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INTEGRAL BOUNDARY VALUE PROBLEMS OF

FRACTIONAL DIFFERENTIAL EQUATIONS WITH

TWO NONLINEAR TERMS IN BANACH SPACES

Adel Lachouri, Abdelouaheb Ardjouni, and Ahcene Djoudi

Abstract. In this paper, we study the existence of solutions for a bound-
ary value problem of fractional differential equations with integral boundary

conditions by using measure of noncompactness combined with fixed point
theorem of Mönch. An example is given to illustrate our results.

1. Introduction

Measure of non compactness combined with one of fixed point theorems, as
Darbo [16] Sadovski [25], Mönch [23] is an important and efficacy tool in study
of differential or integral equations. Kuratowski [21] introduced the concept of
measure of noncompactness, which played an important role in fixed point theory.
Gohberg [18] gave an other measure called Hausdorff measure later Darbo [16]
used Kuratowski’s measure of noncompactness to generalize the Schauder theorem
of fixed point. After, that many authors studied and solved some problems by
using measure of noncompactness in study of different kind problems, as differential
equations, integral equations and integro-differential equations, see [1, 11, 12, 19,
27].

On other hand, fractional calculus is one of important tool to study many
problems and phenomenons from fields of science and engineering, as in physics,
chemistry, hydrology, biophysics, thermodynamics, blood flow problems, statistical
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mechanics and control theory. Recently, it has known a significant development in
fractional differential and integral equations, for example see [1], [4]-[9], [12]-[15],
[17], [19], [22], [24], [26]-[31]. In recent years, many authors used the technique
of non compactness measure to study existence of solutions to nonlinear integral
equations of order fractional and fractional differential equations, and there are
some results in literary.

In this paper, we concentrate on the existence of solutions for the boundary
value problem of a fractional differential equation with integral boundary conditions
of the form

(1.1)

{
Dαx (t)− f (t, x (t)) = Dα−1g (t, x (t)) , t ∈ (0, 1) ,

x (0) = 0, x (1) =
∫ 1

0
g (s, x (s)) ds,

where Dα is the standard Riemann-Liouville fractional derivative of order 1 < α 6
2, f, g : [0, 1]×E → E are given functions satisfying some assumptions that will be
specified later, and E be a Banach space with the norm ∥.∥. In the case E = R, Xu
and Sun in [30] investigated the existence and uniqueness of a positive solution of
(1.1) by using the method of the upper and lower solutions and the Schauder and
Banach fixed point theorems. Then, the existence results obtained here extend the
main results in [30].

2. Preliminaries

In this section we present some basic definitions, notations and results of frac-
tional calculus which are used throughout this paper.

Let J = [0, 1]. By C (J,E) we denote the Banach space of all continuous
functions from J into E with the norm

∥x∥∞ = sup {∥x (t)∥ : t ∈ J} .
Let L1 (J,E) be the Banach space of measurable functions x : J → E that are
Lebesgue integrable with norm

∥x∥L1 =

∫
J

∥x (t)∥ dt.

And AC(J,E) be the space of absolutely continuous valued functions on J , and set

ACn (J) =
{
x : J → E : x, x′, x′′, , xn−1 ∈ C(J,E) and xn−1 ∈ AC(J,E)

}
.

Moreover, for a given set V of function v : J → E, let us denote by

V (t) = {v (t) : v ∈ V } , t ∈ J,

and
V (J) = {v (t) : v ∈ V, t ∈ J} .

Definition 2.1 ([20]). The fractional integral of order α > 0 of a function
x : J → E is given by

Iαx (t) =
1

Γ (α)

∫ t

0

(t− s)
α−1

x (s) ds,

provided the right side is pointwise defined on J .



FRACTIONAL DIFFERENTIAL EQUATIONS 161

Definition 2.2 ([20]). For a function x ∈ ACn (J), the Riemann-Liouville
fractional order derivative of order α of x, is defined by

Dαx (t) =
1

Γ (n− α)

(
d

dt

)n ∫ t

0

(t− s)
n−α−1

x (s) ds,

where n = [α] + 1 and [α]denotes the integer part of real number α.

