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APPROXIMATE FIXED POINT PROPERTY FOR

DIGITAL TREES AND PRODUCTS

Laurence Boxer

Abstract. We add to our knowledge of the approximate fixed point property
(AFPP) in digital topology. We show that a digital image that is a tree has the

AFPP. Given two digital images (X,κ) and (Y, λ) that have the approximate
fixed point property, does their Cartesian product have the AFPP? We explore
conditions that yield an affirmative answer. A general answer to this question
is not known at the current writing.

1. Introduction

The study of fixed points of continuous functions f : X → X has long captured
the attention of researchers in many areas of mathematics. It was introduced in
digital topology by A. Rosenfeld [12]. Rosenfeld showed that even a digital image
as simple as a digital interval need not have a fixed point property (FPP), but does
have an “almost” or “approximate” fixed point property (AFPP) (precisely defined
in [6]). It was shown in [6] that among digital images, only singletons have the
FPP; perhaps as a consequence, attention shifted to the AFPP for digital images
in such papers as [3, 4, 5, 6, 9, 11].

In this paper, we continue to study the AFPP for digital images; in particular,
for trees and for Cartesian products.

2. Preliminaries

Much of this section is quoted or paraphrased from the references, especially [4].
We use Z to indicate the set of integers, N for the set of natural numbers, and

N∗ for the set of nonnegative integers.
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596 BOXER

2.1. Adjacencies. The cu-adjacencies are commonly used. Let x, y ∈ Zn,
x ̸= y, where we consider these points as n-tuples of integers:

x = (x1, . . . , xn), y = (y1, . . . , yn).

Let u ∈ Z, 1 6 u 6 n. We say x and y are cu-adjacent if

• there are at most u indices i for which |xi − yi| = 1, and
• for all indices j such that |xj − yj | ̸= 1 we have xj = yj .

Often, a cu-adjacency is denoted by the number of points adjacent to a given point
in Zn using this adjacency. E.g.,

• In Z1, c1-adjacency is 2-adjacency.
• In Z2, c1-adjacency is 4-adjacency and c2-adjacency is 8-adjacency.
• In Z3, c1-adjacency is 6-adjacency, c2-adjacency is 18-adjacency, and c3-

adjacency is 26-adjacency.

For κ-adjacent x, y, we write x ↔κ y or x ↔ y when κ is understood. We write
x -κ y or x - y to mean that either x ↔κ y or x = y.

We say {xn}kn=0 ⊂ (X,κ) is a κ-path (or a path if κ is understood) from x0 to
xk if xi ↔κ xi+1 for i ∈ {0, . . . , k − 1}, and k is the length of the path.

A subset Y of a digital image (X,κ) is κ-connected [12], or connected when κ
is understood, if for every pair of points a, b ∈ Y there exists a κ-path in Y from a
to b.

We define

N(X,κ, x) = {y ∈ X |x ↔κ y},

N∗(X,κ, x) = {y ∈ X |x -κ y} = N(X,κ, x) ∪ {x}.

Definition 2.1. ([1]) Given digital images (X,κ) and (Y, λ), the normal prod-
uct adjacencyNP (κ, λ) for the Cartesian productX×Y is as follows. For x, x′ ∈ X,
y, y′ ∈ Y , we have (x, y) ↔NP (κ,λ) (x

′, y′) if

• x ↔κ x′ and y = y′, or
• x = x′ and y ↔λ y′, or
• x ↔κ x′ and y ↔λ y′. �

2.2. Digitally continuous functions. The following generalizes a definition
of [12].

Definition 2.2. ([2]) Let (X,κ) and (Y, λ) be digital images. A function
f : X → Y is (κ, λ)-continuous if for every κ-connected A ⊂ X we have that
f(A) is a λ-connected subset of Y . If (X,κ) = (Y, λ), we say such a function is
κ-continuous, denoted f ∈ C(X,κ). �

When the adjacency relations are understood, we will simply say that f is
continuous. Continuity can be expressed in terms of adjacency of points:

Theorem 2.1 ([12, 2]). A single-valued function f : X → Y is continuous if
and only if x ↔ x′ in X implies f(x) - f(x′). �
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Similar notions are referred to as immersions, gradually varied operators, and
gradually varied mappings in [7, 8].

