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COMPLETE RESIDUATED

ALMOST DISTRIBUTIVE LATTICES

G. C. Rao and S. S. Raju

Abstract. The concepts of the radical of an element and a p-primary element

in a complete ADL L with a maximal element m are introduced and important
properties of radical of an element in a complete residuated ADL are derived.

1. Introduction

Swamy, U.M. and Rao, G.C. [9] introduced the concept of Almost Distributive
Lattices (ADL) as a common abstraction of almost all the existing ring theoretic
generalizations of a Boolean algebra (like regular rings, p−rings, bi-regular rings,
associate rings, P1−rings and etc.) on one hand and distributive lattices on the
other.

In [1], Dilworth, R.P., has introduced the concept of a residuation in lattices
and Ward, M. and Dilworth, R.P., have studied residuated lattices in [10, 11].
In [12], Ward, M., has studied residuated distributive lattices. We introduced
the concepts of a residuation and a multiplication in an ADL and the concept of a
residuated ADL in our earlier paper [6]. We have proved some important properties
of residuation ’:’ and multiplication ’·’ in a residuated ADL L in [7].

In this paper, we introduce the concepts of the radical of an element and a
p-primary element in a complete ADL L with a maximal element m and derive
some properties of radical of an element in a complete residuated ADL. We prove
important results in a complete residuated ADL with a maximal element m. In
Section 2, we recall the definition of an Almost Distributive Lattice (ADL), com-
plete ADL and certain elementary properties of an ADL from Swamy, U.M. and
Rao, G.C. [9], Rao, G.C. [2], Rao, G. C., and Venugopalam Undurthi [8] and some
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important results on a residuated almost distributive lattice from our earlier papers
[6, 7]. In Section 3, we introduce the concepts of the radical r(a) of an element a
in a complete ADL L and derive its important properties in a complete residuated
ADL L. We prove that the radical of a primary element in a complete ADL L is a
prime element of L. If p is a prime element of a complete ADL L, then we define
the concept of a p-primary element in L. We prove important results in a complete
residuated ADL L with a maximal element m.

2. Preliminaries

In this section we collect a few important definitions and results which are
already known and which will be used more frequently in the paper.

We begin with the definition of an ADL :

Definition 2.1. ([2]). An Almost Distributive Lattice (ADL) is an algebra
(L,∨,∧) of type (2, 2) satisfying

(1) (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c)
(2) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
(3) (a ∨ b) ∧ b = b
(4) (a ∨ b) ∧ a = a
(5) a ∨ (a ∧ b) = a,

for all a, b, c ∈ L.

It can be seen directly that every distributive lattice is an ADL.

If there is an element 0 ∈ L such that 0 ∧ a = 0 for all a ∈ L, then (L,∨,∧, 0)
is called ADL with 0.

Example 2.1. ([2]). Let X be a non-empty set. Fix x0 ∈ X. For any x, y ∈ X,
define

x ∧ y =

{
x0, if x = x0

y, if x ̸= x0
x ∨ y =

{
y, if x = x0

x, if x ̸= x0.

Then (X,∨,∧, x0) is an ADL, with x0 as its zero element. This ADL is called a
discrete ADL.

For any a, b ∈ L, we say that a is less than or equals to b and write a 6 b, if
a ∧ b = a. Then ”6 ” is a partial ordering on L.

Theorem 2.1 ([2]). Let (L,∨,∧, 0) be an ADL with ’0 ’. Then, for any a, b ∈ L,
we have

(1) a ∧ 0 = 0 and 0 ∨ a = a
(2) a ∧ a = a = a ∨ a
(3) (a ∧ b) ∨ b = b, a ∨ (b ∧ a) = a and a ∧ (a ∨ b) = a
(4) a ∧ b = a ⇐⇒ a ∨ b = b and a ∧ b = b ⇐⇒ a ∨ b = a
(5) a ∧ b = b ∧ a and a ∨ b = b ∨ a whenever a 6 b
(6) a ∧ b 6 b and a 6 a ∨ b
(7) ∧ is associative in L
(8) a ∧ b ∧ c = b ∧ a ∧ c
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(9) (a ∨ b) ∧ c = (b ∨ a) ∧ c
(10) a ∧ b = 0 ⇐⇒ b ∧ a = 0
(11) a ∨ (b ∨ a) = a ∨ b.

