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α-IDEALS IN 0-DISTRIBUTIVE ALMOST LATTICES

G. Nanaji Rao and R. Venkata Aravinda Raju

Abstract. We introduce the concept of an α- ideal in a 0−distributive almost

lattice. We give some examples of the α-ideals. We prove that the set of all α-
ideals in a 0-distributive almost lattice L forms a complete distributive lattice.
We obtain necessary and sufficient conditions for an ideal in a 0-distributive
AL to be an α-ideal. Finally, we establish a necessary and sufficient condition

for the contraction of an α-ideal to be an α-ideal.

1. Introduction

In 1973, W. H. Cornish [2] introduced the concept of an α-ideal in a distributive
lattice with 0 and studied many properties of these ideals. He characterised α-ideals
in terms of annulets. The concept of almost lattice (AL) was introduced by G.
Nanaji Rao and Habtamu Tiruneh Alemu [3] as a common abstraction of almost
all lattice theoretic generalizations of Boolean algebra like distributive lattices,
almost distributive lattices and established necessary and sufficient conditions for
an AL to become a lattice. Also, G. Nanaji Rao and Habtamu Tiruneh Alemu [4]
introduced the concept of ideals in an AL and proved that the set I(L) of all ideals
in an AL L forms a lattice and proved the set of all principal ideals of L, denoted
by PI(L) is a sublattice of the lattice I(L). Later, G. Nanaji Rao and R. Venkata
Aravinda Raju [7] introduced the concept of annihilators of a nonempty subsets
of almost lattices and proved some of their basic properties. Also, they introduced
the concept of 0-distributive almost lattice and obtained necessary and sufficient
conditions for an AL with 0 to become 0-distributive AL in terms of annihilators,
ideals and pseudo-complementations.
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In this paper, we introduce the concept of α-ideal in a 0-distributive AL L
and give certain examples of α-ideals. Also, we obtain that if I is an ideal of a
0-distributive AL L then the set Ī = {x ∈ L : (a]∗ ⊆ (x]∗ for some a ∈ I} is the
smallest α-ideal containing I. We observe that the lattice I(L) of all ideals in an
AL L need not be distributive.We prove that the set Iα(L) of all α-ideals of L forms
a complete distributive lattice but, in general, not a sublattice of the lattice I(L).
We prove a set of identities for an ideal in a 0-distributive AL to become an α-ideal.
We derive necessary and sufficient conditions for an ideal in a 0-distributive AL to
become an α-ideal. Also, we characterize ∗-0-distributive almost lattice (∗-0-DAL)
in terms of α-ideals. Finally, obtain a necessary and sufficient condition for the
contraction of an α-ideal to be an α-ideal.

2. Preliminaries

In this section we collect few important definitions and results which are already
known and which will be used more frequently in the text.

Definition 2.1. Let (P,6) be a poset. Then P is said to be lattice ordered
set if for every pair x, y ∈ P , l.u.b{x, y} and g.l.b{x, y} exists.

Definition 2.2. An algebra (L,∨,∧) of type (2, 2) is called a lattice if it
satisfies the following axioms. For any x, y, z ∈ L,

(1) x ∨ y = y ∨ x and x ∧ y = y ∧ x. (Commutative Law)
(2) (x ∨ y) ∨ z = x ∨ (y ∨ z) and (x ∧ y) ∧ z = x ∧ (y ∧ z). (Associative Law)
(3) x ∨ (x ∧ y) = x and x ∧ (x ∨ y) = x. (Absorption Law)

It can be easily seen that in any lattice L,
x ∨ x = x and x ∧ x = x (Idempotent Law).

Theorem 2.1. Let (L,6) be a lattice ordered set. If we define x∧y is the g.l.b
of {x , y} and x ∨ y is the l.u.b of {x , y} (x, y ∈ L), then (L,∨,∧) is a lattice.

Theorem 2.2. Let (L,∨,∧) be a lattice. If we define a relation 6 on L, by
x 6 y if and only if x = x ∧ y, or equivalently x ∨ y = y. Then (L,6) is a lattice
ordered set.

Important Note: Theorems 2.1. and 2.2. together imply that the concepts
of lattice and lattice ordered set are the same. We refer to it as a lattice in future.

Definition 2.3. Let L be a lattice. Then L is said to be a bounded lattice if
L is bounded as a poset.

Definition 2.4. A bounded lattice L with bounds 0 and 1 is said to be com-
plemented if to each x ∈ L, there exists y ∈ L such that x ∧ y = 0 and x ∨ y = 1.

Theorem 2.3. In any lattice (L,∨,∧) the following are equivalent:

(1) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z),
(2) (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z),
(3) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z),
(4) (x ∧ y) ∨ z = (x ∨ z) ∧ (y ∨ z).
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Definition 2.5. A lattice L is called a distributive lattice if it satisfies any
one of the four conditions in the Theorem 2.3.

Definition 2.6. A complemented distributive lattice is called a Boolean alge-
bra.

Definition 2.7. A lattice L is called a complete lattice if every nonempty
subset of L has both l.u.b and g.l.b.

Theorem 2.4. If P is a partial ordered set bounded above each of whose non-
void subset R has an infimum, then each non-void subset of P will have a supremum,
too, and by the definitions

∩
R = inf R,

∪
R = supR, then P becomes a complete

lattice.

Theorem 2.5. Let L be a lattice. Then for any x, y, z ∈ L, the following
conditions are equivalent:

(1) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z),
(2) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z),
(3) (x ∨ y) ∧ z 6 x ∨ (y ∧ z).