Composition and restriction preserve continuity, in the sense of the following
assertions.

Theorem 2.2 ([2]). Let (X,κ), (Y, λ), and (Z, µ) be digital images. Let f :
X → Y be (κ, λ)-continuous and let g : Y → Z be (λ, µ)-continuous. Then g ◦ f :
X → Z is (κ, µ)-continuous. �

Theorem 2.3 ([9]). Let (X,κ) and (Y, λ) be digital images. Let f : X → Y be
(κ, λ)-continuous.

• Let A ⊂ X. Then f |A : A → Y is (κ, λ)-continuous.
• f : X → f(X) is (κ, λ)-continuous. �

Given X = Πv
i=1Xi, we denote throughout this paper the projection onto the

ith factor by pi; i.e., pi : X → Xi is defined by pi(x1, . . . , xv) = xi, where xj ∈ Xj .

Theorem 2.4 ([10]). Given digital images (X,κ) and (Y, λ), the projection
maps p1 and p2 are (NP (κ, λ), κ)-continuous and (NP (κ, λ), λ)-continuous, re-
spectively. �

2.3. Approximate fixed points. Let f ∈ C(X,κ) and let x ∈ X. We say

• x is a fixed point of f if f(x) = x;
• If f(x) -κ x, then x is an almost fixed point [12, 13] or approximate fixed

point [5] of (f, κ).
• A digital image (X,κ) has the approximate fixed point property (AFPP) [5]

if for every g ∈ C(X,κ) there is an approximate fixed point of g.

Remark 2.1. What we call the AFPP was denoted in [4] as the AFPPS

in order to distinguish it from its more general version for multivalued continuous
functions, denoted AFPPM . In this paper, we discuss only single-valued continuous
functions, so we use the simpler notation.

Theorem 2.5 ([5]). Let X and Y be digital images such that (X,κ) and (Y, λ)
are isomorphic. If (X,κ) has the AFPP, then (Y, λ) has the AFPP. �

Theorem 2.6 ([5]). Let X and Y be digital images such that Y is a κ-retract
of X. If (X,κ) has the AFPP, then (Y, κ) has the AFPP. �

3. Trees

A tree is a triple T = (X,κ, s), where s ∈ X and (X,κ) is a connected graph
that is acyclic, i.e., lacking any subgraph isomorphic to a cycle of more than 2
points. The vertex s is the root. Given x ↔κ y in X, we say x is the parent of y,
and y is a child of x, if x ↔κ y and the unique shortest path from y to the root
contains x. Every vertex of the tree, except the root, has a unique parent vertex. A
vertex, in general, may have multiple children. We define, recursively, a descendant
of x in a tree T = (X,κ, r) as follows: y ∈ X is a descendant of x ∈ X if y is a
child of x or y is a descendant of a child of x.

We will use the following.
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Proposition 3.1. Let (X,κ) have the AFPP. Let X ′ = X ∪ {x0}, where
x0 ̸∈ X, and let there be a κ-retraction r : X ′ → X such that N∗(X ′, κ, x0) ⊂
N∗(X ′, κ, r(x0)). Then (X ′, κ) has the AFPP.

Proof. Let f ∈ C(X ′, κ). Then g = r ◦ f |X ∈ C(X,κ). Therefore, there is an
approximate fixed point y ∈ X of g.

• If f(y) ∈ X, then f(y) = g(y) -κ y, as desired.
• Otherwise, f(y) = x0 and y -κ g(y) = r(x0). The continuity of f implies

f(g(y)) -κ f(y) = x0, hence

f(g(y)) ∈ N∗(X ′, κ, x0) ⊂ N∗(X ′, κ, r(x0)) = N∗(X ′, κ, g(y)).

So g(y) is an approximate fixed point of f .

