b]^* \subseteq (y]^*$ for some $a, b \in I$. Hence $(a]^* \cap (b]^* \subseteq (x]^* \cap (y]^*$. This implies $(a \lor b]^* \subseteq (x \lor y]^*$ and $a \lor b \in I$. Hence $x \lor y \in \overline{I}$. Again, let $x \in \overline{I}$ and $r \in L$. Then $(a]^* \subseteq (x]^*$ for some $a \in I$. This implies $(x]^{**} \subseteq (a]^{**}$. Since $x \in (x]^{**} \subseteq (a]^{**}$, $x \in (a]^{**}$ and $r \in (r]^{**}$. It follows that $x \land r \in (a]^{**} \cap (r]^{**} = (a \land r]^{**}$. This implies $(x \land r] \subseteq (a \land r]^{**}$. It follows that $(a \land r]^* \subseteq (x \land r]^*$ and we have $a \land r \in I$. Thus $x \land r \in \overline{I}$. Therefore \overline{I} is an ideal of L.

THEOREM 3.4. Let L be a 0-distributive AL. Then for any ideals I, J of L, we have the following.

(1) $I \subseteq \overline{I}$, (2) $I \subseteq J \Rightarrow \overline{I} \subseteq \overline{J}$, (3) $\overline{I \cap J} = \overline{I} \cap \overline{J}$, (4) $\overline{I} \lor \overline{J} \subseteq \overline{I} \lor \overline{J}$, (5) $\overline{(\overline{I})} = \overline{I}$, (6) $\overline{(I^*)} = I^*$. PROOF. Proof (1) is clear.

(2) Suppose $I \subseteq J$ and suppose $x \in \overline{I}$. Then $(a]^* \subseteq (x]^*$ for some $a \in I$. Hence $x \in \overline{J}$, since $a \in I \subseteq J$. Therefore $\overline{I} \subseteq \overline{J}$

(3) Clearly, $\overline{(I \cap J)} \subseteq \overline{I} \cap \overline{J}$. Conversely, suppose $x \in \overline{I} \cap \overline{J}$. Then $x \in \overline{I}$ and $x \in \overline{J}$. This implies $(a]^* \subseteq (x]^*$ and $(b]^* \subseteq (x]^*$, where $a \in I$ and $b \in J$. It follows that $(x]^{**} \subseteq (a]^{**}$ and $(x]^{**} \subseteq (b]^{**}$. Hence $(x]^{**} \subseteq (a]^{**} \cap (b]^{**} = (a \wedge b]^{**}$. This implies $(a \wedge b]^* \subseteq (x]^*$ and $a \wedge b \in I \cap J$. Thus $x \in \overline{I \cap J}$. Hence $\overline{I} \cap \overline{J} \subseteq \overline{I \vee J}$. Therefore $\overline{I \cap J} = \overline{I} \cap \overline{J}$.

Proof (4) is clear.

(5) We have $I \subseteq \overline{I}$. Therefore by condition (2), we get $\overline{I} \subseteq \overline{(I)}$. Conversely, suppose $x \in \overline{(I)}$. Then $(a]^* \subseteq (x]^*$, where $a \in \overline{I}$. Again, since $a \in \overline{I}$, $(b]^* \subseteq (a]^*$ for some $b \in I$. It follows that $(b]^* \subseteq (x]^*$ and $b \in I$. Thus $x \in \overline{I}$. Hence $\overline{(I)} \subseteq \overline{I}$. Therefore $\overline{(I)} = \overline{I}$.

(6) Clearly $I^* \subseteq \overline{(I^*)}$. Suppose $x \in \overline{(I^*)}$. Then $(a]^* \subseteq (x]^*$ for some $a \in I^*$. This implies $(x]^{**} \subseteq (a]^{**}$. Since $a \in I^*$, we get $(a] \subseteq I^*$. It follows that $(a]^{**} \subseteq I^*$. Hence $x \in (x]^{**} \subseteq (a]^{**} \subseteq I^*$. Thus $x \in I^*$. Hence $\overline{(I^*)} \subseteq I^*$. Therefore $\overline{(I^*)} = I^*$.