Definition 2.8. An algebra (L,∨,∧, 0) of type (2, 2, 0) is called an AL with 0
if, for any a, b, c ∈ L, it satisfies the following conditions:

(1) (a ∧ b) ∧ c = (b ∧ a) ∧ c,
(2) (a ∨ b) ∧ c = (b ∨ a) ∧ c,
(3) (a ∧ b) ∧ c = a ∧ (b ∧ c),
(4) (a ∨ b) ∨ c = a ∨ (b ∨ c),
(5) a ∧ (a ∨ b) = a,
(6) a ∨ (a ∧ b) = a,
(7) (a ∧ b) ∨ b = b,
(8) 0 ∧ a = 0.

It can be easily seen that a ∧ b = a if and only if, a ∨ b = b in an AL.

Definition 2.9. Let L be an AL and a, b ∈ L. An element a is less than or
equal to b and write a 6 b if and only if a ∧ b = a or equivalently a ∨ b = b.

Theorem 2.6. The relation 6 is a partial ordering on an AL L and hence
(L,6) is a poset.

Definition 2.10. Let L be any nonempty set. If we define x ∨ y = x = y ∧ x
for any x, y ∈ L, then clearly L is an AL and it is called a discrete AL.

Definition 2.11. Let L and L′ be two ALs with zero elements 0 and 0′ re-
spectively. Then a mapping f : L → L′ is called a homomorphism if it satisfies the
following conditions.

(1) f(a ∨ b) = f(a) ∨ f(b),
(2) f(a ∧ b) = f(a) ∧ f(b),
(3) f(0) = 0′.

Definition 2.12. Let L be an AL. Then a nonempty subset I of L is said to
be an ideal of L if it satisfies the following conditions:



198 G. NANAJI RAO, R. VENKATA ARAVINDA RAJU

(1) If x, y ∈ I, then there exists d ∈ I such that d ∧ x = x and d ∧ y = y,
(2) If x ∈ I and a ∈ L, then x ∧ a ∈ I.

Lemma 2.1. Let L be an AL and I be an ideal of L. Then the following are
equivalent:

(1) x, y ∈ I implies x ∨ y ∈ I.
(2) x, y ∈ I implies there exists d ∈ I such that d ∧ x = x and d ∧ y = y.

Corollary 2.1. Let L be an AL and a ∈ L. Then (a] = {a ∧ x| x ∈ L} is an
ideal of L and it is called principal ideal generated by a.

Definition 2.13. Let L be an AL. Then a nonempty subset F of L is said to
be a filter if it satisfies the following:

(1) x, y ∈ F , implies x ∧ y ∈ F .
(2) x ∈ F and a ∈ L, implies a ∨ x ∈ F .

Corollary 2.2. Let L be an AL and a, b ∈ L. Then a ∈ (b] if and only if
a = b ∧ a.

Corollary 2.3. Let L be an AL and a, b ∈ L. Then (a ∧ b] = (b ∧ a].

Theorem 2.7. Let L be an AL. Then the set I(L) of all ideals of L forms
a lattice under set inclusion in which the glb and lub for any I, J ∈ I(L) are
respectively I ∧ J = I ∩ J and I ∨ J = {x ∈ L : (a ∨ b) ∧ x = x for some a ∈ I and
b ∈ J}.

Theorem 2.8. Let L be an AL. Then the set PI(L) of all principal ideals of
L is a sublattice of the lattice I(L) of all ideals of L.

Definition 2.14. Let L be an AL. Then for any ideal I in L, define Ie = {(a] :
a ∈ I}.

Lemma 2.2. Let L be an AL and I, J be ideals of L. Then we have the
following.

(1) Ie is an ideal of the lattice PI(L),
(2) I ⊆ J ⇔ Ie ⊆ Je,
(3) (I ∨ J)e = Ie ∨ Je,
(4) (I ∩ J)e = Ie ∩ Je,
(5) I is prime ⇔ Ie is prime.

Definition 2.15. Let L be an AL with 0. Then for any nonempty subset A of
L, define A∗ = {x ∈ L : x ∧ a = 0 for all a ∈ A}. Here, A∗ is called an annihilator
of A in L.

Lemma 2.3. Let L and L′ be two ALs with zero elements 0 and 0′ respectively
and f : L → L′ a homomorphism. Then we have the following:

(1) If f is onto, then for any ideal I of L, f(I) is an ideal of L′.
(2) If J is an ideal of L′, then f−1(J) is an ideal of L.
(3) ker(f) is an ideal of L.
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Corollary 2.4. Let L be an AL with 0. Then for any ideals I, J of L. we
have the following:

(1) I ∩ I∗ = {0},
(2) I∗ =

∩
a∈I

(a]∗,

(3) (I ∩ J)∗ = (J ∩ I)∗,
(4) I ⊆ J ⇒ J∗ ⊆ I∗,
(5) I∗ ∩ J∗ ⊆ (I ∩ J)∗,
(6) I ⊆ I∗∗,
(7) I∗∗∗ = I∗,
(8) I∗ ⊆ J∗ ⇔ J∗∗ ⊆ I∗∗,
(9) (I ∪ J)∗ = I∗ ∩ J∗ = (J ∪ I)∗.

Corollary 2.5. Let L be an AL with 0. Then for any ideals I, J of L, we
have the following:

(1) (I ∩ J)∗∗ = I∗∗ ∩ J∗∗,
(2) I ∩ J = (0] ⇔ I ⊆ J∗ ⇔ J ⊆ I∗.

Corollary 2.6. Let L be an AL with 0. If {Ii : i ∈ ∆} is a family of ideals
of L, then (

∩
i∈∆

Ii)
∗∗ =

∩
i∈∆

(Ii)
∗∗.