It can be observed that an ADL L satisfies almost all the properties of a
distributive lattice except, possible the right distributivity of ∨ over ∧, the com-
mutativity of ∨, the commutativity of ∧ and the absorption law (a ∧ b) ∨ a = a.
Any one of these properties convert L into a distributive lattice.

Theorem 2.2 ([2]). Let (L,∨,∧, 0) be an ADL with 0. Then the following are
equivalent:

(1) (L,∨,∧, 0) is a distributive lattice;
(2) a ∨ b = b ∨ a, for all a, b ∈ L;
(3) a ∧ b = b ∧ a, for all a, b ∈ L;
(4) (a ∧ b) ∨ c = (a ∨ c) ∧ (b ∨ c), for all a, b, c ∈ L.

Proposition 2.1 ([2]). Let (L,∨,∧) be an ADL. Then for any a, b, c ∈ L with
a 6 b, we have

(1) a ∧ c 6 b ∧ c
(2) c ∧ a 6 c ∧ b
(3) c ∨ a 6 c ∨ b.

Definition 2.2. ([2]). An element m ∈ L is called maximal if it is maximal as
in the partially ordered set (L,6). That is, for any a ∈ L, m 6 a implies m = a.

Theorem 2.3 ([2]). Let L be an ADL and m ∈ L. Then the following are
equivalent:

(1) m is maximal with respect to 6;
(2) m ∨ a = m for all a ∈ L; and
(3) m ∧ a = a for all a ∈ L.

Lemma 2.1 ([2]). Let L be an ADL with a maximal element m and x, y ∈ L.
If x ∧ y = y and y ∧ x = x, then x is maximal if and only if y is maximal. Also,
the following conditions are equivalent:

(i) x ∧ y = y and y ∧ x = x; and
(ii) x ∧m = y ∧m.

Definition 2.3. ([2]) If (L,∨,∧, 0,m) is an ADL with 0 and with a maximal
element m, then the set I(L) of all ideals of L is a complete lattice under set
inclusion. In this lattice, for any I, J ∈ I(L), the l.u.b. and g.l.b. of I, J are
given by I ∨ J = {(x ∨ y) ∧ m | x ∈ I, y ∈ J} and I ∧ J = I ∩ J . The set
PI(L) = {(a] | a ∈ L} of all principal ideals of L forms a sublattice of I(L). (Since
(a] ∨ (b] = (a ∨ b] and (a] ∩ (b] = (a ∧ b].)

Definition 2.4. ([8]) An ADL L = (L,∨,∧, 0,m) with a maximal element m
is said to be a complete ADL, if PI(L) is a complete sublattice of the lattice I(L).

It can be noted that this concept of complete ADL generalizes the concept of a
complete lattice in the sense that if (L,∨,∧, 0,m) is complete ADL and if (L,∨,∧)
is a lattice, then it is a complete lattice.
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Theorem 2.4 ([8]). Let L = (L,∨,∧, 0,m) be an ADL with a maximal element
m. Then L is a complete ADL if and only if the lattice ([0,m],∨,∧) is a complete
lattice.

In the following, we give the concepts of residuation and multiplication in
an almost distributive lattice (ADL) L and the definition of a residuated almost
distributive lattice taken from our earlier paper [6].

Definition 2.5. ([6]) Let L be an ADL with a maximal element m. A binary
operation : on an ADL L is called a residuation over L if, for a, b, c ∈ L the following
conditions are satisfied:

(R1) a ∧ b = b if and only if a : b is maximal;
(R2) a ∧ b = b =⇒ (i) (a : c) ∧ (b : c) = b : c and (ii) (c : b) ∧ (c : a) = c : a;
(R3) [(a : b) : c] ∧m = [(a : c) : b] ∧m;
(R4) [(a ∧ b) : c] ∧m = (a : c) ∧ (b : c) ∧m;
(R5) [c : (a ∨ b)] ∧m = (c : a) ∧ (c : b) ∧m.

