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and Şahsene Altınkaya

Abstract. In this paper the authors estimate the bounds for probability dis-
tribution series by means of q-difference operator using subordination as well

as quasi-subordination.

1. Introduction

Let A indicate an analytic function family, which is normalized under the con-
dition of f(0) = f ′(0) − 1 = 0 in the open unit disk U = {z : z ∈ C and |z| < 1}
and given by the following Taylor-Maclaurin series:

(1.1) f(z) = z +

∞∑
n=2

anz
n.

Further, by S we shall denote the class of all functions in A which are univalent in
U . Let h(z) be an analytic function in U and |h(z)| 6 1, such that

h(z) = h0 + h1z + h2z
2 + · · · ,

where all coefficients are real. Also, let φ be an analytic and univalent function
with positive real part in U with φ(0) = 1, φ′(0) > 0 and φ maps the unit disk
U onto a region starlike with respect to 1 and symmetric with respect to the real
axis. Taylor’s series expansion of such function is of the form

(1.2) φ(z) = 1 +B1z +B2z
2 + · · · ,
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where all coefficients are real and B1 > 0. Let P be the class of functions consisting
of the form (1.2). If the functions f and g are analytic in U, then f is said to be
subordinate to g, written as

f (z) ≺ g (z) (z ∈ U)

if there exists a Schwarz function w ∈ Ω, where

Ω = {w : w (0) = 0, |w (z)| < 1, z ∈ U} ,

such that

f (z) = g (w (z)) (z ∈ U) .

In the year 1970, Robertson [26] introduced the concept of quasi-subordination.
For two analytic functions f and g, the function f is said to be quasi-subordinate
to g in U and written as

f(z) ≺q g(z) (z ∈ U)

if there exists an analytic function |h(z)| 6 1 such that f(z)
h(z) analytic in U and

f(z)

h(z)
≺ g(z) (z ∈ U)

that is, there exists a Schwarz function w(z) such that f(z) = h(z)g(w(z)). Observe
that if h(z) = 1, then f(z) = g(w(z)) so that f(z) ≺ g(z) in U . Also notice that if
w(z) = z, then f(z) = h(z)g(z) and it is said that is majorized by g and written
f(z) ≪ g(z) in U . Hence it is obvious that quasi-subordination is a generalization
of subordination as well as majorization. (see, e.g. [4], [8], [11], [24], [26], [25],
[18] for works related to quasi-subordination).

Let also P (pk) (0 6 k < ∞) denote the family of functions P , such that p ∈ P ,
and p ≺ pk in U , where the function Pk maps the unit disk conformally onto the
region Ωk such that 1 ∈ Ωk and

∂Ωk =
{
u+ iv : u2 = k2(u− 1)2 + k2v2

}
.

Remark 1.1. (See [11]) The domain Ωk is elliptic for k > 1, hyperbolic when
0 < k < 1, parabolic for k = 1 and covers the right half plane wnen k = 0. Sim
et al. [29] extended original definition to the p−valent functions generalizing the
domains Ωk to Ωk,α 0 6 k < ∞, 0 6 α < 1 as follows

Ωk,α = {w = u+ iv : (u− α)2 > k2(u− 1)2 + k2v2}, Ωk,0 = Ωk.

In the sequel we shall make use of q−operators to the functions related to the
conic sections, that were introduced and studied by Kanas et al. [13], [14], [15],
[16], [17] and investigated by several other authors.
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2. Preliminaries

The Poisson distribution is one of the most well-utilized discrete distributions in
multivariate data research fields. However, nowadays, the elementary distributions
such as the Poisson, the Pascal, the Logarithmic, the Binomial have been partially
studied in the Geometric Function Theory from a theoretical point of view (see [1],
[2], [3], [19], [20], [28], [21]). Very recently, Porwal [22] introduced and studied
Poisson distribution series for analytic functions.