Theorem 2.9. Let L be an AL with 0. Then for any x, y ∈ L, we have the
following:

(1) (x] ∩ [x]∗ = (0],
(2) [x]∗ ∩ [x]∗∗ = (0],
(3) (x]∗ = [x]∗,
(4) (x]∗ ∩ [x]∗∗ = (0],
(5) x 6 y ⇒ [y]∗ ⊆ [x]∗,
(6) [x ∧ y]∗ = [y ∧ x]∗,
(7) [x ∨ y]∗ = [y ∨ x]∗,
(8) (x] ⊆ [x]∗∗,
(9) [x]∗∗∗ = [x]∗,
(10) [x]∗ ⊆ [y]∗ ⇔ [y]∗∗ ⊆ [x]∗∗,
(11) [x ∧ y]∗∗ = [x]∗∗ ∩ [y]∗∗.

Corollary 2.7. Let L be an AL with 0. Then for any 0 ̸= x ∈ L, there exists
a maximal filter F of L such that x ∈ F .

Definition 2.16. Let L and L′ be two ALs with 0 and 0′ respectively. Then
a homomorphism f : L → L′ is called annihilator preserving if it satisfies f(A∗) =
(f(A))∗, for any {0} ⊂ A ⊂ L.

Definition 2.17. Let L be an AL with 0. Then L is said to be 0-distributive
if for any a, b, c ∈ L, a ∧ b = 0 and a ∧ c = 0 imply a ∧ (b ∨ c) = 0.

Lemma 2.4. Let L be a 0-distributive AL. Then for any x, y, z ∈ L,

[(x ∨ y) ∧ z]∗ = [(x ∧ z) ∨ (y ∧ z)]∗.
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3. α-Ideals in 0-Distributive Almost Lattices

In this section, we introduce the concept of an α-ideal in a 0-distributive AL L
and give certain examples of α-ideals. For any ideal I of an AL L with 0, we prove
that Ī = {x ∈ L : (a]∗ ⊆ (x]∗ for some a ∈ I} is the smallest α-ideal containing I
and also we prove some basic properties of Ī. We prove that the set Iα(L) of all
α-ideals of L forms a complete distributive lattice. We derive a set of identities for
an ideal in a 0-distributive AL to become an α-ideal. Also, we obtain a necessary
and sufficient condition for an ideal in a 0-distributive AL to become an α-ideal.
Finally, in this section we characterise the ∗-0-DAL in terms of α-ideals. First, we
begin this section with the following definition.

Definition 3.1. Let L be a 0-distributive AL and I be an ideal of L. Then I
is called an α-ideal of L, if (x]∗∗ ⊆ I for all x ∈ I.

Note that we denote the set of all α-ideals in an AL L by Iα(L). In the
following, we give certain examples of an α-ideals.

Example 3.1. Let A = {0, a} and B = {0, b1, b2} be two discrete ALs. Write
L = A × B = {(0, 0), (0, b1), (0, b2), (a, 0), (a, b1), (a, b2)}. Then clearly (L,∨,∧, 0′)
is an AL with zero under point-wise operations, where 0′ = (0, 0). Now, put
I = {(0, 0), (0, b1), (0, b2)}. Then clearly I is an ideal of L. Also, clearly ((0, 0)]∗∗ =
{(0, 0)} and ((0, b1)]

∗∗ = ((0, b2)]
∗∗ = {(0, 0), (0, b1), (0, b2)} ⊆ I. Thus I is an

α-ideal of L.

Example 3.2. Let L = {0, a, b, c} and define ∨ and ∧ on L as follows:

∨ 0 a b c
0 0 a b c
a a a b b
b b b b b
c c b b c

and

∧ 0 a b c
0 0 0 0 0
a 0 a a 0
b 0 a b c
c 0 0 c c

Then clearly (L,∨,∧, 0) is a 0-distributive AL. Now, put I = {0, a}. Then clearly
I is an ideal in L. Also, clearly (0]∗∗ = {0} and (a]∗∗ = {0, a} ⊆ I. Thus I is an
α-ideal of L.

Next, we prove some basic properties of α-ideals in 0-distributive ALs.

Theorem 3.1. Let L be a 0-distributive AL and let S be a nonempty subset of
L which is closed under the operation ∧. Then the set I = {x ∈ L : x ∧ y = 0 for
some y ∈ S} is an α-ideal of L.

Proof. Clearly 0 ∈ I and hence I is nonempty. Let a, b ∈ I. Then a ∧ r = 0
and b ∧ s = 0 for some r, s ∈ S. This implies a ∧ (r ∧ s) = 0 and b ∧ (r ∧ s) = 0. It
follows that (a∨ b)∧ (r∧ s) = 0, we get a∨ b ∈ I. Again, let x ∈ I and r ∈ L. Then
x∧s = 0 for some s ∈ S. Now, consider (x∧r)∧s = (r∧x)∧s = r∧(x∧s) = r∧0 = 0.
Therefore x ∧ r ∈ I. Hence I is an ideal of L. Clearly, I =

∪
x∈S

(x]∗. Let a ∈ I.

Then a ∈ (t]∗ for some t ∈ S. This implies (a] ⊆ (t]∗. Thus (a]∗∗ ⊆ (t]∗∗∗ = (t]∗.
Hence (a]∗∗ ⊆

∪
x∈S

(x]∗ = I. Therefore I is an α-ideal of L. �
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Corollary 3.1. Let L be a 0-distributive AL and let F be a filter of L. Then
the set I = {x ∈ L : x ∧ y = 0 for some y ∈ F} is an α-ideal of L.

Theorem 3.2. The set union of any chain of α-ideals of a 0-distributive AL
L is itself an α-ideal in L.