Definition 2.6. ([6]) Let L be an ADL with a maximal element m. A binary
operation · on an ADL L is called a multiplication over L if, for a, b, c ∈ L the
following conditions are satisfied:

(M1) (a.b) ∧m = (b.a) ∧m;
(M2) [(a.b).c] ∧m = [a.(b.c)] ∧m;
(M3) (a.m) ∧m = a ∧m; and (M4) [a.(b ∨ c)] ∧m = [(a.b) ∨ (a.c)] ∧m.

Definition 2.7. ([6]) An ADL L with a maximal element m is said to be a
residuated almost distributive lattice (residuated ADL), if there exists two binary
operations ’: ’ and ’· ’ on L satisfying conditions R1 to R5, M1 to M4 and the
following condition

(A) (x : a) ∧ b = b if and only if x ∧ (a.b) = a.b, for any x, a, b ∈ L.

We use the following properties frequently later in the results.

Lemma 2.2 ([6]). Let L be an ADL with a maximal element m and · a binary
operation on L satisfying the conditions M1−−M4. Then for any a, b, c, d ∈ L,

(i) a ∧ (a.b) = a · b and b ∧ (a.b) = a · b;
(ii) a ∧ b = b =⇒ (c · a) ∧ (c · b) = c · b and (a · c) ∧ (b · c) = b · c;
(iii) d ∧ [(a · b) · c] = (a · b) · c if and only if d ∧ [a · (b · c)] = a(b · c);
(iv) (a · c) ∧ (b · c) ∧ [(a ∧ b) · c] = (a ∧ b) · c;
(v) d ∧ (a · c) ∧ (b · c) = (a · c) ∧ (b · c) =⇒ d ∧ [(a ∧ b) · c] = (a ∧ b) · c;
(vi) d ∧ [(a · c) ∨ (b · c)] = (a · c) ∨ (b · c) ⇔ d ∧ [(a ∨ b) · c] = (a ∨ b) · c;
(vii) a ∧m = b ∧m =⇒ (a · c) ∧m = (b · c) ∧m; and
(viii) (a ∧m = b ∧m and c ∧m = d ∧m) =⇒ (a · c) ∧m = (b · d) ∧m.

The following result is a direct consequence of M1 of Definition 2.6.

Lemma 2.3 ([6]). Let L be an ADL with a maximal element m and · a binary
operation on L satisfying the condition M1. For a, b, x ∈ L, a∧ (x · b) = x · b if and
only if a ∧ (b · x) = b · x.
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In the following, we give some important properties of residuation ’: ’ and mul-
tiplication ’· ’ in a residuated ADL L. These are taken from our earlier paper [7].

Lemma 2.4 ([7]). Let L be a residuated ADL with a maximal element m. For
a, b, c, d ∈ L, the following hold in L:

(1) (a : b) ∧ a = a;
(2) [a : (a : b)] ∧ (a ∨ b) = a ∨ b;
(3) [(a : b) : c] ∧ [a : (b.c)] = a : (b.c);
(4) [a : (b · c)] ∧ [(a : b) : c] = (a : b) : c;
(5) [(a ∧ b) : b] ∧ (a : b) = a : b;
(6) (a : b) ∧ [(a ∧ b) : b] = (a ∧ b) : b;
(7) [a : (a ∨ b)] ∧m = (a : b) ∧m;
(8) [c : (a ∧ b)] ∧ [(c : a) ∨ (c : b)] = (c : a) ∨ (c : b);
(9) If a : b = a then a ∧ (b · d) = b · d =⇒ a ∧ d = d;
(10) {a : [a : (a : b)]} ∧ (a : b) = a : b;
(11) [(a ∨ b) : c] ∧ [(a : c) ∨ (b : c)] = (a : c) ∨ (b : c);
(12) a ∧m > b ∧m =⇒ (a : c) ∧m > (b : c) ∧m;
(13) (a : b) ∧ {a : [a : (a : b)]} = a : [a : (a : b)];
(14) a ∧ b = b =⇒ (a · c) ∧ (b · c) = b · c;
(15) a ∧ b ∧ (a · b) = a · b;
(16) [(a · b) : a] ∧ b = b;
(17) (a · b) ∧ [(a ∧ b) · (a ∨ b)] = (a ∧ b) · (a ∨ b);
(18) a ∨ b is maximal =⇒ (a · b) ∧ a ∧ b = a ∧ b;
(19) (x1∨x2)

