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SUBMAXIMAL IDEALS OF

WEAK IDEMPOTENT RINGS

Venkateswarlu Kolluru and Dereje Wasihun

Abstract. We study the structure of submaximal ideals in weak idempotent
rings. We establish certain relations among semiprime, primary, radical and

submaximal ideals. We prove that every submaximal ideal of a commutative
WIR with unity is either semiprime or primary. Also we obtain that the
product of two submaximal ideals is not submaximal and the product of two
maximal ideals is submaximal. Further we prove that the intersection of all

submaximal ideals of the product ring of two WIRs is the nilradical. Finally
we prove that the inverse image of a submaximal ideal is submaximal under
epimorphism and also S−1R is a field if and only if R ∼= Z2.

1. Introduction

It was A.L. Foster [1] who introduced the notion of Boolean like ring as a
generalization of Boolean ring. A Boolean like ring (BLR, for short) is a commu-
tative ring with unity of characterstic 2 and ab(1 + a)(1 + b) = 0 for all a, b in the
ring. V. Swaminathan [3, 4, 5] made an extensive study on the class of Boolean
like rings. K. Venkateswarlu, D. Wasihun, T. Abebaw and Y. Yitayew [6] intro-
duced the notion of a weak idempotent ring (WIR, for short) as a generalization of
Boolean like ring which is a ring with characteristic 2 and a4 = a2 for every element
a in the ring. A study was made on certain characterizations of WIR and their
ideals namely completely prime and left (right) completely primary ideals. Also
obtained that if WIR is commutative ring, completely prime ideal is prime and left
(right) completely primary ideal is primary. K. Venkateswarlu, D. Wasihun and T.
Abebaw [7], made a further study on the structure of weak idempotent rings. An
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ideal of a ring is called semiprime if its radical is the ideal itself and an ideal I of
a WIR R is called submaximal if I is covered by a maximal ideal of R i.e. there
exists a maximal ideal M of R such that I ( M and for any ideal J of R such that
I ⊆ J ⊆ M , then J = I or J = M . This paper is focused to investigate a further
study on submaximal ideals of weak idempotent rings which is in continuation to
the paper [7].

2. Preliminaries

We recall certain results concerning WIRs and their properties from [6] and
[7].

Remark 2.1. In a WIR R, for all a ∈ R,

(1) an = a, a2 or a3 for any positive integer n.
(2) If 0 ̸= a is a nilpotent element, then a2 = 0.
(3) a = a2 + (a2 + a), where a2 is an idempotent and a2 + a is a nilpotent.

Remark 2.2. 0 is the only both nilpotent and idempotent element and every
element a of R is the sum of a nilpotent and an idempotent elements. But the fact
is that the representation is not unique as in BLRs.

Remark 2.3. If the ring is a commutative WIR, then the representation of
each element as the sum of an idempotent and a nilpotent element is unique and
we use the notation aB for the idempotent a2 and aN for the nilpotent a + a2 of
the unique representation.

Theorem 2.1. Every non-zero non-unit element in a WIR with unity is a
zero-divisor.

Notation: For any ring R, RB stands for the set of all idempotent elements
and N stands for the set of all nilpotent elements.

Theorem 2.2. Let R be a commutative WIR. Then RB is isomorphic with
R/N .

Theorem 2.3. Every completely prime ideal of a WIR with unity is a maximal
ideal.

Theorem 2.4. In a WIR R with unity, a left completely primary ideal I is
completely prime if and only if the nilradical of R is a subset of I.

Theorem 2.5. In a commutative WIR R with unity, let I be an ideal of R and
x ∈ R such that x /∈ I.

(1) If xB /∈ I, then there exists a maximal ideal J of R such that I ⊆ J and
x /∈ J .

(2) If xN /∈ I, then there exists a primary ideal P of R such that I ⊆ P and
x /∈ P .

Theorem 2.6. Let I be an ideal of a commutative WIR R with unity. Then
the following statements are equivalent.
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1. I is semiprime
2. The nilradical N of R is contained in I
3. R/I is a Boolean ring

Theorem 2.7. Let I be an ideal of a commutative WIR R with unity. Then I
is contained in at least two maximal ideals of R if and only if I is not primary.

Theorem 2.8. The intersection of any two distinct maximal ideals of a com-
mutative WIR with unity is submaximal and it is covered by both of the maximal
ideals. Further, there exists no other maximal ideal containing it.

Remark 2.4. In the ring Z2 × Z2, the ideals M1 = {(0, 0), (0, 1)} and M2 =
{(0, 0), (1, 0)} are the only maximal ideals of the ring.

Lemma 2.1. Every four element Boolean ring R has exactly two maximal ideals.