Proof. Suppose{Ii}i∈∆ be an arbitrary family of α-ideals of L. Now, put
I =

∪
i∈∆

Ii. Then clearly I is an ideal of L. Now, we shall prove I is an α-ideal of

L. Suppose x ∈ I =
∪
i∈∆

Ii. Then x ∈ Ii for some i ∈ ∆. This implies (x]∗∗ ⊆ Ii,

since each Ii is an α-ideal. It follows that (x]∗∗ ⊆
∪
i∈∆

Ii = I. Therefore I is an

α-ideal of L. �
We now define an extension of an ideal I of a 0-distributive AL, which leads to

a useful characterization of α-ideals.

Definition 3.2. Let L be 0-distributive AL. Then for any ideal I of L, define
Ī = {x ∈ L : (a]∗ ⊆ (x]∗ for some a ∈ I}

Theorem 3.3. Let L be a 0-distributive AL. Then for any ideal I of L, Ī is
an ideal of L.

Proof. By the definition of Ī, it is clear that I ⊆ Ī. Therefore Ī is a nonempty
subset of L. Let x, y ∈ Ī. Then (a]∗ ⊆ (x]∗ and (b]∗ ⊆ (y]∗ for some a, b ∈ I. Hence
(a]∗ ∩ (b]∗ ⊆ (x]∗ ∩ (y]∗. This implies (a ∨ b]∗ ⊆ (x ∨ y]∗ and a ∨ b ∈ I. Hence
x ∨ y ∈ Ī. Again, let x ∈ Ī and r ∈ L. Then (a]∗ ⊆ (x]∗ for some a ∈ I. This
implies (x]∗∗ ⊆ (a]∗∗. Since x ∈ (x]∗∗ ⊆ (a]∗∗, x ∈ (a]∗∗ and r ∈ (r]∗∗. It follows
that x ∧ r ∈ (a]∗∗ ∩ (r]∗∗ = (a ∧ r]∗∗. This implies (x ∧ r] ⊆ (a ∧ r]∗∗. It follows
that (a ∧ r]∗ ⊆ (x ∧ r]∗ and we have a ∧ r ∈ I. Thus x ∧ r ∈ Ī. Therefore Ī is an
ideal of L. �

Theorem 3.4. Let L be a 0-distributive AL. Then for any ideals I, J of L, we
have the following.

(1) I ⊆ Ī,
(2) I ⊆ J ⇒ Ī ⊆ J̄ ,
(3) I ∩ J = Ī ∩ J̄ ,
(4) Ī ∨ J̄ ⊆ I ∨ J ,

(5) (Ī) = Ī,

(6) (I∗) = I∗.

Proof. Proof (1) is clear.
(2) Suppose I ⊆ J and suppose x ∈ Ī. Then (a]∗ ⊆ (x]∗ for some a ∈ I. Hence

x ∈ J̄ , since a ∈ I ⊆ J . Therefore Ī ⊆ J̄
(3) Clearly, (I ∩ J) ⊆ Ī ∩ J̄ . Conversely, suppose x ∈ Ī ∩ J̄ . Then x ∈ Ī and

x ∈ J̄ . This implies (a]∗ ⊆ (x]∗ and (b]∗ ⊆ (x]∗, where a ∈ I and b ∈ J . It follows
that (x]∗∗ ⊆ (a]∗∗ and (x]∗∗ ⊆ (b]∗∗. Hence (x]∗∗ ⊆ (a]∗∗ ∩ (b]∗∗ = (a ∧ b]∗∗. This
implies (a ∧ b]∗ ⊆ (x]∗ and a ∧ b ∈ I ∩ J . Thus x ∈ I ∩ J . Hence Ī ∩ J̄ ⊆ I ∨ J .
Therefore I ∩ J = Ī ∩ J̄ .
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Proof (4) is clear.

(5) We have I ⊆ Ī. Therefore by condition (2), we get Ī ⊆ (Ī). Conversely,

suppose x ∈ (Ī). Then (a]∗ ⊆ (x]∗, where a ∈ Ī. Again, since a ∈ Ī, (b]∗ ⊆ (a]∗

for some b ∈ I. It follows that (b]∗ ⊆ (x]∗ and b ∈ I. Thus x ∈ Ī. Hence (Ī) ⊆ Ī.

Therefore (Ī) = Ī.

(6) Clearly I∗ ⊆ (I∗). Suppose x ∈ (I∗). Then (a]∗ ⊆ (x]∗ for some a ∈ I∗.
This implies (x]∗∗ ⊆ (a]∗∗. Since a ∈ I∗, we get (a] ⊆ I∗. It follows that (a]∗∗ ⊆ I∗.

Hence x ∈ (x]∗∗ ⊆ (a]∗∗ ⊆ I∗. Thus x ∈ I∗. Hence (I∗) ⊆ I∗. Therefore

(I∗) = I∗. �

Corollary 3.2. Let L be a 0-distributive AL and {Ii}i∈∆ be a family of α-

ideals in L. Then (
∩
i∈∆

Ii) =
∩
i∈∆

Īi =
∩
i∈∆

Ii.

In the following we characterise an ideal Ī in 0-distributive AL.

Theorem 3.5. Let L be a 0-distributive AL and I be an ideal of L. Then Ī is
the smallest α-ideal containing I.