n+1∧m = [xn+1
1 ∨ (xn

1 ·x2)∨ (xn−1
1 ·x2

2)∨ ...∨ (x1 ·xn
2 )∨xn+1

2 ]∧m,
for any x1, x2 ∈ L and n ∈ Z+; and

(20) (x1 ∨ x2)
k1+k2 ∧m 6 (xk1

1 ∨ xk2
2 )∧m, for any x1, x2 ∈ L and k1, k2 ∈ Z+.

3. Complete residuated Almost Distributive Lattices

In this section, we introduce the concepts of the radical of an element and a
p-primary element in a complete ADL L with a maximal element m and derive
some properties of radical of an element in a complete residuated ADL. We prove
important results in a complete residuated ADL with a maximal element m.

We recall the following concepts on a residuated ADL L

Definition 3.1. ([4]] An element p of a residuated ADL L is called
(i) prime, if p is not a maximal element of L and for any a, b ∈ L holds

p ∧ (a · b) = a · b =⇒ either p ∧ a = a or p ∧ b = b.

(ii) primary, if p is not a maximal element of L and for any a, b ∈ L holds

p ∧ (a · b) = a · b and p ∧ a ̸= a =⇒ p ∧ bs = bs

for some s ∈ Z+.

Note 3.1. Clearly, every prime element in a residuated ADL is primary.

Definition 3.2. ([4]) An ADL L is said to satisfy the ascending chain condition
(a.c.c.) if for every increasing sequence x1 6 x2 6 x3 6 ... in L, there exists a
positive integer n such that xn = xn+1 = xn+2 = ....
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In this case, we say that L is an ADL with a.c.c.

Definition 3.3. Let L be a residuated ADL with a maximal element m and
with a.c.c. and a ∈ L. We define an, by induction, as follows a1 = a and an+1 =
an · a for all n ∈ Z+ − {1}. By convention, we take a0 = m.

In the following theorem we define a binary operation ’: ’ on L from the multi-
plication ’· ’. Using only the properties M1, M2, M3 and M4 of ’· ’, we prove some
properties of ’: ’.

Theorem 3.1. Let L be a complete ADL with a maximal element m. Suppose
′ · ′ is a multiplication on L. For a, b ∈ L, write Ba,b = {x ∈ L | a ∧ (x · b) = x · b}
and define a : b =

∨
x∈Ba,b

(x ∧m). Then for a, b, x, c ∈ L, we have

(i) a ∧ b = b =⇒ c : a 6 c : b;
(ii) x ∧ (a · b) = a.b =⇒ (x : a) ∧ b = b; and
(iii) [a : (b · c)] 6 (a : b) : c.

Proof. Let a, b, c, x ∈ L.
(i) Suppose a∧b = b. Let x ∈ Bc,a. Then c∧(x·a) = x·a and c∧(x·a)∧(x·b) =

(x·a)∧(x·b). Thus c∧(x·b) = x·b by Lemma 2.2 (ii). From here, it follows x ∈ Bc,b

x ∧m 6 c : b. Thus x ∧m 6 c : b, for all x ∈ Bc,a. So that
∨

x∈Bc,a

(x ∧m) 6 c : b.

Therefore, c : a 6 c : b since c : a 6 m and c : b 6 m).
(ii) Suppose x∧ (a · b) = a · b Then x∧ (b ·a) = b ·a by Lemma 2.3 and b ∈ Bx,a.