A variable x is said to have Poisson distribution if it takes the values 0, 1, 2, 3, . . .
with probabilities

e−m,
me−m

1!
,
m2e−m

2!
,
m3e−m

3!
, . . . ,

respectively, where m is called the parameter. Thus

P (x = k) =
mke−m

k!
, k = 0, 1, 2, 3, . . . .

Now we introduce a power series whose coefficients are probabilities of the
Poisson distribution:

(2.1) K(m, z) = z +
∞∑

n=2

e−mmn−1

(n− 1)!
zn.

It was pointed out that by ratio test, the radius of convergence of the series in (2.1)
is infinity.

Next, the study of operators plays an important role in Geometric Function
Theory in Complex Analysis and its related fields. The interest in this area has
been increasing because it permits detailed investigations of problems with phys-
ical applications. Some integral transforms in the classical analysis have their q-
analogues in the theory of q-calculus. This has led various researchers in the field
of q-theory for extending all the important results involving the classical analysis
to their q-analogs.

For the convenience, we provide some basic definitions and concept details of
q-calculus which are used in this paper. Throughout this paper, we will assume that
q satisfies the condition 0 < q < 1. We shall follow the notation and terminology
of [6]. We first recall the definitions of fractional q-calculus operators of complex
valued function f.

Definition 2.1. Let q ∈ (0, 1) and let λ ∈ C. The q-number, denoted [λ]q, we
define as

[λ]q =
1− qλ

1− q
.

In the case when λ = n ∈ N we obtain [λ]q = 1 + q + q2 + · · · + qn−1, and when
q → 1− then [n]q = n.

Applying above q-number we define q-derivative below.
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Definition 2.2. ([10]) The q-derivative of a function f , defined on a subset
of C, is given by

(2.2) (Dqf)(z) =


f(z)− f(qz)

(1− q)z
for z ̸= 0,

f ′(0) for z = 0.

We note that lim
q→1−

(Dqf)(z) = f ′(z) if f is differentiable at z. Additionally, in

view of (2.2), we deduce that

(2.3) (Dqf)(z) = 1 +

∞∑
n=2

[n]q anz
n−1.

For a function h(z) = zm, we obtain

Dqh(z) = Dqz
m =

1− qm

1− q
zm = [m]qz

m−1

and

limq→1−Dqh(z) = limq→1−
(
[m]qz

m−1
)
= mzm−1 = h′(z),

where h′ is the ordinary derivative. Jackson q−derivative satisfies known rules of
differentiation, for example a q−analoque of Leibniz’s rule. As a right inverse,
Jackson [9] introduced the q− integral of a function f as follows∫ z

0

f(t)dqt = z(1− q)
∞∑

n=0

qnf(qnz) = z(1− q)
∞∑

n=0

anq
nzn,

provided the series converges. For a function h(z) = zm we obtain∫ z

0

h(t)dqt =

∫ z

0

tmdqt =
zm+1

[m+ 1]q
(m ̸= −1),

and

limq→1−

∫ z

0

h(t)dqt = limq→1−
zm+1

[m+ 1]q
=

zm+1

[m+ 1]
=

∫ z

0

h(t)dt,

where
∫ z

0
h(t)dt is the ordinary integral, (see also [7], [12], [23], [24]).

In view of (2.3) and (2.1), K(m, z) ∈ Pds we obtain

DqK(m, z) = 1 +

∞∑
n=2

[n]qm
n−1

(n− 1)!
e−mzn−1.

