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ON N-POWER HYPONORMAL OPERATORS

IN INDEFINITE INNER PRODUCT SPACE

A. Narayanasamy∗ and D. Krishnaswamy

Abstract. In this paper, we extend the concept of n-power hyponormal op-
erators with reference to indefinite inner product, which is weaker than the
case of normal operators. Furthermore, we give some basic properties of these

operators.

1. Introduction

An indefinite inner product is a conjugate symmetric sesquilinear form
[x, y] = ⟨x, Jy⟩, where ⟨·, ·⟩ denote the Euclidean inner product. The indefinite
product of matrices and applications to indefinite inner product space and extended
some formulae from Euclidean space to an indefinite inner product space were
investigated by Ramanathan et al. [11] in 2004. Kamaraj et al. [7] was introduced
the concept of Moore-Penrose inverse in indefinite inner product space in 2005.
The concept of hyponormal operators were introduced by Stampfli [12] in 1962. In
1990, Aluthge [1] extended the concept of p-hyponormal operators. Alzuraigi et
al. [2] studied the n-normal operators in 2010. Guesba et al. [5] developed the
concept of n-power-hyponormal operators in 2016. For B(H) and HN denotes to
the set of all bounded linear and hyponormal operators with reference to indefinite
inner product. For T is called n-EP if TnT [†] = T [†]Tn, normal if TT [∗] = T [∗]T ,

skew-EP if T 2 = −T [†]2 and projection if T 2 = T = T [∗]. T is called unitary if
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TT [∗] = T [∗]T = I. For T is called hypo-EP if TT [†] 6 T [†]T . We refer various
properties and advantages of this product in ([4], [6], [8], [9], [10]).

2. n-power hyponormal operators

Definition 2.1. For an operator T ∈ B (H), if TnT [∗] 6 T [∗]Tn then T is
called n-power hyponormal (HN) operator.

Proposition 2.1. If S, T ∈ B(H) are unitarily equivalent and if T is n-power
HN operators then so is S.

Proof. Let T be an n-power HN operator and S be unitary equivalent of T .
Then there exists unitary operator U such that S = UTU [∗] so Sn = UTnU [∗].

We have, SnS[∗] = UTnU [∗](UTU [∗])[∗]

= UTnU [∗]UT [∗]U [∗]

= UTnT [∗]U [∗]

6 UT [∗]TnU [∗] (Since T is n-power HN)

= S[∗]Sn.

Thus, SnS[∗] 6 S[∗]Sn. Therefore S is a n-power HN operator. �
Proposition 2.2. Let T ∈ B (H) be an n-power HN operator. Then T [∗] is

n-power HN operator.

Proof. Since, T is n-power-HN operator. We have

TnT [∗] 6 T [∗]Tn ⇒ (TnT [∗])[∗] 6 (T [∗]Tn)[∗]

⇒ (T [∗])[∗](Tn)[∗] 6 (Tn)[∗](T [∗])[∗]

⇒ T (T [∗])n 6 (T [∗])nT

⇒ (T [∗])nT > T (T [∗])n.

Thus T [∗] is n-power HN operator. �
Corollary 2.1. If T and T [∗] are two n-power HN operators, then T is n-

normal operator.

Theorem 2.1. If S and T are commuting n-power-HN operators and ST [∗] =
T [∗]S, then ST is an n-power HN operator.

Proof. Since ST = TS, so SnTn = (ST )n and ST [∗] = T [∗]S, so SnT [∗] =
T [∗]Sn. Now,

ST [∗] = T [∗]S

⇒ TS[∗] = S[∗]T

⇒ Tn S[∗] = S[∗]Tn.

We have, (ST )
n
(ST )

[∗]
= SnTn T [∗]S[∗]

6 SnT [∗]TnS[∗] (since T is n-power hyponormal)

= T [∗]SnS[∗]Tn
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6 T [∗]S[∗]SnTn (since S is n-power hyponormal).

