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SUM OF POWERS OF NORMALIZED SIGNLESS

LAPLACIAN EIGENVALUES AND RANDIĆ

(NORMALIZED) INCIDENCE ENERGY OF GRAPHS

Ş. Burcu Bozkurt Altındağ

Abstract. Let G be a simple connected graph and let α be a real number.
The graph invariant σα (G) introduced as the sum of the αth powers of the
normalized signless Laplacian eigenvalues ofG generalizes Randić (normalized)

incidence energy. In this paper, we obtain some bounds on σα (G). As the
special case of some of these bounds, we present new and better results on
Randić (normalized) incidence energy.

1. Introduction

Let G = (V,E) be a finite, simple and connected graph with n vertices and
m edges, where |V | = n and |E| = m. Let v1, v2, . . . , vn be the vertices of G. For
1 6 i 6 n, let di denote the degree of the vertex vi. If any two vertices vi and vj of
G are adjacent then, we use the notation i ∼ j. Let ∆ and δ denote the maximum
and minimum vertex degrees of G, respectively.

Let A (G) be the (0, 1)-adjacency matrix of a graph G. Denote by λ1 > λ2 >
· · · > λn the eigenvalues of A (G). These eigenvalues are called as the eigenvalues
of G [11]. Then, the energy of G was defined by Gutman as [16]:

E = E (G) =
n∑

i=1

|λi| .

This concept is used in Hückel molecular orbital theory in order to estimate the
total π-electron energy of a molecule [17, 27]. There exists a vast literature on
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graph energy in both chemistry and mathematics. For survey and details, see the
recent papers [14, 18] and the monograph [22] with the list of its references.

Nikiforov [32] extended the definition of graph energy to the energy of any
matrix M in the following way. The energy of the matrix M , denoted by E (M),
is defined as the sum of its singular values [32]. For a graph G, it is obvious that
E (A (G)) = E (G). In line with Nikiforov’s definition [32], the incidence energy,
pertaining to incidence matrix, of a graph was defined in [21]. For details on this
graph invariant, see [19, 20, 21].

Let D (G) denote the diagonal matrix of vertex degrees of G. The Laplacian
and signless Laplacian matrices of G are defined as L (G) = D (G) − A (G) and
Q (G) = D (G)+A (G), respectively [12, 28]. Since G is a connected graph, D (G)
is non-singular, then the normalized Laplacian and normalized signless Laplacian
matrices of G are, respectively, defined as [9]

(1.1) L (G) = D (G)
−1/2

L (G)D (G)
−1/2

= In −R (G)

and

(1.2) L+ (G) = D (G)
−1/2

Q (G)D (G)
−1/2

= In +R (G)

where In is the n × n unit matrix and R (G) is the Randić matrix of G with
eigenvalues ρ1 = 1 > ρ2 > · · · > ρn [2, 11, 25]. Denote by γ1 > γ2 > · · · > γn = 0
and γ+

1 > γ+
2 > · · · > γ+

n the eigenvalues of L (G) and L+ (G) (or the normalized
Laplacian and normalized signless Laplacian eigenvalues of G ), respectively. For
more information on these eigenvalues, see [9].

From (1.1) and (1.2), the eigenvalues of L (G) and L+ (G) are, respectively, of
the form [15, 25]

(1.3) γi = 1− ρn−i+1 and γ+
i = 1 + ρi, for i = 1, 2, . . . , n.

By analogy with the Laplacian energy-like invariant defined in [26], the Laplacian
incidence energy of G was introduced as [35]

LIE = LIE (G) =
n−1∑
i=1

√
γi.

Some basic properties and the upper and lower bounds of LIE may be found in
[29, 30, 33, 35].

In an analogous manner with the incidence energy [19], the Randić incidence
energy was defined as [15]

IRE = IRE (G) =
n∑

i=1

√
γ+
i .

In [8], Cheng and Liu referred to this quantity as “normalized incidence energy”
and obtained some upper and lower bounds for it as well as its Coulson integral
formula. For more details on Randić (normalized) incidence energy, see [4, 8, 15,
33].
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For a real number α ̸= 0, the sum of the αth powers of the non-zero normalized
Laplacian eigenvalues of a connected graph G was defined by [3]

sα = sα (G) =
n−1∑
i=1

γα
i .