The defined above fractional q-calculus is an important tool used in a study of
various families of analytic functions, and in the context of univalent functions
was first used in a book chapter by Srivastava [27]. In contrast to the Leibniz
notation, being a ratio of two infinitisemals, the notions of q-derivatives are plain
ratios. Therefore, it appeared soon a generalization of q-calculus in many subjects,
such as hypergeometric series, complex analysis, and particle physics. It is also
widely applied in an approximation theory, especially on various operators, which
includes convergence of operators to functions in real and complex domain. In the
last twenty years q-calculus served as a bridge between mathematics and physics.
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The field has expanded explosively, due to the fact that applications of basic hyper-
geometric series to the diverse subjects of combinatorics, quantum theory, number
theory, statistical mechanics, are constantly being uncovered. Specially, the theory
of univalent functions can be described by using the theory of the q-calculus. In
recent years, such q-calculus operators as the fractional q-integral and fractional
q-derivative operators were used to construct several subclasses of analytic func-
tions. In the present paper we study the q-operator, and related problems involving
univalent functions.

Let us recall now the following lemma required in sequel.

Lemma 2.1 ([24]). Let the Schwarz function w(z) be given by

(2.4) w(z) = w1z + w2z
2 + · · · , (z ∈ ∆)

then

|w1| 6 1,
∣∣w2 − ϑw2

1

∣∣ 6 1 + (|ϑ| − 1) |w1|2 6 max {1, |ϑ|}
where ϑ ∈ C.

Motivated by each of the above definitions, we now define the following classes
of analytic univalent functions involving the q-derivative operator.

Definition 2.3. A function f ∈ A given by (1.1) is said to be in the class

PdsS
q
pk,α

(θ, b) (0 6 k < ∞, 0 6 α < 1,
−π

2
< θ <

π

2
, b ∈ C\{0}, z ∈ U)

the following condition is satisfied:

1 +
1

b

(
(1 + itanθ)

(
zDqK(m, z)

K(m, z)

)
− itanθ − 1

)
≺ pk,α(z)

and a function f ∈ A given by (1.1) is said to be in the class

PdsC
q
pk,α

(θ, b) (0 6 k < ∞, 0 6 α < 1,
−π

2
< θ <

π

2
, b ∈ C\{0}, z ∈ U)

the following condition is satisfied:

1 +
1

b

(
(1 + itanθ)

(
(zDqK(m, z))′

DqK(m, z)

)
− itanθ − 1

)
≺ pk,α(z).

Definition 2.4. A function f ∈ A given by (1.1) is said to be in the class

PdsS
q
pk,α(θ, b) (0 6 k < ∞, 0 6 α < 1,

−π

2
< θ <

π

2
, b ∈ C\{0}, z ∈ U)

the following condition is satisfied:

1

b

(
(1 + itanθ)

(
zDqK(m, z)

K(m, z)

)
− itanθ − 1

)
≺q ϕ(z)− 1

and a function f ∈ A given by (1.1) is said to be in the class

PdsC
q
pk,α(θ, b) (0 6 k < ∞, 0 6 α < 1,

−π

2
< θ <

π

2
, b ∈ C\{0}, z ∈ U)
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the following condition is satisfied:

1

b

(
(1 + itanθ)

(
(zDqK(m, z))′

DqK(m, z)

)
− itanθ − 1

)
≺q ϕ(z)− 1.

3. The Fekete-Szegö functional associated with conical domains

The Fekete-Szegö functional
∣∣a3 − µa22

∣∣ for normalized univalent functions of
the form given by (1.1) is well known for its rich history in Geometric Function
Theory. Its origin was in the disproof by Fekete and Szegö [5] of the 1933 conjecture
of Littlewood and Paley that the coefficients of odd univalent functions are bounded
by unity (see, for details, [5]). The Fekete-Szegö functional has

∣∣a3 − µa22
∣∣ since

received great attention, particularly in connection with many subclasses of the
class of normalized analytic and univalent functions.

Here we shall consider Fekete-Szegö functional for the classes PdsS
q
pk,α

(θ, b) and

PdsC
q
pk,α

(θ, b).