COROLLARY 3.2. Let *L* be a 0-distributive *AL* and $\{I_i\}_{i\in\Delta}$ be a family of α ideals in *L*. Then $\overline{(\bigcap_{i\in\Delta} I_i)} = \bigcap_{i\in\Delta} \overline{I_i} = \bigcap_{i\in\Delta} I_i$.

In the following we characterise an ideal \overline{I} in 0-distributive AL.

THEOREM 3.5. Let L be a 0-distributive AL and I be an ideal of L. Then \overline{I} is the smallest α -ideal containing I.

PROOF. Clearly, \overline{I} is an ideal of L containing I. Suppose $x \in \overline{I}$. Then $(a]^* \subseteq (x]^*$ for some $a \in I$. Let $t \in (x]^{**}$. Then we have $(x]^* \subseteq (t]^*$. Thus $(a]^* \subseteq (x]^* \subseteq (t]^*$. It follows that $t \in \overline{I}$, since $a \in I$. Thus $(x]^{**} \subseteq \overline{I}$. Therefore \overline{I} is an α -ideal containing I. Suppose K is an α -ideal in L such that $I \subseteq K$. Now, let $x \in \overline{I}$. Then $(a]^* \subseteq (x]^*$ for some $a \in I$, since K is an α -ideal containing I, $(a]^{**} \subseteq K$. Now, since $t \in (x]^{**} \subseteq (a]^{**} \subseteq K$, $t \in K$. Hence $\overline{I} \subseteq K$. Therefore \overline{I} is the smallest α -ideal containing I.

Next, we prove that the set $\mathcal{I}_{\alpha}(L)$ of all α -ideals in a 0-distributive AL is a complete distributive lattice. For, this first we need the following lemma whose proof is straight forward.

LEMMA 3.1. Let L be a 0-distributive AL and I be an ideal of L. Then the following are equivalent:

(1) I is an α -ideal,

(2) $I = \overline{I}$.

Recall that the set $\mathcal{I}(L)$ of all ideals in an AL L is lattice. But, in the following we give an example of an AL in which $\mathcal{I}(L)$ is not a distributive lattice.

\vee	0	a	b	с	d	and	\wedge	0	a	b	с	d
0	0	а	b	с	d		0	0	0	0	0	0
a	a	a	d	d	d		a	0	a	0	0	a
b	b	d	b	d	d		b	0	0	b	0	b
c	с	d	d	с	d		с	0	0	0	с	с
d	d	d	d	d	d		d	0	a	b	с	d

EXAMPLE 3.3. Let $L = \{0, a, b, c, d\}$ and define \lor and \land on L as follows:

Then clearly $(L, \lor, \land, 0)$ is an AL. Now, Put $I = \{0, a\}, J = \{0, b\}$ and $K = \{0, c\}$. Then clearly I, J and K are ideals of L. Also, clearly $J \cap K = \{0\}$ and hence $I \lor (J \cap K) = \{0, a\}$. On the other hand $I \lor J = \{0, a, b, c, 1\} = L$ and $I \lor K = \{0, a, b, c, 1\} = L$. Therefore $(I \lor J) \cap (I \lor K) = L$. Thus $I \lor (J \cap K) \neq (I \lor J) \cap (I \lor K)$. Therefore the lattice $\mathcal{I}(L)$ is not a distributive lattice.

Again, in the following we give an example of an AL L in which the set $\mathcal{I}_{\alpha}(L)$ of all α -ideal in L is not a sublattice of the lattice $\mathcal{I}(L)$.

EXAMPLE 3.4. Let $L = \{0, a, b, c, d\}$ and define \lor and \land on L as follows:

\vee	0	a	b	с	d	and	\wedge	0	a	b	с	d
0	0	а	b	с	d		0	0	0	0	0	0
a	a	а	с	с	d		a	0	a	0	а	a
b	b	с	b	с	d		b	0	0	b	b	b
c	с	с	с	с	d		с	0	a	b	с	с
d	d	d	d	d	d		d	0	a	b	с	d

Then clearly $(L, \lor, \land, 0)$ is a 0-distributive AL. Now, put $I = \{0, a\}$ and $J = \{0, b\}$. Then clearly I and J are α -ideals of L. But, we have $I \lor J = \{0, a, b, c\}$, which is not an α -ideal, since $(c]^{**} = L \not\subseteq I \lor J$. Thus $I \lor J$ is not an α -ideal in L. Therefore $\mathcal{I}_{\alpha}(L)$ is not a sublattice of $\mathcal{I}(L)$.