Proof. Clearly, Ī is an ideal of L containing I. Suppose x ∈ Ī. Then (a]∗ ⊆
(x]∗ for some a ∈ I. Let t ∈ (x]∗∗. Then we have (x]∗ ⊆ (t]∗. Thus (a]∗ ⊆ (x]∗ ⊆
(t]∗. It follows that t ∈ Ī, since a ∈ I. Thus (x]∗∗ ⊆ Ī. Therefore Ī is an α-ideal
containing I. Suppose K is an α-ideal in L such that I ⊆ K. Now, let x ∈ Ī. Then
(a]∗ ⊆ (x]∗ for some a ∈ I, since K is an α-ideal containing I, (a]∗∗ ⊆ K. Now,
since t ∈ (x]∗∗ ⊆ (a]∗∗ ⊆ K, t ∈ K. Hence Ī ⊆ K. Therefore Ī is the smallest
α-ideal containing I. �

Next, we prove that the set Iα(L) of all α-ideals in a 0-distributive AL is a
complete distributive lattice. For, this first we need the following lemma whose
proof is straight forward.

Lemma 3.1. Let L be a 0-distributive AL and I be an ideal of L. Then the
following are equivalent:

(1) I is an α-ideal,
(2) I = Ī.

Recall that the set I(L) of all ideals in an AL L is lattice. But, in the
following we give an example of an AL in which I(L) is not a distributive lattice.

Example 3.3. Let L = {0, a, b, c, d} and define ∨ and ∧ on L as follows:

∨ 0 a b c d
0 0 a b c d
a a a d d d
b b d b d d
c c d d c d
d d d d d d

and

∧ 0 a b c d
0 0 0 0 0 0
a 0 a 0 0 a
b 0 0 b 0 b
c 0 0 0 c c
d 0 a b c d
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Then clearly (L,∨,∧, 0) is an AL. Now, Put I = {0, a}, J = {0, b} and K = {0, c}.
Then clearly I, J and K are ideals of L. Also, clearly J ∩ K = {0} and hence
I ∨ (J ∩ K) = {0, a}. On the other hand I ∨ J = {0, a, b, c, 1} = L and I ∨ K =
{0, a, b, c, 1} = L. Therefore (I∨J)∩(I∨K) = L. Thus I∨(J∩K) ̸= (I∨J)∩(I∨K).
Therefore the lattice I(L) is not a distributive lattice.

Again, in the following we give an example of an AL L in which the set Iα(L)
of all α-ideal in L is not a sublattice of the lattice I(L).

Example 3.4. Let L = {0, a, b, c, d} and define ∨ and ∧ on L as follows:

∨ 0 a b c d
0 0 a b c d
a a a c c d
b b c b c d
c c c c c d
d d d d d d

and

∧ 0 a b c d
0 0 0 0 0 0
a 0 a 0 a a
b 0 0 b b b
c 0 a b c c
d 0 a b c d

Then clearly (L,∨,∧, 0) is a 0-distributive AL. Now, put I = {0, a} and J = {0, b}.
Then clearly I and J are α-ideals of L. But, we have I ∨ J = {0, a, b, c}, which is
not an α-ideal, since (c]∗∗ = L ̸⊆ I∨J . Thus I∨J is not an α-ideal in L. Therefore
Iα(L) is not a sublattice of I(L).

However, in the following we prove that if L is a 0-distributive AL then the set
Iα(L) of α-ideals in L is a distributive lattice on its own. For this, first we need
the following lemma whose proof is straight forward.

Lemma 3.2. Let L be an AL with 0. Then for any I, J ∈ I(L), I∗∗ ∨ J∗∗ ⊆
(I ∨ J)∗∗

But, the converse of the lemma 3.2 is not true. For, in example 3.4, we have
I∗∗ = I, J∗∗ = J and hence I∗∗ ∨ J∗∗ = {0, a, b, c}. On the other hand, we have
(I ∨ J)∗ = {0} and hence (I ∨ J)∗∗ = L. Therefore I∗∗ ∨ J∗∗ ̸= (I ∨ J)∗∗.

Now, we prove the following theorem.

Theorem 3.6. Let L be a 0-distributive AL in which I∗∗ ∨ J∗∗ = (I ∨ J)∗∗ for
every I, J ∈ Iα(L). Then the set Iα(L) is a distributive lattice with respect to set
inclusion, where for any I, J ∈ Iα(L), g.l.b.(I, J) = I ∩ J and l.u.b.(I, J) = I∨̄J =
I ∨ J .

Proof. Clearly, Iα(L) is a poset with respect to set inclusion. Let I, J ∈
Iα(L). Then clearly, I ∩ J is an α-ideal and hence I ∩ J ∈ Iα(L). Also, clearly
I ∩ J is the g.l.b. of I and J . Now, we shall prove I∨̄J is the l.u.b. of I and J in
Iα(L). Now, by Theorem 3.5, we get I ∨ J is the smallest α-ideal containing I ∨ J
and hence I∨̄J = I ∨ J ∈ Iα(L). Since I, J ⊆ I ∨J , Ī , J̄ ⊆ I ∨ J = I∨̄J . It follows
that I∨̄J is an upper bound of I and J . Suppose K ∈ Iα(L) such that K is an
upper bound of I and J . Then I ⊆ K and J ⊆ K. This implies I ∨ J ⊆ K. Hence
I ∨ J ⊆ K̄ = K. Thus I∨̄J is the l.u.b. of I and J . Therefore Iα(L) is a lattice.
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Now, we shall prove Iα(L) is a distributive lattice. Let I, J,K ∈ Iα(L). Since
Iα(L) is a lattice, we have I∨̄(J ∩ K) ⊆ (I∨̄J) ∩ (I∨̄K). Conversely, suppose