Theorem 3.1. For any complex µ, the function K(m, z), given by (2.1), is in
the class PdsS

q
pk,α

(θ, b) if the following holds

m2e−m(
1

2
− µe−m) 6 |b| p1

|σ|([3]q − 1)
max

{
1,

∣∣∣∣p2p1 +
([2]q − 1)− µ([3]q − 1)

σ([2]q − 1)2
bp1

∣∣∣∣} ,

where σ = 1 + itanθ.

Proof. Suppose that K(m, z) ∈ PdsS
q
pk,α

(θ, b). Then there exists a Schwarz

function w ∈ Ω of the form (2.4) such that

1 +
1

b

(
(1 + itanθ)

(
zDqK(m, z)

K(m, z)

)
− itanθ − 1

)
= pk,α(w(z)).

Observe that

(3.1) σ

[
me−m([2]q − 1)z +

m2

2!
e−m([3]q − 1)z2 + . . .

]
= b

[
p1w1z + (p1w2 + p2w

2
1 +me−mp1w1)z

2 + ...
]
.

Comparing the coefficients of z and z2 in (3.1), we obtain

me−m =
bp1w1

σ([2]q − 1)

and

m2e−m =
2bp1

σ([3]q − 1)

(
w2 −

(
−p2
p1

− bp1
σ([2]q − 1)

)
w2

1

)
.

Hence, by the last two equations becomes

m2e−m(
1

2
− µe−m) =

bp1
σ([3]q − 1)

(
w2 − tw2

1

)
,

where t = −p2

p1
− ([2]q−1)−µ([3]q−1)

σ([2]q−1)2 bp1. The desired inequality is obtained by apply-

ing Lemma 2.1. �
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Corollary 3.1. For any complex µ, the function K(m, z) given by (2.1) is in
the class PdsC

q
pk,α

(θ, b) if the following holds

m2em(1− µem) 6 |b| p1
[3]q|σ|

max

{
1,

∣∣∣∣∣p2p1 +
[2]2q − µ[3]q

σ[2]2q
bp1

∣∣∣∣∣
}
,

where σ = 1 + itanθ.

4. The Fekete-Szegö functional associated with quasi-subordination

In this section, we will focus on Fekete-Szegö functional for the classes

PdsS
q
pk,α(θ, b) and PdsC

q
pk,α(θ, b)

associated with quasi-subordination.

Corollary 4.1. The function K(m, z), given by (2.1), generated by the func-

tion f given in (1.1), is in the class PdsS
q
pk,α(θ, b) if the following condition holds

me−m 6 |b| c1
|σ| ([2]q − 1)

,

m2e−m 6 2 |b|
|σ| ([3]q − 1)

{
c1 +max

{
c1, |c2|+

∣∣∣∣ bc21
σ([2]q − 1)

∣∣∣∣}}
and for any complex µ

m
2
e
−m

(1 − µe
−m

) 6 2 |b|
|σ| ([3]q − 1)

{
c1 + max

(
c1,

∣∣∣∣ 2([2]q − 1) − µ([3]q − 1)

2σ([2]q − 1)2

∣∣∣∣ |b|c21 + |c2|
)}

where σ = 1 + itanθ.

Corollary 4.2. The function K(m, z) given by (2.1), generated by the func-

tion f given in (1.1), is in the class PdsC
q
pk,α(θ, b) if the following condition holds

me−m 6 |b| c1
|σ| [2]q

,

m2e−m 6 |b|
|σ| [3]q

{
c1 +max

{
c1, |c2|+

∣∣∣∣bc21σ
∣∣∣∣}}

and for any complex µ

m2e−m(1− µe−m) 6 |b|
|σ| [3]q

{
c1 +max

(
c1,

∣∣∣∣∣ [2]2q − µ[3]q

σ[2]2q

∣∣∣∣∣ |b|c21 + |c2|

)}
.

where σ = 1 + itanθ.

5. Concluding Remark

Various choices of the function h(z) as mentioned above and by specializing on
the parameters, we state some interesting results analogous to Theorem 3.1. The
details involved may be left as an exercise for the interested reader.
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