However, in the following we prove that if L is a 0-distributive AL then the set $\mathcal{I}_{\alpha}(L)$ of α -ideals in L is a distributive lattice on its own. For this, first we need the following lemma whose proof is straight forward.

LEMMA 3.2. Let L be an AL with 0. Then for any $I, J \in \mathcal{I}(L), I^{**} \vee J^{**} \subseteq (I \vee J)^{**}$

But, the converse of the lemma 3.2 is not true. For, in example 3.4, we have $I^{**} = I$, $J^{**} = J$ and hence $I^{**} \vee J^{**} = \{0, a, b, c\}$. On the other hand, we have $(I \vee J)^* = \{0\}$ and hence $(I \vee J)^{**} = L$. Therefore $I^{**} \vee J^{**} \neq (I \vee J)^{**}$.

Now, we prove the following theorem.

THEOREM 3.6. Let L be a 0-distributive AL in which $I^{**} \vee J^{**} = (I \vee J)^{**}$ for every $I, J \in \mathcal{I}_{\alpha}(L)$. Then the set $\mathcal{I}_{\alpha}(L)$ is a distributive lattice with respect to set inclusion, where for any $I, J \in \mathcal{I}_{\alpha}(L), g.l.b.(I, J) = I \cap J$ and $l.u.b.(I, J) = I \nabla J = \overline{I \vee J}$.

PROOF. Clearly, $\mathcal{I}_{\alpha}(L)$ is a poset with respect to set inclusion. Let $I, J \in \mathcal{I}_{\alpha}(L)$. Then clearly, $I \cap J$ is an α -ideal and hence $I \cap J \in \mathcal{I}_{\alpha}(L)$. Also, clearly $I \cap J$ is the *g.l.b.* of I and J. Now, we shall prove $I \overline{\lor} J$ is the *l.u.b.* of I and J in $\mathcal{I}_{\alpha}(L)$. Now, by Theorem 3.5, we get $\overline{I \lor J}$ is the smallest α -ideal containing $I \lor J$ and hence $I \overline{\lor} J = \overline{I \lor J} \in \mathcal{I}_{\alpha}(L)$. Since $I, J \subseteq I \lor J, \overline{I}, \overline{J} \subseteq \overline{I \lor J} = I \overline{\lor} J$. It follows that $I \overline{\lor} J$ is an upper bound of I and J. Then $I \subseteq K$ and $J \subseteq K$. This implies $I \lor J \subseteq K$. Hence $\overline{I \lor J} \subseteq \overline{K} = K$. Thus $I \overline{\lor} J$ is the *l.u.b.* of I and J. Therefore $\mathcal{I}_{\alpha}(L)$ is a lattice.