Hence, (ST )
n
(ST )

[∗] 6 (ST )
[∗]
(ST )

n
. Therefore ST is an n-power HN operator.

�

Proposition 2.3. Let S and T be commuting n-power HN operators, such that

TS[∗] = S[∗]T and (S + T )[∗] is commutes with
n−1∑
k=1

Ck
n Sn−kT k. Then (S + T ) is

an n-power HN operator.

Proof.

(S + T )
n
(S + T )

[∗]
=

(
n−1∑
k=0

Ck
n Sn−kT k

)(
S[∗]T [∗]

)
= SnT [∗] +

n−1∑
k=0

Ck
nS

n−kT k(S + T )
[∗]

+ TnS[∗] + SnT [∗] + TnT [∗]

and since TS[∗]= S[∗]T it folows TnS[∗] + S[∗]Tn. Now, TS[∗] = S[∗]T . Then
ST [∗] = T [∗]S and SnT [∗] = T [∗]Sn.

Since, (S + T )
[∗]

is commute with
n−1∑
k=1

Ck
n Sn−kT k, we have

(S + T )
n
(S + T )

[∗]

= SnS[∗] +(S + T )
[∗] n−1∑

k=1

Ck
nS

n−kT k + S[∗]Tn + T [∗]Sn + TnT [∗]

6 S[∗]Sn + (S + T )
[∗] n−1∑

k=1

Ck
n Sn−kT k + S[∗]Tn + T [∗]Tn

= (S + T )
[∗]
(

n−1∑
k=0

Ck
n Sn−kT k

)
= (S + T )

[∗]
(S + T )

n
. �

Proposition 2.4. If S, T ∈ B(H) are 2-power-HN operators such that TS[∗]

= S[∗]T and ST + TS = 0, then S + T and ST are 2-power-HN operators.

Proof. Since ST + TS = 0, hence S2T 2 = T 2S2. So, (S + T )
2
= S2 + T 2.

Now
(S + T )

2
(S + T )

[∗]
=
(
S2 + T 2

) (
S[∗] + T [∗])

= S2S[∗] + S2T
[∗]

+ T 2S[∗] + T 2T [∗]

= S2S[∗] + T [∗]S2 + S[∗]T 2 + T 2T [∗] since TS[∗] = S[∗]T

6 S[∗]S2 + T [∗]S2 + S[∗]T 2 + T [∗]T 2 = (S + T )
[∗]

(S + T )
2
.

Now, (ST)
2
(ST)

[∗]
= S2T 2T [∗]S[∗]

6 S2T [∗]T 2S[∗] = T [∗]S2S[∗]T 2

6 T [∗]S[∗]S2T [∗] = (ST )
[∗]
(ST )

2
. �



124 A. NARAYANASAMY AND D. KRISHNASWAMY

Theorem 2.2. Let T1, T2, · · · , Tm be n-power HN operators in B(H). Then
(T1 ⊕ T2 ⊕ ...⊕ Tn) and (T1 ⊗ T2 ⊗ · · ·Tn) are the n-power HN operators.

Proof. Since we have
(T1 ⊕ T2 ⊕ · · · ⊕ Tn)

n
(T1 ⊕ T2 ⊕ · · · ⊕ Tn)

[∗]

= (Tn
1 ⊕ Tn

2 ⊕ · · · ⊕ Tn
n )(T

[∗]
1 ⊕ T

[∗]
2 ⊕ · · · ⊕ T

[∗]
n )

= Tn
1 T

[∗]
1 ⊕ Tn

2 T
[∗]
2 ⊕ · · · ⊕ Tn

mT
[∗]
m

6 T
[∗]
1 Tn

1 ⊕ T
[∗]
2 Tn

2 ⊕ · · · ⊕ T
[∗]
m Tn

m

= (T
[∗]
1 ⊕ T

[∗]
2 ⊕ . . .⊕T [∗]

m )(Tn
1 ⊕ Tn

2 ⊕ · · · ⊕ Tn
m)

= (T1 ⊕ T2 ⊕ · · · ⊕ Tm)
[∗]
(T1 ⊕ T2 ⊕ · · · ⊕ Tm)

n
,

then (T1 ⊕ T2 ⊕ · · · ⊕ Tm) is an n-power HN operator.