In either case, f has an approximate fixed point. Since f was taken as an arbitrary
member of C(X ′, κ), the assertion follows. �

Theorem 3.1. A digital image (T, κ) that is a tree has the AFPP.

Proof. We argue by induction on #T , the number of vertices in T . The
assertion is trivial for #T = 1.

Suppose k ∈ N such that the assertion is correct for all digital trees T satisfying
#T 6 k. Now let (T, κ) be a digital tree with #T = k + 1. Let v0 ∈ T be a leaf
of T , with v1 ∈ T as the parent of v0. Then (T r {v0}, κ) is a digital tree of k
points. The function r : T → T r {v0} defined by r(v0) = v1, r(x) = x for x ̸= v0,
is clearly a κ-retraction, and N∗(T, κ, v0) = {v0, v1} ⊂ N∗(T, κ, r(v0)). It follows
from the inductive hypothesis and Proposition 3.1 that (T, κ) has the AFPP . This
completes the induction. �

4. Cartesian products

In this section, we demonstrate an affirmative response to the following ques-
tion.

Question 4.1. ([4]) Let X = Πv
i=1[ai, bi]Z, where for at least 2 indices i we

have bi > ai. Does (X, cv) have the AFPP?

Several authors have written that this question was answered by Theorem 4.1
of [12]. However, it wasn’t, as observed in [4]:

A. Rosenfeld’s paper [12] states the following as its Theorem 4.1
(quoted verbatim).

Let I be a digital picture, and let f be a continuous
function from I into I; then there exists a point P ∈
I such that f(P ) = P or is a neighbor or diagonal
neighbor of P .

Several subsequent papers have incorrectly concluded that this
result implies that I with some cu adjacency has the AFPP .
By digital picture Rosenfeld means a digital cube, I = [0, n]vZ.
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By a “continuous function” he means a (c1, c1)-continuous func-
tion; by “a neighbor or diagonal neighbor of P” he means a
cv-adjacent point.

A partial solution to this problem is given in the following (restated here in our
terminology), which is Theorem 1 of [11]. The “proof” in [11] has multiple errors;
a correct proof is given in [4].

Theorem 4.1. Let X = [−1, 1]vZ and 1 6 u 6 v. Then (X, cu) has the AFPP
if and only if u = v. �

We make use of the following.

Theorem 4.2 ([6]). For X ⊂ Zm and Y ⊂ Zn, NP (cm, cn) = cm+n, i.e.,
given x, x′ ∈ X, y, y′ ∈ Y ,

(x, y) ↔NP (cm,cn) (x
′, y′) if and only if (x, y) ↔cm+n (x′, y′). �

Remark 4.1. It is shown in [6] that for m 6 M , n 6 N , m + n < M +N , if
X ⊂ ZM and Y ⊂ ZN , then we can have NP (cm, cn) ̸= cm+n.

Theorem 4.3. Let (X,κ) be a digital image with the AFPP. Then the image
(X × [0, n]Z, NP (κ, c1)) has the AFPP.

Proof. We argue by induction on n.
For n = 0 we argue as follows. Since

(X × [0, 0]Z, NP (κ, c1)) = (X × {0}, NP (κ, c1))

is isomorphic to (X,κ), it follows from Theorem 2.5 that (X × [0, 0]Z, NP (κ, c1))
has the AFPP.

Now suppose k ∈ N∗ and (X × [0, k]Z, NP (κ, c1)) has the AFPP. To complete
the induction, we must show that (X × [0, k + 1]Z, NP (κ, c1)) has the AFPP. Let
r : X × [0, k + 1]Z → X × [0, k]Z be defined by

r(x, t) =

{
(x, t) if 0 6 t 6 k;
(x, k) if t = k + 1.