x ∈ (I∨̄J) ∩ (I∨̄K). Then x ∈ (I ∨ J) ∩ (I ∨K) = (I ∨ J) ∩ (I ∨K). It follows
that [a]∗ ⊆ [x]∗ for some a ∈ (I ∨J)∩ (I ∨K). Hence a ∈ I ∨J and a ∈ I ∨K. This
implies (i1 ∨ j) ∧ a = a for some i1 ∈ I, j ∈ J and (i2 ∨ k) ∧ a = a for some i2 ∈ I,
k ∈ K. Now, since [a]∗ ⊆ [x]∗, [x]∗∗ ⊆ [a]∗∗. Now, we have [(i1 ∨ j) ∧ a]∗∗ = [a]∗∗.
It follows that [i1 ∨ j]∗∗ ∩ [a]∗∗ = [a]∗∗. Thus [a]∗∗ ⊆ [i1 ∨ j]∗∗. Similarly, we get
[a]∗∗ ⊆ [i2 ∨ k]∗∗. Therefore [a]∗∗ ⊆ [i1 ∨ j]∗∗ ∩ [i2 ∨ k]∗∗. This implies [x]∗∗ ⊆
[i1 ∨ j]∗∗ ∩ [i2 ∨ k]∗∗ = [(i1 ∨ j) ∧ (i2 ∨ k)]∗∗ = [((i1 ∨ j) ∧ i2) ∨ ((i1 ∨ j) ∧ k)]∗∗ =
(((i1∨ j)∧ i2)∨ ((i1∨ j)∧k)]∗∗ = (((i1∨ j)∧ i2]∨ ((i1∨ j)∧k])∗∗ = ((i1∨ j)∧ i2]

∗∗∨
((i1∨ j)∧k]∗∗ = ((i1∧ i2)∨ (j ∧ i2)]

∗∗∨ ((i1∧k)∨ (j ∧k)]∗∗ = (((i1∧ i2)∨ (j ∧ i2)]∨
((i1∧k)∨(j∧k)])∗∗ = (((i1∧i2)∨(j∧i2)∨(i1∧k))∨(j∧k)])∗∗ = [t∨(j∧k)]∗∗, where
t = (i1∧i2)∨(j∧i2)∨(i1∧k) ∈ I. Thus [x]∗∗ ⊆ [t∨(j∧k)]∗∗. Hence [t∨(j∧k)]∗ ⊆ [x]∗,

where t ∨ (j ∧ k) ∈ I ∨ (J ∩ K). Thus x ∈ I ∨ (J ∩K) = I∨̄(J ∩ K). Therefore
(I∨̄J)∩ (I∨̄K) ⊆ I∨̄(J ∩K). Hence I∨̄(J ∩K) = (I∨̄J)∩ (I∨̄K). Therefore Iα(L)
is a distributive lattice. �

In view of theorem 3.6 and corollary 3.2, we have the following.

Theorem 3.7. Let L be a 0-distributive AL. Then the set Iα(L) of all α-ideals
of L forms a complete distributive lattice, ordered by set inclusion.

Recall that the intersection of all minimal prime ideals in a 0-distributive AL
is {0}. In the following we derive set of identities of an ideal in a 0-distributive AL
to become an α-ideal. For, this first we need the following lemma.

Lemma 3.3. Let L be a 0-distributive AL. Then for any x ∈ L, (x]∗ =
∩

P∈Mx

P .

Proof. Suppose P is a minimal prime ideal of L such that x /∈ P . Suppose
t ∈ (x]∗. Then t ∧ x = 0 ∈ P . Hence, we get t ∈ P . Therefore (x]∗ ⊆

∩
P∈Mx

P .

Conversely, suppose t /∈ (x]∗. Then t ∧ x ̸= 0. Then there exists a minimal
prime ideal (say) P such that t ∧ x /∈ P . This implies t /∈ P and x /∈ P . Hence
t /∈

∩
P∈Mx

P . Thus
∩

P∈Mx

P ⊆ (x]∗. Therefore (x]∗ =
∩

P∈Mx

P �

Now, we prove the following theorem.

Theorem 3.8. Let L be a 0-distributive AL. Then for any ideal I of L, the
following are equivalent:

(1) I is an α-ideal,
(2) I = Ī,
(3) For any x, y ∈ L, [x]∗ = [y]∗ and x ∈ I imply y ∈ I,
(4) I =

∪
x∈I

[x]∗∗,

(5) For any x, y ∈ L, h(x) = h(y) and x ∈ I imply y ∈ I.

Proof. (1) ⇒ (2) is clear.
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(2) ⇒ (3): Assume (2). Let x, y ∈ L such that [x]∗ = [y]∗ and x ∈ I. Then by
condition (2), we get x ∈ Ī. Therefore [a]∗ ⊆ [x]∗ for some a ∈ I. Hence [a]∗ ⊆ [y]∗

and a ∈ I. Therefore y ∈ Ī = I. Thus y ∈ I.
(3) ⇒ (4): Assume (3). Clearly I ⊆

∪
x∈I

[x]∗∗. Conversely, suppose y ∈
∪
x∈I

[x]∗∗.

Then y ∈ [x]∗∗ for some x ∈ I. It follows that [y]∗∗ ⊆ [x]∗∗. Thus [y]∗∗ =
[x]∗∗ ∩ [y]∗∗ = [x∧ y]∗∗ and x ∈ I. Therefore by condition (3), we get y ∈ I. Hence∪
x∈I

[x]∗∗ ⊆ I. Therefore I =
∪
x∈I

[x]∗∗.

(4) ⇒ (1) is clear, since by the definition of α-ideal. (3) ⇔ (5) also clear, since
h(x) = h(y) ⇔ [x]∗ = [y]∗. �

Recall that if L is a 0-distributive AL then for any (a] ∈ PI(L), {(a]}∗ = {(x] ∈
PI(L) : (a]∩ (x] = (0]} is an ideal of the lattice PI(L). In the following we derive
a necessary and sufficient condition for an ideal in a 0-distributive AL to become
an α-ideal. For this, first we need the following.