Now, for x1, . . . , xm ∈ H

(T1 ⊗ T2 ⊗ · · · ⊗ Tm)
n
(T1 ⊗ T2 ⊗ · · · ⊗ Tm)

[∗]
(x1 ⊗ · · · ⊗ xm)

= (Tn
1 ⊗ Tn

2 ⊗ · · · ⊗ Tn
m)(T

[∗]
1 ⊗ T

[∗]
2 ⊗ · · · ⊗ T

[∗]
m ) (x1 ⊗ · · · ⊗ xm)

= Tn
1 T

[∗]
1 x1 ⊗ · · · ⊗ Tn

mT
[∗]
m xm

6 T
[∗]
1 Tn

1 x1 ⊗ · · · ⊗ T
[∗]
m Tn

mxm (since T is an n-power HN operator)

= (T
[∗]
1 ⊗ T

[∗]
2 ⊗ . . .⊗T [∗]

m )(Tn
1 ⊗ Tn

2 ⊗ · · · ⊗ Tn
m)(x1 ⊗ . . . ,⊗xm)

= (T1 ⊗ T2 ⊗ · · · ⊗ Tm)
[∗]
(T1 ⊗ T2 ⊗ · · · ⊗ Tm)

n
(x1 ⊗ · · · ⊗ xm)

So (T1 ⊗ T2 ⊗ · · · ⊗ Tm)
n
(T1 ⊗ T2 ⊗ · · · ⊗ Tm)

[∗]

6 (T1 ⊗ T2 ⊗ · · · ⊗ Tm)
[∗]
(T1 ⊗ T2 ⊗ · · · ⊗ Tm)

n
.

Hence (T1 ⊗ T2 ⊗ · · · ⊗ Tm) is an n-power HN operator. �

Proposition 2.5. If T is 3-power-HN and T 2 = −T [∗]2 , then T is 3-normal
operator.

Proof. Since T 3T [∗] = TT 2T [∗] = −TT [∗]3 and T [∗]T 3 = T [∗]T 2T = −T [∗]3T ,

we have T is 3-power-HN. Then T 3T [∗] 6 T [∗]T 3 and −TT [∗]3 6 −T [∗]3T . Thus

TT [∗]3 > T [∗]3T and
(
TT [∗]3

)[∗]
> (T [†]3T )

3
. Hence T 3T [∗] > T [∗]T 3. So, T 3T [∗] >

T [∗]T 3. �

Proposition 2.6. If T is 4-power HN and T is skew-normal operator, then T
is 4-normal operator.

Proof. If T is a skew-normal operator, then T 2 = −T [∗]2 .

Since T 4T [∗] = T 2T 2T [∗] = T [∗]5 and T [∗]T 4 = T [∗]T 2T 2 = T [†]5 , thus T 4T [∗] =
T [∗]T 4. �

Proposition 2.7. If T is a 2-power HN operator and T is idempotent, then T
is a HN operator.
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Proof. Since T is 2-power HN operator, then T 2T [∗] 6 T [∗]T 2. Since T is
idempotent, isince T 2 = T holds, it implies TT [∗] 6 T [∗]T . Hence, T is a HN
operator. �

Proposition 2.8. If T is a 3-power HN operator and T is idempotent, then T
is a 2-power HN operator.

Proof. Since T is a 3-power HN operator, then T 3T [∗] 6 T [∗]T 3. Since T is
idempotent, it implies T 2T [∗] 6 T [∗]T 2. Hence T is a 2-power HN operator. �
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