This sum is closely associated with various graph invariants. For α = 1 and α = 2,
s1 = n and s2 = n + 2R−1[38], where R−1 = R−1 (G) =

∑
i∼j

1
didj

is the general

Randić index [5]. Notice that 2ms−1 is equal to the degree Kirchoff index [6] and
s1/2 = LIE. For more information on sα, see [1, 3, 10, 24].

Short time ago, for a real number α ̸= 0, we introduced the sum of the αth
powers of the normalized signless Laplacian eigenvalues of a connected graph G as
[4]

σα = σα (G) =
n∑

i=1

(
γ+
i

)α
.

The cases α = 1 and α = 2 are (same with sα) equal to

(1.4) σ1 =
n∑

i=1

γ+
i = n and σ2 =

n∑
i=1

(
γ+
i

)2
= n+ 2R−1,

see [8]. Moreover for α = 1/2, σ1/2 = IRE. Note that the normalized Laplacian and
normalized signless Laplacian eigenvalues of bipartite graphs coincide [4]. Then,
for bipartite graphs, sα is equal to σα and so LIE is equal to Randić (normalized)
incidence energy IRE [4].

In this paper, we obtain some bounds on σα (G). As the special case of some
of these bounds, we present new and better results for IRE.

2. Preliminaries

We now state some preliminarily results that will be used in the subsequent
section.

Lemma 2.1 ([4]). If G is a bipartite graph, then the eigenvalues of L (G) and
L+ (G) coincide.

Lemma 2.2 ([4]). If G is a bipartite graph, then σα coincide with sα. Especially,
for bipartite graphs, σ1/2 = IRE = LIE = s1/2.

Lemma 2.3 ([15]). For any connected graph G, the largest normalized signless
Laplacian eigenvalue γ+

1 = 2.

Lemma 2.4 ([15]). Let G be a graph of order n > 2 with no isolated vertices.
Then γ+

2 = γ+
3 = · · · = γ+

n = n−2
n−1 if and only if G ∼= Kn.

Let q1 > q2 > · · · > qn denote the eigenvalues of the signless Laplacian matrix
Q (G). It is a well known fact that for any connected non-bipartite graph G of
order n, qi > 0, for i = 1, 2, . . . , n [12]. Considering this with the definition of
normalized signless Laplacian matrix given by Eq. (1.2), one can arrive at:



138 BOZKURT ALTINDAĞ

Remark 2.1. If G is a connected non-bipartite graph of order n, then γ+
i > 0,

for i = 1, 2, . . . , n.

Lemma 2.5 ([10, 29]). Let G be a connected graph of order n. Then

γ1 > 1 +
2R−1

n
.

Equality holds if and only if G ∼= Kn.

Lemma 2.6 ([9, 24, 37]). Let G be a connected graph of order n with maximum
vertex degree ∆. Then

γ1 > 1 +
1

∆
> n

n− 1
.

Each of the equalities hold if and only if G ∼= Kn.

Lemma 2.7 ([34]). Let G be a connected graph of order n with maximum vertex
degree ∆ and minimum vertex degree δ. Then

n

2∆
6 R−1 6 n

2δ
.

Equality holds in both sides if and only if G is a regular graph.

Remark 2.2. By Lemmas 2.5, 2.6 and 2.7, it is easy to see that

γ1 > 1 +
2R−1

n
> 1 +

1

∆
> n

n− 1
.

Each of the equalities hold if and only if G ∼= Kn. Then, combining this fact with
Eq. (1.3), we have that

γ+
n 6 1− 2R−1

n
6 1− 1

∆
6 n− 2

n− 1
.

Each of the equalities hold if and only if G ∼= Kn.

Let Kp,q − e denote the graph obtained by deleting any edge e from the
complete bipartite graph Kp,q. In [36], the first two smallest values on γ2 among
all connected bipartite graphs with the fixed size of bipartition were determined as
the following:

Lemma 2.8 ([23, 36]). Let G (� Kp,q) be a connected bipartite graph with
bipartition V = X ∪ Y and p = |X| > 1, q = |Y | > 1. Then

γ2 (G) > 1 +
1

√
pq

> γ2 (Kp,q) = 1.