Thus b∧m 6 x : a and (x : a)∧ b∧m = b∧m. From here, it follows (x : a)∧ b = b.
(iii) Let x ∈ Ba,(b·c). Then a∧ [x · (c · b)] = x · (c · b) and a∧ [(x · c) · b] = (x · c) · b

By Lemma 2.2 (iii). From here, it follows a ∧ [b · (x · c)] = b · (x · c) by Lemma 2.3
and (a : b)∧ (x · c) = x · c By (ii), above. from here, it follows (a : b)∧ (c · x) = c · x
by Lemma 2.3 and [(a : b) : c]∧ x = x again by (ii), above. Thus x∧m 6 (a : b) : c
for all x ∈ Ba,(b·c). So that

∨
x∈Ba,(b·c)

(x ∧m) 6 (a : b) : c. Therefore,

a : (b · c) 6 (a : b) : c.

�

The following Lemma is taken from our earlier paper [5].

Lemma 3.1. Let L be an ADL with a maximal element m, ’· ’ a multiplication
on L and a, b ∈ L such that a ∧ b = b. Then an ∧ bn = bn, for any n ∈ Z+.

In the following, we introduce the concept of radical of an element in a complete
ADL with a maximal element m.

Definition 3.4. Let L be a complete ADL with a maximal element m. Sup-
pose ’· ’ is a multiplication on L and a ∈ L. Let Ra = {x ∈ L | a ∧ xk = xk for
some k ∈ Z+}. Then

∨
x∈Ra

(x ∧m) is called radical of a and it is denoted by r(a).

We derive important properties of radical of an element in a complete residuated
ADL L with a maximal element m.
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Theorem 3.2. Let L be a complete residuated ADL with a maximal element
m and a, b ∈ L. Then

(1) r(a) ∧ a = a and r(a) 6 r(r(a));
(2) If a is a maximal element of L, then r(a) is a maximal element of L;
(3) a ∧ b = b =⇒ r(b) 6 r(a) and hence b 6 a =⇒ r(b) 6 r(a);
(4) r(a · b) = r(a ∧ b) 6 r(a) ∧ r(b);
(5) r(a) ∨ r(b) 6 r(a ∨ b) 6 r[r(a) ∨ r(b)];
(6) If a ∧ bk = bk for some k ∈ Z+, then r(b) 6 r(a) and hence

bk 6 a =⇒ r(b) 6 r(a);

(7) If p is a prime element of L, then r(p) = p ∧m = r(p ∧m) and

r(pn) = p ∧m, for all n ∈ Z+;

(8) r(m) = m.

Proof. Let a, b ∈ L and Ra = {x ∈ L | a ∧ xk = xk, for some k ∈ Z+}.
Define radical of an element a by r(a) =

∨
x∈Ra

(x ∧m).

(1) Since a ∧ a = a, we get that a ∈ Ra. Therefore, a ∧ m 6 r(a). Hence
r(a) ∧ a = a. Now, replacing a by r(a) in the above, we get that r(a) 6 r(r(a)).

(2) Suppose that a is a maximal element of L. By (1), we have r(a) ∧ a = a.
Then r(a) ∧ a ∧ t = a ∧ t, for any t ∈ L. Since a is a maximal element of L, we get
that r(a) ∧ t = t, for any t ∈ L. Therefore, r(a) is a maximal element of L.

(3) Suppose a ∧ b = b. Let x ∈ Rb. Then b ∧ xk = xk, for some k ∈ Z+. Thus
xk = a ∧ b ∧ xk (since a ∧ b = b ) = a ∧ xk (since b ∧ xk = xk ). Hence, x ∈ Ra.
Therefore, Rb ⊆ Ra. So that

∨
x∈Rb

(x ∧ m) 6
∨

x∈Ra

(x ∧ m). Hence r(b) 6 r(a).