Lemma 2.1 ([20]). The solution of linear fractional differential equation

Dαx (t) = 0,

is given by

x (t) = c1t
α−1 + c2t

α−2 + c3t
α−3 + ...+ cnt

α−n, ci ∈ R, i = 1, 2, ..., n,

where n = [α] + 1 and [α] denotes the integer part of real number α.

Now let us recall some fundamental facts of the notion of Kuratowski measure
of noncompactness.

Definition 2.3 ([3, 10]). Let E be a Banach space and ΩE the bounded
subsets of E. The Kuratowski measure of noncompactness is the map µ : ΩE →
[0,∞) defined by

µ (B) = inf {ϵ > 0 : B ⊆ ∪n
i=1Bi and diam (Bi) 6 ϵ} , here B ∈ ΩE .

The measure of noncompactness satisfies some important properties
(a) µ (B) = 0 ⇔ B is compact (B is relatively compact),

(b) µ (B) = µ
(
B
)
,

(c) A ⊂ B ⇒ µ (A) 6 µ (B),

(d) µ (A+B) 6 µ (A) + µ (B),

(e) µ (cB) = |c|µ (B) , c ∈ R,
(f) µ (convB) = µ (B).

Here B and convB denote the closure and the convex hull of the bounded set
B, respectively. The details of µ and its properties can be found in [3, 10].

Definition 2.4. A map f : J × E → E is said to be Caratheodory if

(i) t → f (t, x) is measurable for each x ∈ E.

(ii) x → f (t, x) is continuous for almost all t ∈ J

To prove the existence of solutions of (1.1), we need the following results.

Theorem 2.1 ([2]). Let D be a bounded, closed and convex subset of a Banach
space such that 0 ∈ D, and let N be a continuous mapping of D into itself. If the
implication

V = convN (V ) or V = N (V ) ∪ {0} ⇒ µ (V ) = 0,

holds for every V of D, then N has a fixed point.
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Lemma 2.2 ([28]). Let D be a bounded, closed and convex subset of the Banach
space C (J,E). Let G be a continuous function on J × J and f a function from
J × E → E, which satisfies the Carathéodory conditions, and assume there exists
p ∈ L1 (J,R+) such that, for each t ∈ J and each bounded set B ⊂ E, we have

lim
h→0+

µ (f (Jt,h ×B)) 6 p (t)µ (B) , here Jt,h = [t− h, t] ∩ J.

If V is an equicontinuous subset of D, then

µ

({∫
J

G (s, t) f (s, y (s)) ds : y ∈ V

})
6

∫
J

∥G (s, t)∥ p (s)µ (V (s)) ds.

3. Existence results

Let us start by defining what we mean by a solution of the problem (1.1).

Definition 3.1. A function x ∈ AC2 (J,E) is said to be a solution of problem
(1.1) if x satisfies the equation Dαx (t)− f (t, x (t)) = Dα−1g (t, x (t)) on J and the

conditions x (0) = 0, x (1) =
∫ 1

0
g (s, x (s)) ds.

For the existence of solutions for the problem (1.1), we need the following
auxiliary lemma.

Lemma 3.1. The function x solves the problem (1.1) if and only if it is a
solution of the integral equation

x (t) =

∫ 1

0

G (t, s) f (s, x (s)) ds+

∫ t

0

g (s, x (s)) ds, t ∈ J,

where G is the Green function given by

G (t, s) =

{
[t(1−s)]α−1−(t−s)α−1

Γ(α) , 0 6 s 6 t 6 1,
[t(1−s)]α−1

Γ(α) , 0 6 t 6 s 6 1.

Proof. From Lemma 2.1, applying the Riemann-Liouville fractional integral
Iα on both sides of (1.1), we have

x (t)− c1t
α−1 − c2t

α−2 + Iαf (t, x (t)) = Iα
(
Iα−1Dα−1

0+ g (t, x (t))
)

= Iα
(
g (t, x (t))− c3t

α−2
)
.

That is,

x (t) = c1t
α−1 + c2t

α−2 − 1

Γ (α)

∫ t

0

(t− s)
α−1

f (s, x (s)) ds

+

∫ t

0

g (s, x (s)) ds− c3
α− 1

tα−1.