The first equality holds if and only if G ∼= Kp,q − e (e is any edge in Kp,q).

Lemma 2.9 ([9]). Let G be a bipartite graph of order n. Then, γi = 2−γn−i+1,
for i = 1, 2, . . . , n.
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3. Main Results

In this section, we present the main results of this paper on σα and IRE.

Theorem 3.1. Let G be a connected non-bipartite graph with n > 3 vertices.
(i) If 0 6 α 6 1, then

(3.1) σα (G) 6 2α +

(
1− 2R−1

n

)α

+

(
n− 3 + 2R−1

n

)α
(n− 2)

α−1 .

(ii) If α 6 0 or α > 1, then

(3.2) σα (G) > 2α +

(
1− 2R−1

n

)α

+

(
n− 3 + 2R−1

n

)α
(n− 2)

α−1 .

Equality in both (3.1) and (3.2) occurs if and only if either α = 0 or α = 1 or
G ∼= Kn.

Proof. In order to prove this theorem, we utilize the similar proof technique
applied in Theorem 4.1 of [7]. We first start with the case 0 < α < 1. Recall that
xα is concave for x > 0 and 0 < α < 1. Then(

n−1∑
i=2

γ+
i

n− 2

)α

> 1

n− 2

n−1∑
i=2

(
γ+
i

)α
,

that is equivalent to

n−1∑
i=2

(
γ+
i

)α 6 1

(n− 2)
α−1

(
n−1∑
i=2

γ+
i

)α

.

with equality holding if and only if γ+
2 = γ+

3 = · · · = γ+
n−1. Thus, it follows from

Eq. (1.4) and Lemma 2.3 that

σα (G) 6
(
γ+
1

)α
+
(
γ+
n

)α
+

(
n−1∑
i=2

γ+
i

)α

(n− 2)
α−1

=
(
γ+
1

)α
+
(
γ+
n

)α
+

(
n− γ+

1 − γ+
n

)α
(n− 2)

α−1

= 2α +
(
γ+
n

)α
+

(n− 2− γ+
n )

α

(n− 2)
α−1 .

For 0 < x 6 n−2
n−1 , let us consider the following function

f (x) = xα +
(n− 2− x)

α

(n− 2)
α−1 .

It can be easily seen that f is increasing for x 6 n−2
n−1 . By Remark 2.1 and Remark

2.2, we have

0 < γ+
n 6 1− 2R−1

n
6 n− 2

n− 1
.
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Therefore

σα (G) 6 2α +

(
1− 2R−1

n

)α

+

(
n− 3 + 2R−1

n

)α
(n− 2)

α−1 .

Hence we get the inequality (3.1). We now assume that the equality holds in (3.1).
Then all inequalities used in the above arguments must be equalities. That is,

γ+
2 = γ+

3 = · · · = γ+
n−1 and γ+

n = 1− 2R−1

n
.

Furthermore, from Eq. (1.4) and Lemma 2.3,
∑n

i=2 γ
+
i = n − 2. These together

with Remark 2.2 and Lemma 2.4 imply that G ∼= Kn.
Conversely one can easily check that the equality holds in (3.1) for G ∼= Kn.

We now consider the case α < 0 or α > 1. Notice that xα is convex for x > 0 and
α < 0 or α > 1. Then (

n−1∑
i=2

γ+
i

n− 2

)α

6 1

n− 2

n−1∑
i=2

(
γ+
i

)α
with equality holding if and only if γ+

2 = γ+
3 = · · · = γ+

n−1. Furthermore, f is

decreasing for x 6 n−2
n−1 . Then, similarly to the above arguments, we obtain the

second part of the theorem. �

By taking α = 1/2 in Theorem 3.1, we have:

Corollary 3.1. Let G be a connected non-bipartite graph with n > 3 vertices.
Then

(3.3) IRE (G) 6
√
2 +

√
1− 2R−1

n
+

√
(n− 2)

(
n− 3 +

2R−1

n

)
with equality holding if and only if G ∼= Kn.