Lemma 3.4. Let L be a 0-distributive AL. Then for any a, b ∈ L, we have the
following.

(1) x ∈ (a]∗ ⇔ (x] ∈ {(a]}∗,
(2) (a]∗ = (b]∗ ⇔ {(a]}∗ = {(b]}∗.

Proof. We have x ∈ (a]∗ ⇔ x ∧ a = 0 ⇔ (x ∧ a] = (0] ⇔ (x] ∩ (a] = (0] ⇔
(x] ∈ {(a]}∗. Thus x ∈ (a]∗ ⇔ (x] ∈ {(a]}∗.

Suppose (a]∗ = (b]∗. Then (x] ∈ {(a]}∗ ⇔ (x] ∩ (a] = (0] ⇔ (x ∧ a] = (0] ⇔
x ∧ a = 0 ⇔ x ∧ b = 0 ⇔ (x ∧ b] = (0] ⇔ (x] ∩ (b] = (0] ⇔ (x] ∈ {(b]}∗. Therefore
{(a]}∗ = {(b]}∗. Conversely, suppose {(a]}∗ = {(b]}∗. Then x ∈ (a]∗ ⇔ x ∧ a =
0 ⇔ (x ∧ a] = (0] ⇔ (x] ∩ (a] = (0] ⇔ (x] ∈ {(a]}∗ ⇔ (x] ∈ {(b]}∗ ⇔ (x] ∩ (b] =
(0] ⇔ (x ∧ b] = (0] ⇔ x ∧ b = 0 ⇔ x ∈ (b]∗. Therefore (a]∗ = (b]∗ �

Now, we prove the following theorem.

Theorem 3.9. Let L be a 0-distributive AL and I be an ideal of L. Then I is
an α-ideal in L if and only if Ie is an α-ideal in PI(L).

Proof. Suppose I is an α-ideal in L. Clearly, Ie is an ideal in PI(L). Let
(a], (b] ∈ PI(L) such that {(a]}∗ = {(b]}∗ and (a] ∈ Ie. This implies (a] = (t] for
some t ∈ I. It follows that a ∈ I. Since {(a]}∗ = {(b]}∗, by lemma 3.4, (a]∗ = (b]∗.
Again, since I is an α-ideal of L, we get b ∈ I. Hence (b] ∈ Ie. Therefore Ie is an
α-ideal in PI(L).

Conversely, suppose Ie is an α-ideal in PI(L). Let a, b ∈ L such that (a]∗ = (b]∗

and a ∈ I. Then {(a]}∗ = {(b]}∗ and (a] ∈ Ie. Since Ie is an α-ideal in PI(L), we
get (b] ∈ Ie. It follows that b ∈ I. Therefore I is an α-ideal in L. �

Finally, in this section we derive sufficient condition for a 0-distributive AL to
become a ∗-0-DAL in terms of α-ideals.

Theorem 3.10. Let L be a 0-distributive AL. If every α-ideal in L is a principal
ideal, then L is a ∗-0-DAL.
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Proof. Suppose x ∈ L. Then for any a ∈ (x]∗, we get (a]∗∗ ⊆ (x]∗. Therefore
(x]∗ is an α-ideal of L. Thus by the hypothesis, we get (x]∗ = (a] for some a ∈ L.
Thus (x]∗∗ = (a]∗. Therefore L is a ∗-0-DAL. �

4. Annihilator Preserving Epimorphisms

In this section, we prove that the image of an α-ideal under an annihilator
preserving epimorphism is again an α-ideal. We derive a necessary and sufficient
condition for the contraction of an α-ideal is an α-ideal. For this, first we need the
following lemma.

Lemma 4.1. Let L and L′ be two ALs with 0 and 0′ respectively and let f :
L → L′ be a homomorphism. Then for any a ∈ L, f((a]) ⊆ (f(a)]. Moreover, if f
is onto, then f((a]) = (f(a)].

Proof. Let a ∈ L and let t ∈ f((a]). Then t = f(x) for some x ∈ (a]. It
follows that t = f(x) = f(a ∧ x) = f(a) ∧ f(x). Hence t ∈ (f(a)]. Therefore
f((a]) ⊆ (f(a)]. Now, suppose f is onto. Let t ∈ (f(a)]. Then t = f(a) ∧ s for
some s ∈ L′. Since f is onto, there exists x ∈ L such that f(x) = s. Therefore
t = f(a)∧s = f(a)∧f(x) = f(a∧x). Now, we have a∧x ∈ (a] and hence f(a∧x) ∈
(f(a)]. Therefore t ∈ (f(a)]. Thus (f(a)] ⊆ f((a]). Thus f((a]) = (f(a)]. �

Theorem 4.1. Let L and L′ be two 0-distributive ALs and let f : L → L′ be
an annihilator preserving epimorphism. If I is an α-ideal in L, then f(I) is an
α-ideal in L′.

Proof. Suppose I is an α-ideal in L. Then by lemma 2.3, we get f(I) is an
ideal in L′. Now, let x ∈ f(I). Then x = f(a), for some a ∈ I. Now, since I
is an α-ideal and a ∈ I, (a]∗∗ ⊆ I. Therefore f((a]∗∗) ⊆ f(I). It follows that
(f((a]))∗∗ ⊆ f(I). Hence (f(a)]∗∗ ⊆ f(I). Thus (x]∗∗ ⊆ f(I). Therefore f(I) is an
α-ideal in L′. �

Definition 4.1. Let L and L′ be two ALs and let f : L → L′ is a homomor-
phism. Then for any ideal I of L′, f−1(I) is called the contraction of I.