Therefore, a ∧ b = b =⇒ r(b) 6 r(a) and hence b 6 a =⇒ r(b) 6 r(a).
(4) By property (15) of Lemma 2.4, we have a ∧ b ∧ (a · b) = a · b. Now, by (3)

above, we get that r(a · b) 6 r(a∧ b). Let x ∈ Ra∧b. Then a∧ b∧xk = xk, for some
k ∈ Z+. Thus
a ∧ xk = a ∧ b ∧ xk = xk and b ∧ xk = a ∧ b ∧ xk = xk, for some k ∈ Z+.
=⇒ (a · b) ∧ (xk · b) = xk · b and (xk · b) ∧ (xk · xk) = xk · xk (by Lemma 2.1.6 (ii) )
=⇒ (a · b) ∧ (xk · b) ∧ (xk · ·b) ∧ (xk · .xk) = (xk · b) ∧ (xk · xk)
=⇒ (a · b) ∧ (xk · xk) = xk · xk

=⇒ (a · b) ∧ x2k = x2k

=⇒ x ∈ Ra·b
Therefore, Ra∧b ⊆ Ra·b. Hence

∨
x∈Ra∧b

(x∧m) 6
∨

x∈Ra·b

(x∧m). Therefore, r(a∧b) 6

r(a · b). Thus r(a · b) = r(a∧ b). Since a∧a∧ b = a∧ b and b∧a∧ b = a∧ b. By (3),
above, we get that r(a ∧ b) 6 r(a) and r(a ∧ b) 6 r(b) and r(a ∧ b) 6 r(a) ∧ r(b).
Hence r(a · b) = r(a ∧ b) 6 r(a) ∧ r(b).

(5) Since (a ∨ b) ∧ a = a and (a ∨ b) ∧ b = b. By (3), above, we get that
r(a) 6 r(a ∨ b) and r(b) 6 r(a ∨ b). Therefore, r(a) ∨ r(b) 6 r(a ∨ b). Now, by (1)
above, we have r(a) ∧ a = a and r(b) ∧ b = b. Then [r(a) ∧ a] ∨ [r(b) ∧ b] = a ∨ b.
Now,
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[r(a) ∨ r(b)] ∧ (a ∨ b) = [r(a) ∨ r(b)] ∧ [{r(a) ∧ a} ∨ {r(b) ∧ b}]
= [{r(a)∨ r(b)}∧ r(a)∧ a]∨ [{r(a)∨ r(b)}∧ r(b)∧ b] = [r(a)∧ a]∨ [r(b)∧ b] = a∨ b
since r(a)∧a = a and r(b)∧b = b ). By (3) above, we get that r(a∨b) 6 r[r(a)∨r(b)].
Hence r(a) ∨ r(b) 6 r(a ∨ b) 6 r[r(a) ∨ r(b)].

(6) Suppose a ∧ bk = bk, for some k ∈ Z+. Let x ∈ Rb. Then b ∧ xm = xm,
for some m ∈ Z+. Thus bk ∧ xm.k = xm.k, for any k ∈ Z+ (b Lemma 3.1). From
here, it follows a ∧ xm.k = a ∧ bk ∧ xm.k = bk ∧ xm.k (since a ∧ bk = bk) = xm.k

(since bk ∧ xm.k = xm.k ). Hence, x ∈ Ra. Therefore, Rb ⊆ Ra. So,
∨

x∈Rb

(x ∧m)

6
∨

x∈Ra

(x ∧m) and r(b) 6 r(a). Therefore, a ∧ bk = bk, for some k ∈ Z+ which it

follows r(b) 6 r(a) and hence bk 6 a =⇒ r(b) 6 r(a).
(7) Suppose p is a prime element of L. By (1) above, we have r(p) ∧ p = p.