By the boundary conditions x (0) = 0, x (1) =
∫ 1

0
g (s, x (s)) ds, one has c2 = 0 and

c1 =
1

Γ (α)

∫ 1

0

(1− s)
α−1

f (s, x (s)) ds+
c3

α− 1
.
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Therefore

x (t) =
1

Γ (α)

∫ 1

0

tα−1 (1− s)
α−1

f (s, x (s)) ds

− 1

Γ (α)

∫ t

0

(t− s)
α−1

f (s, x (s)) ds+

∫ t

0

g (s, x (s)) ds

=

∫ 1

0

G (t, s) f (s, x (s)) ds+

∫ t

0

g (s, x (s)) ds.

This process is reversible. The proof is complete. �

In the following, we prove existence results for the boundary value problem
(1.1) by using a Mönch of fixed point theorems.

The following assumptions will be used in our main results

(H1) The functions f, g : J × E → E satisfy the Caratheodory conditions.

(H2) There exist pf , pg ∈ L1 (J,R+) ∩ C (J,R+) such that

∥f (t, x)∥ 6 pf (t) ∥x∥ , for t ∈ J and each x ∈ E,

∥g (t, x)∥ 6 pg (t) ∥x∥ , for t ∈ J and each x ∈ E.

(H3) For each t ∈ J and each bounded set B ⊂ E, we have

lim
h→0+

µ (f (Jt,h ×B)) 6 pf (t)µ (B) , here Jt,h = [t− h, t] ∩ J,

lim
h→0+

µ (g (Jt,h ×B)) 6 pg (t)µ (B) , here Jt,h = [t− h, t] ∩ J.

Theorem 3.1. Assume that the assumptions (H1)-(H3) hold. If

(3.1)
2

Γ (α+ 1)
∥pf∥∞ + ∥pg∥∞ < 1,

then the boundary value problem (1.1) has at least one solution.

Proof. We transform the problem (1.1) into a fixed point problem by defining
an operator N : C (J,E) → C (J,E) as

(Nx) (t) =
1

Γ (α)

∫ 1

0

tα−1 (1− s)
α−1

f (s, x (s)) ds

− 1

Γ (α)

∫ t

0

(t− s)
α−1

f (s, x (s)) ds+

∫ t

0

g (s, x (s)) ds,

Clearly, the fixed points of operator N are solutions of the problem (1.1). Let R > 0
and consider the set

DR = {x ∈ C (J,E) : ∥x∥∞ 6 R} .

Clearly, the subset DR is closed, bounded, and convex. We will show that N
satisfies the assumptions of Theorem 2.1. The proof will be given in three steps.

Step 1. N maps DR into itself.
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For each x ∈ DR, by (H2) and (3.1) we have for each t ∈ J

∥(Nx) (t)∥

6 1

Γ (α)

∫ 1

0

tα−1 (1− s)
α−1 ∥f (s, x (s))∥ ds

+
1

Γ (α)

∫ t

0

(t− s)
α−1 ∥f (s, x (s))∥ ds+

∫ t

0

∥g (s, x (s))∥ ds

6 R

(
2

Γ (α+ 1)
∥pf∥∞ + ∥pg∥∞

)
6 R.

Step 2. N (DR) is bounded and equicontinuous.
By Step 1, we have N (DR) = {Nx : x ∈ DR} ⊂ DR. Thus, for each x ∈ DR,

we have ∥Nx∥∞ 6 R, which means that NDR is bounded. For the equicontinuity
of N (DR). Let t1, t2 ∈ J , t1 < t2 and x ∈ DR. Then

∥(Nx) (t2)− (Nx) (t1)∥

6 1

Γ (α)

∫ t1

0

∣∣∣(t1 − s)
α−1 − (t2 − s)

α−1
∣∣∣ ∥f (s, x (s))∥ ds

+
1

Γ (α)

∫ t2

t1

(t2 − s)
α−1 ∥f (s, x (s))∥ ds+

∫ t2

t1

∥g (s, x (s))∥ ds

6 1

Γ (α)

∫ t1

0

(
(t2 − s)

α−1 − (t1 − s)
α−1

)
pf (s) ∥x (s)∥ ds

+
1

Γ (α)

∫ t2

t1

(t2 − s)
α−1

pf (s) ∥x (s)∥ ds+
∫ t2

t1

pg (s) ∥x (s)∥ ds

6 ∥pf∥∞ R

Γ (α+ 1)
(tα2 − tα1 ) + ∥pg∥∞ R (t2 − t1) .