It can be easily seen that the contraction of an ideal is an ideal. But, the con-
traction of an α-ideal need not be an α-ideal. For, consider the following example.

Example 4.1. Let L = {0, a, b, c} and define ∨ and ∧ on L as follows.

∨ 0 a b c
0 0 a b c
a a a a a
b b b b b
c c a b c

and

∧ 0 a b c
0 0 0 0 0
a 0 a b c
b 0 a b c
c 0 c c c

Then clearly (L,∨,∧, 0) is an AL with 0. Again, let A = {0, a′} and B = {0, b1, b2}
be two discrete ALs. Write

L′ = A×B = {(0, 0), (0, b1), (0, b2), (a′, 0), (a′, b1), (a′, b2)}.
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Then clearly, L′ is an AL with zero element 0′ = (0, 0), under point-wise operations.
Now, define a mapping f : L → L′ as follows. f(0) = 0′ , f(c) = (a′, 0), f(a) =
(a′, b1), f(b) = (a′, b2). Then clearly f is a homomorphism from L onto L′. Now,
put J = {(0, 0), (a′, 0)}. Then, clearly J is an α-ideal of L′, but, f−1(J) = {0, c} is
not an α-ideal in L, since (c]∗∗ = (0]∗ = L ̸⊆ f−1(J).

It can be easily seen that for every a in a 0-distributive AL, [a]∗ is an α-ideal.
In the following we give necessary and sufficient condition for a contraction of an
α-ideal is an α-ideal.

Theorem 4.2. Let L and L′ be two 0-distributive ALs and let f : L → L′ be
a homomorphism. Then contraction of every α-ideal is an α-ideal if and only if
contraction of [a]∗ is an α-ideal for every a ∈ L′.

Proof. Suppose contraction of an α-ideal is an α-ideal and suppose a ∈ L′.
Then we have [a]∗ is an α-ideal. Therefore by assumption, f−1([a]∗) is an α-ideal.
Thus contraction of [a]∗ is an α-ideal.

Conversely, assume the condition. Suppose J is an α-ideal of L′. Now, we
shall prove that f−1(J) is an α-ideal of L. Let x, y ∈ L such that [x]∗ = [y]∗

and x ∈ f−1(J). First we prove that [f(x)]∗ = [f(y)]∗. Let t ∈ [f(x)]∗. Then
t ∧ f(x) = 0. This implies f(x) ∈ [t]∗. Hence x ∈ f−1([t]∗). Since f−1([t]∗)
is an α-ideal(by assumption), y ∈ f−1([t]∗). Therefore f(y) ∈ [t]∗. This implies
f(y) ∧ t = 0. Hence t ∈ [f(y)]∗. Thus [f(x)]∗ ⊆ [f(y)]∗. Similarly, we can prove
that [f(y)]∗ ⊆ [f(x)]∗. Therefore [f(x)]∗ = [f(y)]∗ and we have f(x) ∈ J . It follows
that f(y) ∈ J , since J is an α-ideal. Therefore y ∈ f−1(J). Thus f−1(J) is an
α-ideal of L. �

Theorem 4.3. Let L and L′ be two 0-distributive ALs. If f : L → L′ is an
annihilator preserving epimorphism, then contraction of every α-ideal is an α-ideal.

Proof. Suppose L and L′ be two 0-distributive ALs and f : L → L′ is an
annihilator preserving epimorphism. Suppose J is an α-ideal of L′. Now, we shall
prove f−1(J) is an α-ideal of L. Clearly, f−1(J) is an ideal of L. Now, let x, y ∈ L
such that [x]∗ = [y]∗ and x ∈ f−1(J). Now, since [x]∗ = [y]∗, f([x]∗) = f([y]∗).
This implies f((x]∗) = f((y]∗). It follows that (f((x]))∗ = (f((y]))∗. Therefore by
lemma 4.1, we get (f(x)]∗ = (f(y)]∗. Hence we get [f(x)]∗ = [f(y)]∗. Now, since
x ∈ f−1(J), f(x) ∈ J . Therefore f(y) ∈ J , since J is an α-ideal. Thus y ∈ f−1(J).
Therefore f−1(J) is an α-ideal. �

It can be easily seen that for any nonempty subset A of a 0-distributive AL L,
A∗ is an α-ideal. Now, we have the following.

Corollary 4.1. Let L and L′ be two 0-distributive ALs and let f : L → L′

be an annihilator preserving epimorphism. Then for any nonempty subset A of L′,
f−1(A∗) is an α-ideal of L containing (f−1(A))∗.

Proof. Suppose A is a nonempty subset of L′. Then we have A∗ is an α-
ideal. Therefore by Theorem 4.3, we get f−1(A∗) is an α-ideal. Now, we shall
prove (f−1(A))∗ ⊆ f−1(A∗). Let x ∈ (f−1(A))∗. Then x∧ t = 0 for all t ∈ f−1(A).
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This implies f(x ∧ t) = f(0) for all t ∈ f−1(A). It follows that f(x) ∧ f(t) = 0′

for all f(t) ∈ A. Thus f(x) ∈ A∗. Hence x ∈ f−1(A∗). Therefore (f−1(A))∗ ⊆
f−1(A∗). �

Corollary 4.2. Let L and L′ be two 0-distributive ALs and let f : L → L′ be
an annihilator preserving epimorphism. Then ker(f) is an α-ideal of L.

Proof. We have {0′} is an α-ideal of L′ and also, we have ker(f) = f−1{0′}.
It follows that ker(f) is an α-ideal of L. �
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