Considering Remark 2.2 with the proof of Theorem 3.1, we also have the fol-
lowing result.

Theorem 3.2. Let G be a connected non-bipartite graph with n > 3 vertices
and maximum vertex degree ∆.

(i) If 0 6 α 6 1, then

(3.4) σα (G) 6 2α +

(
1− 1

∆

)α

+

(
n− 3 + 1

∆

)α
(n− 2)

α−1 .

(ii) If α 6 0 or α > 1, then

(3.5) σα (G) > 2α +

(
1− 1

∆

)α

+

(
n− 3 + 1

∆

)α
(n− 2)

α−1 .

Equality in both (3.4) and (3.5) occurs if and only if either α = 0 or α = 1 or
G ∼= Kn.

As the special case of Theorem 3.2, we obtain:
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Corollary 3.2. Let G be a connected non-bipartite graph with n > 3 vertices
and maximum vertex degree ∆. Then

(3.6) IRE (G) 6
√
2 +

√
1− 1

∆
+

√
(n− 2)

(
n− 3 +

1

∆

)
with equality holding if and only if G ∼= Kn.

Remark 3.1. For a (connected) graph G of order n > 2, in [8, 15] the authors
obtained that

(3.7) IRE (G) 6
√
2 +

√
(n− 1) (n− 2)

with equality holding if and only if G ∼= Kn. Considering Remark 2.2 with the
proof of Theorem 3.1, we conclude that the upper bounds (3.3) and (3.6) are better
than the upper bound (3.7) for connected non-bipartite graphs. Moreover, (3.3) is
the best for IRE among the mentioned upper bounds.

Let RS (G) = (ρ1, ρ2, . . . , ρn) and NSLS (G) =
(
γ+
1 , γ+

2 , . . . , γ+
n

)
denote the

spectrum of R (G) and L+ (G), respectively. In [13], Das et al. found that

(3.8) RS (Kp,q − e) =

1,
1

√
pq

, 0, . . . , 0︸ ︷︷ ︸
n−4

,− 1
√
pq

,−1


where Kp,q − e is the graph obtained by deleting any edge e from Kp,q. Then, by
Eqs. (1.3) and (3.8), one may get that

(3.9) NSLS (Kp,q − e) =

2, 1 +
1

√
pq

, 1, . . . , 1︸ ︷︷ ︸
n−4

, 1− 1
√
pq

, 0

 .

Considering the similar proof technique applied in Theorem 4.1 of [7], we now
give the following result on σα of connected bipartite graphs.

Theorem 3.3. Let G be a connected bipartite graph with bipartition V = X∪Y
and p = |X| > 1, q = |Y | > 1. If G ∼= Kp,q, then sα (G) = σα (G) = 2α + n− 2 [3].
Otherwise,

(i) If 0 6 α 6 1, then

(3.10) sα (G) = σα (G) 6 2α +

(
1 +

1
√
pq

)α

+

(
1− 1

√
pq

)α

+ n− 4.

(ii) If α 6 0 or α > 1, then

(3.11) sα (G) = σα (G) > 2α +

(
1 +

1
√
pq

)α

+

(
1− 1

√
pq

)α

+ n− 4.

Equality in both (3.10) and (3.11) occurs if and only if either α = 0 or α = 1 or
G ∼= Kp,q − e (e is any edge in Kp,q).
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Proof. If G ∼= Kp,q, then by Theorem 3.7 of [3] and Lemma 2.2, we have that
sα (G) = σα (G) = 2α + n − 2. Otherwise, G is not complete bipartite graph. We
now consider the case 0 < α < 1. Note that xα is concave for x > 0 and 0 < α < 1.
Thus, (

n−2∑
i=3

γ+
i

n− 4

)α

> 1

n− 4

n−2∑
i=3

(
γ+
i

)α
i.e.,

n−2∑
i=3

(
γ+
i

)α 6 1

(n− 4)
α−1

(
n−2∑
i=3

γ+
i

)α

.