Clearly, r is NP (κ, c1)-continuous and is a retraction.
Let f ∈ C(X × [0, k + 1]Z, NP (κ, c1)). Let g : X × [0, k]Z → X × [0, k]Z be

defined by g(x, t) = r ◦ f ◦ I(x, t), where I : X × [0, k]Z → X × [0, k + 1]Z is the
inclusion function. By the inductive hypothesis, g has an approximate fixed point;
i.e., there exists p = (x0, t0) ∈ X × [0, k]Z such that

(4.1) p -NP (κ,c1) g(p).

• If f(p) ∈ X × [0, k]Z then

p -NP (κ,c1) g(p) = f(p),

so p is an approximate fixed point of f .
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• Otherwise, we have that for some x1 ∈ X, f(p) = (x1, k + 1) and g(p) =
(x1, k). Let p1 : X × [0, k+1]Z → X and p2 : X × [0, k+1]Z → [0, k+1]Z
be the projections defined for x ∈ X, t ∈ [0, k + 1]Z by

p1(x, t) = x, p2(x, t) = t.

By Theorems 2.2 and 2.4, the functions f ◦ g, p1 ◦ f , p1 ◦ f ◦ g, p2 ◦ f ,
p2 ◦ g, and p2 ◦ f ◦ g are all continuous. By continuity of f and (4.1),
f(g(p)) - f(p), so

(4.2) p1(f(g(p))) -κ p1(f(p)) = x1 = p1(g(p))

and p2(f(g(p))) -c1 p2(f(p)) = k + 1, so p2(f(g(p))) ∈ {k, k + 1}, hence

(4.3) p2(f(g(p))) -c1 p2(g(p)).

By (4.2) and (4.3), g(p) is an approximate fixed point of f .

In either case, f has an approximate fixed point. This completes the induction
argument. �

Lemma 4.1. Let (X,κ) be a digital image. Consider (Y, cv), where Y = [0, n]vZ.
For X × Y × [0, n]Z, NP (NP (κ, ck)), c1) = NP (κ, ck+1).

Proof. Let x, x′ ∈ X, y, y′ ∈ Y , t, t′ ∈ [0, n]Z, where

y = (y1, . . . , yv), y′ = (y′1, . . . , y
′
v),

yi, y
′
i ∈ [0, n]Z for i = 1, . . . , v, such that (x, y, t) ̸= (x′, y′, t′). Then

(x, y, t) ↔NP (NP (κ,cv),c1) (x
′, y′, t′) if and only if

(x, y) -NP (κ,cv) (x
′, y′) and t -c1 t′ if and only if

x -κ x′ and y -cv y′ and t -c1 t′ if and only if

x -κ x′ and (y, t) -NP (cv,c1) (y
′, t′) if and only if

(by Theorem 4.2)

x -κ x′ and (y, t) -cv+1 (y′, t′) if and only if

(x, y, t) -NP (κ,cv+1) (x
′, y′, t′). The assertion is established. �

Theorem 4.4. Let (X,κ) be a digital image with the AFPP. Let Y = [0, n]vZ.
Then the image (X × Y,NP (κ, cv)) has the AFPP.

Proof. We argue by induction on v. For v = 1, the assertion is correct by
Theorem 4.3.

Suppose, for some k ∈ N∗, for Y = Πk
i=1[0, n]Z, (X × Y,NP (κ, ck)) has

the AFPP. Then by Theorem 4.3, (X × Y × [0, n]Z, NP (NP (κ, ck)), c1) has the

AFPP. Note that X × Y × [0, n]Z = X × [0, n]k+1
Z , and, by Lemma 4.1, that

NP (NP (κ, ck), c1) = NP (κ, ck+1). This completes our induction. �

Theorem 4.5. Let (X,κ) be a digital image with the AFPP. Then the image
(X ×Πv

i=1[ai, bi]Z, NP (κ, cv)) has the AFPP.
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Proof. This follows from Theorems 4.4, 2.5, and 2.6, as the image

(X ×Πv
i=1[ai, bi]Z, NP (κ, cv))

is clearly isomorphic to an NP (κ, cv)-retract of X × [0, n]v for some n. �
Theorem 4.6 ([12]). The digital image ([a, b]Z, c1) has the AFPP.