Now, we shall prove $\mathcal{I}_{\alpha}(L)$ is a distributive lattice. Let $I, J, K \in \mathcal{I}_{\alpha}(L)$. Since $\mathcal{I}_{\alpha}(L)$ is a lattice, we have $I\overline{\vee}(J\cap K)\subseteq (I\overline{\vee}J)\cap (I\overline{\vee}K)$. Conversely, suppose $x \in (I \overline{\lor} J) \cap (I \overline{\lor} K)$. Then $x \in (I \lor J) \cap (I \lor K) = (I \lor J) \cap (I \lor K)$. It follows that $[a]^* \subseteq [x]^*$ for some $a \in (I \lor J) \cap (I \lor K)$. Hence $a \in I \lor J$ and $a \in I \lor K$. This implies $(i_1 \lor j) \land a = a$ for some $i_1 \in I$, $j \in J$ and $(i_2 \lor k) \land a = a$ for some $i_2 \in I$, $k \in K$. Now, since $[a]^* \subseteq [x]^*$, $[x]^{**} \subseteq [a]^{**}$. Now, we have $[(i_1 \lor j) \land a]^{**} = [a]^{**}$. It follows that $[i_1 \lor j]^{**} \cap [a]^{**} = [a]^{**}$. Thus $[a]^{**} \subseteq [i_1 \lor j]^{**}$. Similarly, we get $[a]^{**} \subseteq [i_2 \lor k]^{**}$. Therefore $[a]^{**} \subseteq [i_1 \lor j]^{**} \cap [i_2 \lor k]^{**}$. This implies $[x]^{**} \subseteq [i_1 \lor j]^{**} \cap [i_2 \lor k]^{**}$. $[i_1 \vee j]^{**} \cap [i_2 \vee k]^{**} = [(i_1 \vee j) \land (i_2 \vee k)]^{**} = [((i_1 \vee j) \land i_2) \vee ((i_1 \vee j) \land k)]^{**} = [(i_1 \vee j) \land (i_2 \vee k)]^{**} = [(i_1 \vee j) \land$ $(((i_1 \lor j) \land i_2) \lor ((i_1 \lor j) \land k)]^{**} = (((i_1 \lor j) \land i_2] \lor ((i_1 \lor j) \land k])^{**} = ((i_1 \lor j) \land i_2]^{**} \lor ((i_1 \lor j) \land i_2) \lor ((i_1 \lor j) \lor (($ $((i_1 \lor j) \land k]^{**} = ((i_1 \land i_2) \lor (j \land i_2)]^{**} \lor ((i_1 \land k) \lor (j \land k)]^{**} = (((i_1 \land i_2) \lor (j \land i_2))] \lor (j \land i_2)$ $((i_1 \wedge k) \vee (j \wedge k)])^{**} = (((i_1 \wedge i_2) \vee (j \wedge i_2) \vee (i_1 \wedge k)) \vee (j \wedge k)])^{**} = [t \vee (j \wedge k)]^{**},$ where $t = (i_1 \wedge i_2) \vee (j \wedge i_2) \vee (i_1 \wedge k) \in I. \text{ Thus } [x]^{**} \subseteq \underline{[t \vee (j \wedge k)]^{**}}. \text{ Hence } [t \vee (j \wedge k)]^* \subseteq [x]^*,$ where $t \lor (j \land k) \in I \lor (J \cap K)$. Thus $x \in \overline{I \lor (J \cap K)} = I \overline{\lor} (J \cap K)$. Therefore $(I\overline{\vee}J)\cap (I\overline{\vee}K)\subseteq I\overline{\vee}(J\cap K)$. Hence $I\overline{\vee}(J\cap K)=(I\overline{\vee}J)\cap (I\overline{\vee}K)$. Therefore $\mathcal{I}_{\alpha}(L)$ is a distributive lattice.

In view of theorem 3.6 and corollary 3.2, we have the following.

THEOREM 3.7. Let L be a 0-distributive AL. Then the set $\mathcal{I}_{\alpha}(L)$ of all α -ideals of L forms a complete distributive lattice, ordered by set inclusion.

Recall that the intersection of all minimal prime ideals in a 0-distributive AL is $\{0\}$. In the following we derive set of identities of an ideal in a 0-distributive AL to become an α -ideal. For, this first we need the following lemma.

LEMMA 3.3. Let L be a 0-distributive AL. Then for any $x \in L$, $(x]^* = \bigcap_{P \in M_x} P$.

PROOF. Suppose P is a minimal prime ideal of L such that $x \notin P$. Suppose $t \in (x]^*$. Then $t \wedge x = 0 \in P$. Hence, we get $t \in P$. Therefore $(x]^* \subseteq \bigcap_{P \in M_r} P$.

Conversely, suppose $t \notin (x]^*$. Then $t \wedge x \neq 0$. Then there exists a minimal prime ideal (say) P such that $t \wedge x \notin P$. This implies $t \notin P$ and $x \notin P$. Hence $t \notin \bigcap_{P \in M_x} P$. Thus $\bigcap_{P \in M_x} P \subseteq (x]^*$. Therefore $(x]^* = \bigcap_{P \in M_x} P$ \Box

Now, we prove the following theorem.