with equality holding if and only if γ+
3 = γ+

4 = · · · = γ+
n−2. Note that γ+

n = 0, by
Lemma 2.1 and the fact that γn = 0 [9]. Bearing in mind these with Eq. (1.4) and
Lemmas 2.1, 2.3 and 2.9, we get

σα (G) 6
(
γ+
1

)α
+
(
γ+
2

)α
+
(
γ+
n−1

)α
+

(
n−2∑
i=3

γ+
i

)α

(n− 4)
α−1

=
(
γ+
1

)α
+
(
γ+
2

)α
+
(
γ+
n−1

)α
+

(
n− γ+

1 − γ+
2 − γ+

n−1

)α
(n− 4)

α−1

= 2α +
(
2− γ+

n−1

)α
+
(
γ+
n−1

)α
+ n− 4.

For 0 < x < 1, let
g (x) = (2− x)

α
+ xα.

It is elementary to see that g is increasing for x < 1. Since G is connected bipartite,
γ+
n−1 > 0, by Lemma 2.1 and the fact that γn−1 > 0 [9]. Taking into account this

with Lemmas 2.1, 2.8 and 2.9, we have

0 < γ+
n−1 6 1− 1

√
pq

< 1.

Therefore

σα (G) 6 2α +

(
1 +

1
√
pq

)α

+

(
1− 1

√
pq

)α

+ n− 4.

Hence the inequality (3.10) holds. We now suppose that the equality holds in (3.10).
Then

γ+
3 = γ+

4 = · · · = γ+
n−2 and γ+

n−1 = 1− 1
√
pq

.

Since G is bipartite, by Lemmas 2.1 and 2.9, γ+
n−1 = 1 − 1√

pq implies that γ+
2 =

1 + 1√
pq . Then, by Lemma 2.8, G ∼= Kp,q − e. By Eq. (1.4) and Lemmas 2.1, 2.3

and 2.9, we have that
∑n−2

i=3 γ+
i = n − 4. Thus, γ+

3 = γ+
4 = · · · = γ+

n−2 = 1. This
together with Eq. (3.9) confirm that G ∼= Kp,q − e.

Conversely, it is easy to check that the equality holds in (3.10) for G ∼= Kp,q−e,
by Eq. (3.9). The proof of the case α < 0 or α > 1 is obtained similarly to the
above considering xα is convex for x > 0 and g is decreasing for x < 1. This
completes the proof of theorem. �
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By setting α = 1/2 in Theorem 3.3, we have the following result.

Corollary 3.3. Let G be a connected bipartite graph with bipartition V =
X ∪ Y and p = |X| > 1, q = |Y | > 1. If G ∼= Kp,q, then LIE (G) = IRE (G) =√
2 + n− 2 [15]. Otherwise,

(3.12) LIE (G) = IRE (G) 6
√
2 +

√
1 +

1
√
pq

+

√
1− 1

√
pq

+ n− 4.

with equality holding if and only if G ∼= Kp,q − e (e is any edge in Kp,q).

Remark 3.2. For a bipartite graph G of order n with no isolated vertices, it
was derived that [15]

(3.13) IRE (G) 6
√
2 + n− 2

with equality holding if and only if G is a complete bipartite graph. From the proof
of Theorem 3.3 and Corollary 3.3, one can easily see that the upper bound (3.12) is
better than the upper bound (3.13) for any connected bipartite graph G (� Kp,q)
with bipartition V = X ∪ Y and p = |X| > 1, q = |Y | > 1.

Remark 3.3. For any n vertex tree T , it was determined that [15],

(3.14) IRE (T ) 6 IRE (Sn)

where Sn denote the star graph with n vertices. In other words, among all trees with
n vertices, the star graph Sn is the unique tree with maximum Randić (normalized)
incidence energy [15]. Because trees are bipartite graphs, from Lemma 2.2, the
result in Eq. (3.14) can be re-stated as: For any n vertex tree T

(3.15) LIE (T ) 6 LIE (Sn) .

Furthermore, by Lemma 2.8, the proof of Theorem 3.3 and Corollary 3.3, we deduce
that among all connected bipartite graphs except complete biparite graph, Kp,q−e
has the maximum Randić (normalized) incidence energy or Laplacian incidence
energy.