Proof. In [2] [Theorem 39], every finite Boolean ring with 2k elements is
isomorphic to the direct sum of k copies of the field Z2. Hence R ∼= Z2 × Z2. By
Remark 2.4, R has exactly two maximal ideals. �

3. Submaximal ideals

We begin with the following

Theorem 3.1. Every maximal ideal that contains a submaximal ideal I of a
commutative WIR R with unity is a cover of I.

Proof. Let I be a submaximal ideal of R. Then there exists a maximal ideal
J that covers I. Suppose J ′ is a maximal ideal that contains I. Suppose J ̸= J ′.
Then, by Theorem 2.8, J ∩ J ′ is a submaximal ideal of R and covered by only J
and J ′. Since I is contained by both J and J ′, I ⊆ J ∩ J ′ and hence I = J ∩ J ′.
Thus, J ′ covers I. �

Theorem 3.2. Every submaximal ideal I of a commutative WIR R with unity
is covered by at most two maximal ideals.

Proof. Let I be a submaximal ideal of R and a subset of two distinct maximal
ideals of R. Since I is a submaximal ideal, there exists a maximal ideal J of R such
that I is covered by J . By the assumption, there exists a maximal ideal J1 of R
such that J1 ̸= J and I ⊂ J1 that is I ⊆ J1 ∩ J ⊆ J . As I is covered by J , either
J1 ∩ J = I or J1 ∩ J = J . If J1 ∩ J = J , then we get J = J1 since both ideals are
maximal. Thus J1 ∩ J ̸= J and hence J1 ∩ J = I. By Theorem 2.8, I is covered by
J1 and J and they are the only maximal ideals of R containing I. �

Theorem 3.3. A submaximal ideal I of a commutative WIR R with unity is
semiprime if and only if it is covered by two distinct maximal ideals.

Proof. Let I be semiprime. Assume I is covered by only one maximal ideal
J . Thus, R/I is a local WIR and so I is primary. In this case N * I since N ⊆ I
implies that I is maximal by Theorem 2.4. By Theorem 2.6, I is not semiprime
that contradicts the assumption. Hence, I is covered by two distinct maximal
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ideals. Conversely, suppose I is covered by two distinct maximal ideals. Then I is
the intersection of the two maximal ideals. Since the ring R is commutative, the
nilradical N of R is contained by I. By Theorem 2.6, I is semiprime. �

Corollary 3.1. Every submaximal ideal of a commutative WIR R with unity
covered by a unique maximal ideal is primary.

Proof. Suppose a submaximal ideal I is covered by a unique maximal ideal
M . Then R/I is local. Hence, by Theorem 2.7, I is primary. �

Remark 3.1. In [5], V. Swaminathan has proved that there exists a primary
ideal P of BLR which is a maximal ideal in the poset of all ideals of the ring
not containing a particular nilpotent element n and for every other nilpotent n1 /∈
P, n + n1 ∈ P and also P is a submaximal ideal of R. In [6], it was also proved
that there exists a primary ideal P of the ring R which is a maximal ideal in the
poset of all ideals of R not containing a particular nilpotent element. However for
every other nilpotent element n1 /∈ P, n + n1 ∈ P does not hold and also P need
not be submaximal.

We clarify the above remark in the following

Example 3.1. Consider the Quaternion ring R over the field Z2. Clearly R is a
commutative WIR with unity and N = {0, 1+i, 1+j, 1+k, i+j, i+k, j+k, 1+i+
j+k}. Further Q = {0}, Q1 = {0, 1+i+j+k}, Q2 = {0, 1+i, j+k, 1+i+j+k},
Q3 = {0, 1+ j, i+ k, 1+ i+ j+ k}, Q4 = {0, 1+ k, i+ j, 1+ i+ j+ k} and N are
all possible proper ideals of R and also they are primary. It can be seen that Q is
the maximal primary ideal that does not contain a nilpotent element 1+ i+ j + k.
Also observe that (1+ i)+(1+ i+ j+k) = j+k /∈ Q and also it is not submaximal
ideal of R.

Theorem 3.4. If all submaximal ideals of a commutative WIR R with unity
are not semiprime, then R is local.

Proof. Let all submaximal ideals of R be not semiprime. Assume that R is
not local. Hence R has at least two distinct maximal ideals say J1 and J2. By
Theorem 2.8, J1 ∩ J2 is a submaximal ideal of R. By Theorem 3.3, J1 ∩ J2 is
semiprime which is a contradiction to the assumption. Hence, R is local. �

Theorem 3.5. If the submaximal ideal of a commutative WIR R with unity is
not semiprime, then its radical is a maximal ideal.