THEOREM 3.8. Let L be a 0-distributive AL. Then for any ideal I of L, the following are equivalent:

I is an α-ideal,
I = Ī,
For any x, y ∈ L, [x]* = [y]* and x ∈ I imply y ∈ I,
I = ∪_{x∈I} [x]**,
For any x, y ∈ L, h(x) = h(y) and x ∈ I imply y ∈ I.

PROOF. $(1) \Rightarrow (2)$ is clear.

 $(2) \Rightarrow (3)$: Assume (2). Let $x, y \in L$ such that $[x]^* = [y]^*$ and $x \in I$. Then by condition (2), we get $x \in \overline{I}$. Therefore $[a]^* \subseteq [x]^*$ for some $a \in I$. Hence $[a]^* \subseteq [y]^*$ and $a \in I$. Therefore $y \in \overline{I} = I$. Thus $y \in I$.

(3) \Rightarrow (4): Assume (3). Clearly $I \subseteq \bigcup_{x \in I} [x]^{**}$. Conversely, suppose $y \in \bigcup_{x \in I} [x]^{**}$. Then $y \in [x]^{**}$ for some $x \in I$. It follows that $[y]^{**} \subseteq [x]^{**}$. Thus $[y]^{**} = [x]^{**} \cap [y]^{**} = [x \land y]^{**}$ and $x \in I$. Therefore by condition (3), we get $y \in I$. Hence $\bigcup_{x \in I} [x]^{**} \subseteq I$. Therefore $I = \bigcup_{x \in I} [x]^{**}$.

 $(4) \Rightarrow (1)$ is clear, since by the definition of α -ideal. (3) \Leftrightarrow (5) also clear, since $h(x) = h(y) \Leftrightarrow [x]^* = [y]^*$.

Recall that if L is a 0-distributive AL then for any $(a] \in \mathcal{PI}(L), \{(a]\}^* = \{(x) \in \mathcal{PI}(L) : (a] \cap (x] = (0)\}$ is an ideal of the lattice $\mathcal{PI}(L)$. In the following we derive a necessary and sufficient condition for an ideal in a 0-distributive AL to become an α -ideal. For this, first we need the following.

LEMMA 3.4. Let L be a 0-distributive AL. Then for any $a, b \in L$, we have the following.

(1) $x \in (a]^* \Leftrightarrow (x] \in \{(a]\}^*,$ (2) $(a]^* = (b]^* \Leftrightarrow \{(a]\}^* = \{(b]\}^*.$

PROOF. We have $x \in (a]^* \Leftrightarrow x \land a = 0 \Leftrightarrow (x \land a] = (0] \Leftrightarrow (x] \cap (a] = (0] \Leftrightarrow (x] \in \{(a]\}^*$. Thus $x \in (a]^* \Leftrightarrow (x] \in \{(a]\}^*$.

Suppose $(a]^* = (b]^*$. Then $(x] \in \{(a]\}^* \Leftrightarrow (x] \cap (a] = (0] \Leftrightarrow (x \land a] = (0] \Leftrightarrow x \land a = 0 \Leftrightarrow x \land b = 0 \Leftrightarrow (x \land b] = (0] \Leftrightarrow (x] \cap (b] = (0] \Leftrightarrow (x] \in \{(b]\}^*$. Therefore $\{(a]\}^* = \{(b]\}^*$. Conversely, suppose $\{(a]\}^* = \{(b]\}^*$. Then $x \in (a]^* \Leftrightarrow x \land a = 0 \Leftrightarrow (x \land a] = (0] \Leftrightarrow (x] \cap (a] = (0] \Leftrightarrow (x] \in \{(a]\}^* \Leftrightarrow (x] \in \{(b]\}^* \Leftrightarrow (x] \cap (b] = (0] \Leftrightarrow (x \land b] = (0] \Leftrightarrow x \land b = 0 \Leftrightarrow x \in (b]^*$. Therefore $(a]^* = (b]^*$

Now, we prove the following theorem.