For a connected bipartite graph G, Li et al. [24] obtained the result in (3.16)
on sα (G). By Lemma 2.2, one can re-state their result as:

Theorem 3.4. [24] Let G be a connected bipartite graph with n > 3 vertices.
If α < 0 or 0 < α 6 1 or α > 2, then

(3.16) sα (G) = σα (G) > 2α +
(n− 2)

2−α

(n+ 2R−1 − 4)
1−α .

Equality holds in (3.16) if and only if either α = 1 or α = 2 or G ∼= Kp,q (p+q = n).
If 1 6 α 6 2, then the inequality (3.16) is reversed.

The above result on σα can be extended to all connected graphs as follows:
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Theorem 3.5. Let G be a connected graph with n > 3 vertices. If α < 0 or
0 < α 6 1 or α > 2, then

(3.17) σα (G) > 2α +
(n− 2)

2−α

(n+ 2R−1 − 4)
1−α .

Equality holds in (3.17) if and only if either α = 1 or α = 2 or G ∼= Kn. If
1 6 α 6 2, then the inequality (3.17) is reversed.

Proof. By considering Hölder’s inequality [31], Eq. (1.4) and Lemmas 2.3 and
2.4, the proof can be easily obtained in a similar way to the proofs of Theorems
3.14 and 3.16 in [24]. �

From Theorem 3.5, we get the following result.

Corollary 3.4. Let G be a connected graph with n > 3 vertices. Then

(3.18) IRE (G) >
√
2 + (n− 2)

√
n− 2

n+ 2R−1 − 4

with equality holding if and only if G ∼= Kn.

Remark 3.4. For a graph G of order n with no isolated vertices, in [8] Cheng
and Liu established a lower bound for Randić (normalized) incidence energy as:

(3.19) IRE (G) >
√

n3

n+ 2R−1

with equality holding if and only if n is even and G is disjoint union of n
2 paths of

length 1. It can be easily seen that (3.18) is better than (3.19) on many example.
For instance, for a graph G with vertex set V = {v1, v2, v3, v4, v5} and edge set
E = {v1v2, v1v4, v2v3, v2v5, v4v5}, IRE (G) ≈ 4.370. For this graph, at rounded
three decimal places, the lower bound (3.18) gives IRE (G) > 4.260 whereas the
lower bound (3.19) gives IRE (G) > 4.128.

From Theorem 3.5 and Lemma 2.7, we have:

Corollary 3.5. Let G be a connected graph with n > 3 vertices, maximum
vertex degree ∆ and minimum vertex degree δ.

(i) If α < 0 or 0 < α 6 1 (resp., 1 6 α < 2), then

(3.20) σα (G) > (resp.,6) 2α +
(n− 2)

2−α(
n
(
1 + 1

δ

)
− 4
)1−α .

Equality holds in (3.20) if and only if α = 1 or G ∼= Kn.
(ii) If α > 2, then

(3.21) σα (G) > 2α +
(n− 2)

2−α(
n
(
1 + 1

∆

)
− 4
)1−α .

Equality holds in (3.21) if and only if G ∼= Kn.

From Corollary 3.5, we obtain:
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Corollary 3.6. Let G be a connected graph with n > 3 vertices and minimum
vertex degree δ. Then

(3.22) IRE (G) >
√
2 + (n− 2)

√
n− 2

n
(
1 + 1

δ

)
− 4

with equality holding if and only if G ∼= Kn.
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[4] Ş. B. Bozkurt Altındağ. Note on the sum of powers of normalized signless Laplacian eigen-
values of graphs. Math. Interdisc. Res., 4(2)(2019), 171–182.

[5] M. Cavers, S. Fallat and S. Kirkland. On the normalized Laplacian energy and the general
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[12] D. Cvetković, P. Rowlinson and S. Simić. Signless Laplacian of finite graphs. Lin. Algebra

Appl., 423(1)(2007), 155–171.

[13] K. C. Das, S. Sun and I. Gutman. Normalized Laplacian eigenvalues and Randić energy of
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