Theorem 4.7 ([4]). Let X ⊂ Zv be such that X has a subset Y = Πv
i=1[ai, bi]Z,

where v > 1; for all indices i, bi ∈ {ai, ai + 1}; and, for at least 2 indices i,
bi = ai + 1. Then (X, cu) fails to have the AFPP for 1 6 u < v. �

As noted in [4], Theorem 4.7 states a severe limitation on the AFPP for digital
images X ⊂ Zv and the cu adjacency, where 1 6 u < v. We have the following.

Theorem 4.8. For 1 6 u 6 v, (Πv
i=1[ai, bi]Z, cu) has the AFPP if and only if

u = v.

Proof. For u < v, the assertion comes from Theorem 4.7. Now consider
the case u = v. For v = 1, the assertion follows from Theorem 4.6. For v > 1,
Theorem 4.2 lets us conclude that

(Πv
i=1[ai, bi]Z, cv) = ([a1, b1]Z ×Πv

i=2[ai, bi]Z, NP (c1, cv−1)).

The assertion follows from Theorem 4.5. �

5. Further remarks

We have shown that a digital image that is a tree has the AFPP.
A general answer to the question posed in the abstract is not known at this

writing. We have shown that given a digital image (X,κ) with the AFPP, then
(X × Πv

i=1[ai, bi]Z, NP (κ, cv)) has the AFPP. It follows that (Πv
i=1[ai, bi]Z, cv) has

the AFPP.

References

[1] C. Berge. Graphs and Hypergraphs, 2nd edition. North-Holland, Amsterdam, 1976.
[2] L. Boxer. A classical construction for the digital fundamental group. J. Math. Imaging Vis.,

10(1)(1999), 51–62.
[3] L. Boxer. Generalized normal product adjacency in digital topology. Appl. Gen. Topol.,

18(2)(2017), 401–427.
[4] L. Boxer. Approximate fixed point properties in digital topology. Bull. Int. Math. Virtual

Inst., 10(2)(2020), 357–367.
[5] L. Boxer, O. Ege, I. Karaca, J. Lopez and J. Louwsma. Digital fixed points, approximate

fixed points, and universal functions. Appl. Gen. Topol., 17(2)(2016), 159–172.
[6] L. Boxer and I. Karaca. Fundamental groups for digital products. Adv. Appl. Math. Sci.,

11(4)(2012), 161–180.

[7] L. Chen. Gradually varied surfaces and its optimal uniform approximation. in SPIE Pro-
ceedings. Image and Video Processing II, (23 March 1994) Vol. 2182 (pp. 300-307).

[8] L. Chen. Discrete Surfaces and Manifolds, Scientific Practical Computing, Rockville, MD,
2004.

[9] I. Cinar and I. Karaca. Some properties of multivalued functions in digital topology. Bull.
Int. Math. Virtual Ins., 9(3)(2019), 553–565.

[10] S-E. Han. Non-product property of the digital fundamental group. Inf. Sci., 171(1-3)(2005),
73-91.



602 BOXER

[11] S-E Han. Remarks on the preservation of the almost fixed point property involving several
types of digitizations. Σ Mathematics, 7(10)(2019), ID: 954

[12] A. Rosenfeld. ”Continuous” functions on digital pictures. Pattern Recognit. Lett., 4(3)(1987),
177–184.

[13] R. Tsaur and M. B. Smyth. ”Continuous” multifunctions in discrete spaces with applications
to fixed point theory. in: G. Bertrand, A. Imiya, and R. Klette (eds.). Digital and Image
Geometry, Lecture Notes in Computer Science, vol. 2243 (pp. 75–88). Springer, Berlin /

Heidelberg, 2001.

Received by editors 06.04.2020; Revised version 03.05.2020; Available online 11.05.2020.

Department of Computer and Information Sciences, Niagara University, Niagara

University, NY 14109, USA,

and

Department of Computer Science and Engineering, State University of New York
at Buffalo

E-mail address: boxer@niagara.edu