As t1 → t2, the right-hand side of the above inequality tends to zero.

Step 3. N is continuous.
Let {xn} be sequence such that xn → x in C (J,E). Then, for each t ∈ J

∥(Nxn) (t)− (Nx) (t)∥

6 1

Γ (α)

∫ 1

0

tα−1 (1− s)
α−1 ∥f (s, xn (s))− f (s, x (s))∥ ds

+
1

Γ (α)

∫ t

0

(t− s)
α−1 ∥f (s, xn (s))− f (s, x (s))∥ ds

+

∫ t

0

∥g (s, xn (s))− g (s, x (s))∥ ds.

Since f and g are Caratheodory functions, the Lebesgue dominated convergence
theorem implies that

∥(Nxn) (t)− (Nx) (t)∥ → 0 as n → ∞.
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This shows that (Nxn) converges pointwise to Nx on J . Moreover, the sequence
(Nxn) is equicontinuous by a similar proof of Step 2. Therefore (Nxn) converges
uniformly to Nx and hence N is continuous.

Now let V be a subset of DR such that V ⊂ conv ((NV ) ∪ {0}). V is bounded
and equicontinuous, and therefore the function v → v (t) = µ (v (t)) is continuous
on J . By assumption (H3), Lemma 2.2 and the properties of the measure µ we
have for each t ∈ J

v (t) 6 µ ((NV ) (t) ∪ {0}) 6 µ ((NV ) (t))

6 1

Γ (α)

∫ 1

0

tα−1 (1− s)
α−1

pf (s)µ (v (s)) ds

+
1

Γ (α)

∫ t

0

(t− s)
α−1

pf (s)µ (v (s)) ds+

∫ t

0

pg (s)µ (v (s)) ds

6 ∥v∥∞

(
2

Γ (α+ 1)
∥pf∥∞ + ∥pg∥∞

)
.

This means that

∥v∥∞

(
1−

[
2

Γ (α+ 1)
∥pf∥∞ + ∥pg∥∞

])
6 0.

By (3.1), it follows that ∥v∥∞ = 0, that is v (t) = 0 for each t ∈ J , and then V (t)
is relatively compact in E. In view of the Ascoli-Arzela theorem, V is relatively
compact in DR. Applying now Theorem 2.1, we conclude that N has a fixed point,
which is a solution of the problem (1.1). �

4. Example

As an application of our results, we consider the following boundary value
problem of a fractional differential equation

(4.1)

 D
3
2x (t)− 1

3+exp(t)x (t) = D
1
2

1
5+exp(t2)x (t) , t ∈ J = [0, 1] ,

x (0) = 0, x (1) =
∫ 1

0
1

5+exp(s2)x (s) ds.

Let

E = l1 =

{
x = (x1, x2, ..., xn, ...) :

∞∑
n=1

|xn| < ∞

}
,

equipped with the norm

∥x∥E =

∞∑
n=1

|xn| .

Set

x = (x1, x2, ..., xn, ...) , f = (f1, f2, ..., fn, ...) , g = (g1, g2, ..., gn, ...) ,
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and

fn (t, xn) =
1

3 + exp (t)
xn, t ∈ J,

gn (t, xn) =
1

5 + exp (t2)
xn, t ∈ J.

For each xn and t ∈ J , we have

(4.2) |fn (t, xn)| 6
1

3 + exp (t)
|xn| ,

and

(4.3) |gn (t, xn)| 6
1

5 + exp (t2)
|xn| .

Hence conditions (H1) and (H2) are satisfied with

pf (t) =
1

3+exp(t) and pg (t) =
1

5+exp(t2) .

By (4.2) and (4.3), for any bounded set B ⊂ l1, we have

µ (f (t, B)) 6 1

3 + exp (t)
µ (B) for each t ∈ J,

µ (g (t, B)) 6 1

5 + exp (t2)
µ (B) for each t ∈ J.

Hence (H3) is satisfied. The condition

2

Γ (α+ 1)
∥pf∥∞ + ∥pg∥∞ ≃ 0.54 < 1,

is satisfied with

∥pf∥∞ = 1
4 , ∥pg∥∞ = 1

6 and α = 3
2 .

Consequently, Theorem 3.1 implies that the problem (4.1) has a solution defined
on J .
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