THEOREM 3.9. Let L be a 0-distributive AL and I be an ideal of L. Then I is an α -ideal in L if and only if I^e is an α -ideal in $\mathcal{PI}(L)$.

PROOF. Suppose I is an α -ideal in L. Clearly, I^e is an ideal in $\mathcal{PI}(L)$. Let $(a], (b] \in \mathcal{PI}(L)$ such that $\{(a]\}^* = \{(b]\}^*$ and $(a] \in I^e$. This implies (a] = (t] for some $t \in I$. It follows that $a \in I$. Since $\{(a]\}^* = \{(b]\}^*$, by lemma 3.4, $(a]^* = (b]^*$. Again, since I is an α -ideal of L, we get $b \in I$. Hence $(b] \in I^e$. Therefore I^e is an α -ideal in $\mathcal{PI}(L)$.

Conversely, suppose I^e is an α -ideal in $\mathcal{PI}(L)$. Let $a, b \in L$ such that $(a]^* = (b]^*$ and $a \in I$. Then $\{(a]\}^* = \{(b]\}^*$ and $(a] \in I^e$. Since I^e is an α -ideal in $\mathcal{PI}(L)$, we get $(b] \in I^e$. It follows that $b \in I$. Therefore I is an α -ideal in L. \Box

Finally, in this section we derive sufficient condition for a 0-distributive AL to become a *-0-DAL in terms of α -ideals.

THEOREM 3.10. Let L be a 0-distributive AL. If every α -ideal in L is a principal ideal, then L is a *-0-DAL.

PROOF. Suppose $x \in L$. Then for any $a \in (x]^*$, we get $(a]^{**} \subseteq (x]^*$. Therefore $(x]^*$ is an α -ideal of L. Thus by the hypothesis, we get $(x]^* = (a]$ for some $a \in L$. Thus $(x]^{**} = (a]^*$. Therefore L is a *-0-DAL.

4. Annihilator Preserving Epimorphisms

In this section, we prove that the image of an α -ideal under an annihilator preserving epimorphism is again an α -ideal. We derive a necessary and sufficient condition for the contraction of an α -ideal is an α -ideal. For this, first we need the following lemma.

LEMMA 4.1. Let L and L' be two ALs with 0 and 0' respectively and let $f : L \to L'$ be a homomorphism. Then for any $a \in L$, $f((a]) \subseteq (f(a)]$. Moreover, if f is onto, then f((a]) = (f(a)].

PROOF. Let $a \in L$ and let $t \in f((a)]$. Then t = f(x) for some $x \in (a]$. It follows that $t = f(x) = f(a \land x) = f(a) \land f(x)$. Hence $t \in (f(a)]$. Therefore $f((a)) \subseteq (f(a)]$. Now, suppose f is onto. Let $t \in (f(a)]$. Then $t = f(a) \land s$ for some $s \in L'$. Since f is onto, there exists $x \in L$ such that f(x) = s. Therefore $t = f(a) \land s = f(a) \land f(x) = f(a \land x)$. Now, we have $a \land x \in (a]$ and hence $f(a \land x) \in (f(a)]$. Therefore $t \in (f(a)]$. Thus $(f(a)] \subseteq f((a))$. Thus f((a)) = (f(a)]. \Box

THEOREM 4.1. Let L and L' be two 0-distributive ALs and let $f: L \to L'$ be an annihilator preserving epimorphism. If I is an α -ideal in L, then f(I) is an α -ideal in L'.

PROOF. Suppose I is an α -ideal in L. Then by lemma 2.3, we get f(I) is an ideal in L'. Now, let $x \in f(I)$. Then x = f(a), for some $a \in I$. Now, since I is an α -ideal and $a \in I$, $(a]^{**} \subseteq I$. Therefore $f((a]^{**}) \subseteq f(I)$. It follows that $(f((a)))^{**} \subseteq f(I)$. Hence $(f(a)]^{**} \subseteq f(I)$. Thus $(x]^{**} \subseteq f(I)$. Therefore f(I) is an α -ideal in L'.

DEFINITION 4.1. Let L and L' be two ALs and let $f: L \to L'$ is a homomorphism. Then for any ideal I of L', $f^{-1}(I)$ is called the contraction of I.