Proof. Let submaximal ideal J of R be not semiprime. Then, by Theorem 3.3,
there exists only one maximal idealM that covers J . Let a ∈ R and a /∈ M . Assume
that an ∈ J for some n ∈ N. Then a ∈ r(J) and an ∈ M . Since every maximal ideal
of R is prime, hence a ∈ M which is a contradiction. Thus, an /∈ J for all n ∈ N.
Hence, r(J) ̸= R. Since J is not semiprime, we have r(J) = M �

Corollary 3.2. The nilradical N of a commutative WIR R with unity is a
submaximal ideal if and only if R has exactly four idempotent elements.
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Proof. Suppose R has exactly four idempotent elements. By Theorem 2.2
, R/N ∼= RB. By Lemma 2.1, R/N has exactly two maximal ideals. Thus N is
contained by exactly two maximal ideals and hence N is the intersection of two
maximal ideals. By Theorem 2.8, N is a submaximal ideal of R. Conversely,
suppose N is a submaximal ideal of R. Since N is semiprime, by Theorem 3.3, N
is covered by two distinct maximal ideals. Thus, R/N is four element Boolean ring.
Therefore, R has exactly four idempotent elements. �

4. Product of submaximal ideals

Throughout this section, R and R′ are commutative WIRs with unity.

Theorem 4.1. The following holds

(1) If S and S′ are submaximal ideals of R and R′, respectively, then S × S′

is not a submaximal ideal of R×R′.
(2) If M and M ′ are maximal ideals of R and R′, respectively, then M ×M ′

is a submaximal ideal of R×R′.

Proof. (1) Let S be a submaximal ideal of R and S′ be a submaximal ideal
of R′ . Then there exist maximal ideals M and M ′ of R and R′ that cover S and
S′, respectively. Since S × S′ ( M × M ′ ( M × R′ ( R × R′, S × S′ is not a
submaximal ideal of R×R′.

(2) M ×M ′ ( M ×R′ ( R×R′ and M ×R′ is a maximal ideal of R×R′. If
J × J ′ is an ideal of R×R′ and M ×M ′ ⊆ J × J ′ ⊆ M ×R′, then J is an ideal of
R and J ′ is an ideal of R′ and M ⊆ J ⊆ M and M ′ ⊆ J ′ ⊆ R′. Thus, M = J and
M ′ = J ′ or (J ′ = R′). Hence M ×M ′ = J × J ′ or J × J ′ = M × R′. Therefore,
M ×M ′ is a submaximal ideal of R×R′. �

Theorem 4.2. If J is a submaximal ideal of R×R′, then

P1(J) = {a ∈ R/(a, a′) ∈ J for some a′ ∈ R′}

and

P2(J) = {a′ ∈ R′/(a, a′) ∈ J for some a ∈ R}
are maximal ideals of R and R′, respectively.

Proof. Let M be an ideal of R such that P1(J) ⊆ M ⊆ R. Suppose P1(J) ̸=
M and M ̸= R. Then P1(J) × P2(J) ( M × P2(J) ( R × P2(J) ( R × R′.
But J ⊆ P1(J) × P2(J) and this contradicts the submaximality of J . Thus either
P1(J) = M or M = R. Hence P1(J) is a maximal ideal of R and similarly P2(J)
is a maximal ideal of R′. �

Theorem 4.3. Every submaximal ideal of R×R′ is semiprime.

Proof. Let J be a submaximal ideal of R × R′. By Theorem 4.2, P1(J) and
P2(J) are maximal ideals of R and R′, respectively. Thus J ( R × P2(J) and
J ( P1(J)× R′ that is J is covered by two distinct maximal ideals of R × R′. By
Theorem 3.3, J is semiprime. �
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Theorem 4.4. The intersection of all submaximal ideals of R × R′ is the nil-
radical.

Proof. Let {Jj} be the set of all submaximal ideals, {Mi} be the set of all
maximal ideals and K be the nilradical of R × R′ . By Theorem 2.3, every prime
ideal of R×R′ is maximal and hence ∩Mi is the nilradical of R×R′. By Theorem
4.3, {Jj} is semiprime for all j. Hence K ⊆ Jj for all j by Theorem 2.6. Thus
∩Mi = K ⊆ ∩Jj ⊆ ∩Mi. Hence, K = ∩Jj . �

5. Further results on submaximal ideals

Let us consider the ring Z4. Clearly it is not WIR but it has a subring namely
S = {0, 2} having the property that a4 = a2 and a + a = 0 for every a ∈ S. This
leads us to define weak idempotent subring in any arbitrary ring .

Definition 5.1. A subring S of an arbitrary ring R is a weak idempotent
subring if S is of characteristic 2 and satisfies a4 = a2 for every a ∈ S.