Them p∧m 6 r(p). Now, let x ∈ Rp. Then p∧xk = xk, for some k ∈ Z+. Since p is
a prime element of L, we get that p∧x = x. This is true for any x ∈ Rp. Therefore,
x ∧ m 6 p ∧ m. So that

∨
x∈Rp

(x ∧ m) 6 p ∧ m. Therefore, r(p) 6 p ∧ m. Hence

r(p) = p∧m. Since p is a prime element of L, we get that p∧m is a prime element
of L. By last equality, we get that r(p∧m) = p∧m. Thus r(p) = p∧m = r(p∧m).
Now, we prove that r(pn) = p ∧ m, for all n ∈ Z+. By Lemma 2.2 (i), we have
pn ∧ pn+1 = pn+1. Then p ∈ Rpn . Therefore, p ∧m 6 r(pn) Again, by Lemma 2.2
(i), we get that p∧ pn = pn. By (3) above, we get that r(pn) 6 r(p) = p∧m (since
r(p) = p ∧ m). Thus r(pn) 6 p ∧ m. Finally, we get that r(pn) = p ∧ m for all
n ∈ Z+.

(8) We have that every maximal element of L is a prime element of L. Then,
m is a prime element of L. By (7), above, we get that r(m) = m. �

The following result is taken from our earlier paper [3].

Theorem 3.3. If an ADL L satisfies the ascending chain condition, then every
non empty subset of L has a maximal element.

In the following, we prove an important result in a complete ADL L with a
multiplication ’· ’. We do not use M5 and define a binary operation ’: ’ on L which
satisfies many properties of residuation.

Theorem 3.4. Let L be a complete ADL with a maximal element m satisfying
the a.c.c. and ’· ’ a multiplication on L. Then, for any a ∈ L, there exists k ∈ Z+

such that a ∧ (r(a))k = (r(a))k and a ∧ (r(a))k−1 ̸= (r(a))k−1.

Proof. Let a ∈ L and write Ra = {x ∈ L | a ∧ xs = xs, for some s ∈ Z+}.
Then r(a) =

∨
x∈Ra

(x ∧m).

First we prove that Ra is closed under the operation ’ ∨ ’. Now, for x1, x2 ∈ Ra

we have a∧xs
1 = xs

1, a∧xt
2 = xt

2, for some s, t ∈ Z+. Then (a∧xs
1)∨(a∧xt

2) = xs
1∨xt

2

and a ∧ (xs
1 ∨ xt

2) = xs
1 ∨ xt

2. Thus a ∧m > (xs
1 ∨ xt

2) ∧m > (x1 ∨ x2)
s+t ∧m (by

property 20 of Lemma 2.4 . Hence a∧ (x1∨x2)
s+t = (x1∨x2)

s+t and x1∨x2 ∈ Ra.
Therefore, Ra is closed under the operation ’ ∨ ’.
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Since L satisfies the a.c.c., by Theorem 3.3, we get that Ra has a maximal
element, say xa. Then xa ∧m 6 r(a). For any x ∈ Ra, since xa 6 xa ∨ x, we get
that xa = xa ∨ x. Therefore, x ∧m 6 xa ∧m. This is true for all x ∈ Ra. Hence
r(a) =

∨
x∈Ra

(x ∧m) 6 xa ∧m. Thus r(a) = xa ∧m. By Lemma 3.1, we get that

xn
a ∧m = (r(a))n ∧m, for all n ∈ Z+. Now, for xa ∈ Ra we have a ∧ xs

a = xs
a, for

some s ∈ Z+. Then a ∧ xs
a ∧m = xs

a ∧m and a ∧ (r(a))s ∧m = (r(a))s ∧m. Thus
q∧(r(a))s = (r(a))s, for some s ∈ Z+. Now, q∧(r(a))s = (r(a))s, for some s ∈ Z+.
Then q∧(r(a))n = (r(a))n, for any n > s. Choose a smallest positive integer k such
that q ∧ (r(a))k = (r(a))k. It is possible, since a ∧ (r(a))0 = a ∧m = a ̸= (r(a))0.
Thus a ∧ (r(a))k−1 ̸= (r(a))k−1. �

Now, we prove the following theorem.

Theorem 3.5. Let L be a complete ADL with a maximal element m. Suppose
’· ’ is a multiplication on L, q be a primary element of L and a, b ∈ L. Then
r(q) ∧ a ̸= a if and only if q : a = q ∧m, where a : b is defined as in Theorem 3.1.