It can be easily seen that the contraction of an ideal is an ideal. But, the contraction of an α -ideal need not be an α -ideal. For, consider the following example.

EXAMPLE 4.1. Let $L = \{0, a, b, c\}$ and define \lor and \land on L as follows.

V	0	a	b	с		\wedge	0	a	b	с
0	0	а	b	с		0	0	0	0	0
a	a	а	a	a	and $ $	a	0	a	b	с
b	b	b	b	b		b	0	a	b	с
с	с	a	b	с		с	0	с	с	с

Then clearly $(L, \lor, \land, 0)$ is an AL with 0. Again, let $A = \{0, a'\}$ and $B = \{0, b_1, b_2\}$ be two discrete ALs. Write

$$L' = A \times B = \{(0,0), (0,b_1), (0,b_2), (a',0), (a',b_1), (a',b_2)\}.$$

Then clearly, L' is an AL with zero element 0' = (0, 0), under point-wise operations. Now, define a mapping $f : L \to L'$ as follows. f(0) = 0', f(c) = (a', 0), $f(a) = (a', b_1)$, $f(b) = (a', b_2)$. Then clearly f is a homomorphism from L onto L'. Now, put $J = \{(0,0), (a', 0)\}$. Then, clearly J is an α -ideal of L', but, $f^{-1}(J) = \{0, c\}$ is not an α -ideal in L, since $(c]^{**} = (0]^* = L \not\subseteq f^{-1}(J)$.

It can be easily seen that for every a in a 0-distributive AL, $[a]^*$ is an α -ideal. In the following we give necessary and sufficient condition for a contraction of an α -ideal is an α -ideal.

THEOREM 4.2. Let L and L' be two 0-distributive ALs and let $f : L \to L'$ be a homomorphism. Then contraction of every α -ideal is an α -ideal if and only if contraction of $[a]^*$ is an α -ideal for every $a \in L'$.

PROOF. Suppose contraction of an α -ideal is an α -ideal and suppose $a \in L'$. Then we have $[a]^*$ is an α -ideal. Therefore by assumption, $f^{-1}([a]^*)$ is an α -ideal. Thus contraction of $[a]^*$ is an α -ideal.

Conversely, assume the condition. Suppose J is an α -ideal of L'. Now, we shall prove that $f^{-1}(J)$ is an α -ideal of L. Let $x, y \in L$ such that $[x]^* = [y]^*$ and $x \in f^{-1}(J)$. First we prove that $[f(x)]^* = [f(y)]^*$. Let $t \in [f(x)]^*$. Then $t \wedge f(x) = 0$. This implies $f(x) \in [t]^*$. Hence $x \in f^{-1}([t]^*)$. Since $f^{-1}([t]^*)$ is an α -ideal(by assumption), $y \in f^{-1}([t]^*)$. Therefore $f(y) \in [t]^*$. This implies $f(y) \wedge t = 0$. Hence $t \in [f(y)]^*$. Thus $[f(x)]^* \subseteq [f(y)]^*$. Similarly, we can prove that $[f(y)]^* \subseteq [f(x)]^*$. Therefore $[f(x)]^* = [f(y)]^*$ and we have $f(x) \in J$. It follows that $f(y) \in J$, since J is an α -ideal. Therefore $y \in f^{-1}(J)$. Thus $f^{-1}(J)$ is an α -ideal of L.

THEOREM 4.3. Let L and L' be two 0-distributive ALs. If $f : L \to L'$ is an annihilator preserving epimorphism, then contraction of every α -ideal is an α -ideal.

PROOF. Suppose L and L' be two 0-distributive ALs and $f: L \to L'$ is an annihilator preserving epimorphism. Suppose J is an α -ideal of L'. Now, we shall prove $f^{-1}(J)$ is an α -ideal of L. Clearly, $f^{-1}(J)$ is an ideal of L. Now, let $x, y \in L$ such that $[x]^* = [y]^*$ and $x \in f^{-1}(J)$. Now, since $[x]^* = [y]^*$, $f([x]^*) = f([y]^*)$. This implies $f((x]^*) = f((y]^*)$. It follows that $(f((x]))^* = (f((y)))^*$. Therefore by lemma 4.1, we get $(f(x))^* = (f(y))^*$. Hence we get $[f(x)]^* = [f(y)]^*$. Now, since $x \in f^{-1}(J)$, $f(x) \in J$. Therefore $f(y) \in J$, since J is an α -ideal. Thus $y \in f^{-1}(J)$. Therefore $f^{-1}(J)$ is an α -ideal.