Theorem 5.1. Let R be a commutative WIR with unity, R′ be any arbitrary
ring (not necessarily be WIR) and f : R → R′ be a homomorphism. Then f(R) is
a weak idempotent subring of R′.

Proof. Clearly f(R) is a subring of R′. Let b ∈ f(R). Then for some a ∈
R, f(a) = b. Thus

b+ b = f(a) + f(a) = f(a+ a) = f(0) = 0 and

b4 = f4(a) = f(a4) = f(a2) = f2(a) = b2.

Hence f(R) is a weak idempotent subring of R′. �

Theorem 5.2. Let R and R′ be commutative WIRs with unity and f : R → R′

be an epimorphism. Then

(1) If J is a submaximal ideal of R and ker(f) ⊆ J , then f(J) is a submaximal
ideal of R′.

(2) If J ′ is a submaximal ideal of R′, then f−1(J ′) is a submaximal ideal of
R.

Proof. (1) Let J be a submaximal ideal of R and ker(f) ⊆ J . Then there
exists a maximal ideal M such that J ( M ( R. Let a ∈ M r J . Then f(a) ∈
f(M). Suppose f(a) ∈ f(J). This implies that there exists b ∈ J such that
f(a) = f(b). Thus, f(a − b) = 0 and a − b ∈ J . Since b ∈ J , a ∈ J which is a
contradiction. Hence f(a) /∈ f(J) that is f(J) ( f(M) and similarly f(M) ( R′.
Let S be an ideal of R′ and f(J) ⊆ S ⊆ f(M). Assume f(J) ̸= S and S ̸= f(M).
Let s ∈ S r f(J). This implies that there exists x ∈ R such that f(x) = s.
Thus x ∈ f−1(S) r J and hence J ( f−1(S). Similarly, f−1(S) ( M which is a
contradiction to the submaximality of J . Thus f(J) = S or S = f(M).

(2) It is clear that f−1(J ′) and f−1(M ′) are ideals of R. Suppose f−1(M ′) ⊆
S ⊆ R. If S ̸= R and f−1(M ′) ̸= S, by the above discussion M ′ ̸= f(S) ̸= R′ which
is a contradiction. Thus, f−1(M ′) is a maximal ideal of R. Similarly there exists
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no proper ideal between f−1(J ′) and f−1(M ′). Hence, f−1(J ′) is a submaximal
ideal of R. �

In a WIR R, the multiplicative subset S of R consists of elements which are
not zero-divisors has only unit elements (Theorem 2.1). Thus any non-trivial ideal
I of R does not have common element with the multiplicative subset S that is
S−1I ̸= S−1R.

Theorem 5.3. Let R be any arbitrary commutative ring with unity and S is the
multiplicative subset of R consists of elements which are not zero-divisors including
the unity 1. Then the ring R is a WIR if and only if S−1R is a WIR.

Proof. Suppose R is a WIR. For every

a
s ∈ S−1R, a

s + a
s = (a+a)

s = 0
s = 0 and (as )

4 = a4

s4 = a2

s2 = (as )
2.

Hence, S−1R is a WIR. Conversely, suppose S−1R is a WIR. For every a ∈ R, a
s ∈

S−1R. Thus, a
s + a

s = 0 which implies that s1s(a+ a) = 0 for some s1 ∈ S. Since

s1s is not a zero-divisor, a + a = 0. a
s ∈ S−1R for every a ∈ R and s ∈ S. By

the assumption, (as )
4 = (as )

2 which implies a4

s4 = a2

s2 . Thus, s1s
2(a4 − a2s2) = 0 for

some s1 ∈ S. Since s1s
2 is not a zero-divisor, a4 − a2s2 = 0. s

1 is not a zero-divisor

in S−1R since s ∈ S. Thus ( s1 )
2 = 1 and hence a4 = a2. Therefore, R is a WIR. �

Theorem 5.4. Let S be a multiplicative subset of a commutative WIR R with
unity consisting of elements which are not zero-divisors. Then I is a submaximal
ideal of R if and only if S−1I is a submaximal ideal of S−1R.

Proof. Since S that consists of elements which are not zero-divisors implies
it consists of units, it is known that φs is an isomorphism. Thus the theorem
holds. �

Corollary 5.1. S−1R is a field if and only if R ∼= Z2.

Proof. Suppose S−1R is a field. For every (0 ̸=)a ∈ R, a
s is unit. Thus

(as )
2 = 1 which implies a2 = 1. Hence 0 is the only nilpotent element of R. Hence

R is a Boolean ring with all non-zero elements are units. Thus R ∼= Z2. The proof
of the converse is obvious. �
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