It can be easily seen that for any nonempty subset A of a 0-distributive AL L, A^* is an α -ideal. Now, we have the following.

COROLLARY 4.1. Let L and L' be two 0-distributive ALs and let $f : L \to L'$ be an annihilator preserving epimorphism. Then for any nonempty subset A of L', $f^{-1}(A^*)$ is an α -ideal of L containing $(f^{-1}(A))^*$.

PROOF. Suppose A is a nonempty subset of L'. Then we have A^* is an α -ideal. Therefore by Theorem 4.3, we get $f^{-1}(A^*)$ is an α -ideal. Now, we shall prove $(f^{-1}(A))^* \subseteq f^{-1}(A^*)$. Let $x \in (f^{-1}(A))^*$. Then $x \wedge t = 0$ for all $t \in f^{-1}(A)$.

This implies $f(x \wedge t) = f(0)$ for all $t \in f^{-1}(A)$. It follows that $f(x) \wedge f(t) = 0'$ for all $f(t) \in A$. Thus $f(x) \in A^*$. Hence $x \in f^{-1}(A^*)$. Therefore $(f^{-1}(A))^* \subseteq f^{-1}(A^*)$.

COROLLARY 4.2. Let L and L' be two 0-distributive ALs and let $f: L \to L'$ be an annihilator preserving epimorphism. Then ker(f) is an α -ideal of L.

PROOF. We have $\{0'\}$ is an α -ideal of L' and also, we have $ker(f) = f^{-1}\{0'\}$. It follows that ker(f) is an α -ideal of L.

References

- [1] G. Birkhoff. Lattice theory. Amer.Math.Soc.Colloq. XXV, Providence, 1967.
- [2] W. H. Cornish. Annulets and α-ideals in distributive lattices. J. Austral. Math. Soc., 15(1)(1973), 70–77.
- [3] G. Nanaji Rao and Habtamu Tiruneh Alemu. Almost Lattices. J. Int. Math. Virtual Inst., 9(1)(2019), 155–171.
- [4] G. Nanaji Rao and Habtamu Tiruneh Alemu. Ideals in Almost Lattices. Bull. Int. Math. Virtual Inst., 10(1)(2019), 37–50.
- [5] G. Nanaji Rao and R. Venkata Aravinda Raju. Annihilator ideals in 0-Distributive Almost Lattices. Bull. Int. Math. Virtual Inst., 11(1)(2021), 1–13.
- [6] G. Nanaji Rao and R. Venkata Aravinda Raju. Pseudo-complementation on Almost Lattices. Annals of Pure and Applied Mathematics, 19(1)(2019), 37–51.
- [7] G. Nanaji Rao and R. Venkata Aravinda Raju. 0-Distributive Almost Lattices. Bull. Int. Math. Virtual Inst., 10(2)(2020), 239–248.
- [8] G. Nanaji Rao and R. Venkata Aravinda Raju. *-0-Distributive Almost Lattices. communicated in the Southeast Asian Journal of Mathematics in 2019.
- [9] G. C. Rao and M. Sambasiva Rao. α-Ideals in Almost Distributive Lattices. Int. J. Contemp. Math. Sciences, 4(10)(2009), 457–466.

Received by editors 03.06.2020; Revised version 25.09.2020; Available online 05.10.2020.

G. Nanaji Rao,

DEPARTMENT OF MATHEMATICS, ANDHRA UNIVERSITY, VISAKHAPATNAM, INDIA E-mail address: nani6us@yahoo.com

R. Venkata Aravinda Raju,

DEPARTMENT OF MATHEMATICS, ANDHRA UNIVERSITY, VISAKHAPATNAM, INDIA E-mail address: aravindaraju.10gmail.com