Proof. Assume that r(q)∧a ̸= a. For any x ∈ Bq,a, we have q∧ (x ·a) = x ·a.
Since q is a primary element of L, we get that either q ∧ x = x or q ∧ at = at

for some t ∈ Z+. If q ∧ at = at for some t ∈ Z+, then a ∈ Rq. Therefore,
r(q) ∧ a ∧ m = a ∧ m or r(q) ∧ a = a. This is a contradiction to our assumption
that r(q) ∧ a ̸= a. Therefore, q ∧ at ̸= at, for any t ∈ Z+. Hence q ∧ x = x. This is
true for any x ∈ Bq,a. Thus x ∧m 6 q ∧m, for all x ∈ Bq,a. Hence q : a 6 q ∧m.

By Lemma 2.2 (i), we have q∧(q·a) = q·a, so that q ∈ Aq,a. Hence q∧m 6 q : a.
Thus q : a = q ∧m.

Now, suppose that q : a = q ∧m and suppose, if possible, r(q) ∧ a = a. Then,
by condition (i) of Theorem 3.1, we get that q : r(q) 6 q : a = q ∧ m. Thus
q : r(q) = q ∧m ∧ (q : r(q)) = q ∧ (q : r(q)).

Now, by Lemma 2.2 (i), we have q∧ (r(q) · q) = r(q) · q. Hence, by Theorem 3.1
(ii), we get that (q : r(q))∧q = q. Therefore, (q : r(q))∧m = q∧m. By Theorem 3.4,
there exists k ∈ Z+ such that q ∧ (r(q))k = (r(q))k and q ∧ (r(q))k−1 ̸= (r(q))k−1.
Now, q ∧ (r(q))k = (r(q))k implies q ∧ (r(q).(r(q))k−1) = r(q).(r(q))k−1 and (q :
r(q))∧ (r(q))k−1 = (r(q))k−1 (by condition (ii) of Theorem 3.1 ). Then (q : r(q))∧
m∧ (r(q))k−1 = (r(q))k−1 and q∧m∧ (r(q))k−1 = (r(q))k−1 (since (q : r(q))∧m =
q ∧m). Thus q ∧ (r(q))k−1 = (r(q))k−1. This is a contradiction to q ∧ (r(q))k−1 ̸=
(r(q))k−1. Therefore, have to be r(q) ∧ a ̸= a. �

Theorem 3.6. Let L be a complete ADL with a maximal element m satisfying
the a.c.c and ’· ’ a multiplication on L. If q is a primary element of L, then r(q)
is a prime element of L.

Proof. Let Rq = {x ∈ L | q ∧ xs = xs, for some s ∈ Z+}. Define r(q) =∨
x∈Rq

(x ∧ m). By Theorem 3.4, we get that q ∧ r(q)k = r(q)k and q ∧ r(q)k−1 ̸=

r(q)k−1, for some k ∈ Z+. Let a ∈ L and Aq,a = {x ∈ L | q ∧ (x.a) = x.a}.
Define q : a =

∨
x∈Aq,a

(x∧m). By Theorem 3.5, we get that r(q) ∧ a ̸= a if and only
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if q : a = q ∧m. Now, we will prove that r(q) is a prime element of L. Let a, b ∈ L
such that r(q) ∧ a ̸= a and r(q) ∧ b ̸= b.

First we prove that q : b = (q∧m) : b. If x ∈ Aq,b, it means that q∧(x·b) = x·b.
Then q∧m∧(x ·b) = x ·b and x ∈ Aq∧m,b. Therefore, we get that q : b = (q∧m) : b.
Since r(q) ∧ a ̸= a and r(q) ∧ b ̸= b, by Theorem 3.5, we get that q : a = q ∧m and
q : b = q ∧m. Now, q : (a.b) = (q : a) : b (by Theorem 3.1 ) = (q ∧m) : b (since
q : a = q ∧m) = q : b (since (q ∧m) : b = q : b) = q ∧m (since q : b = q ∧m).
Hence r(q) ∧ (a · b) ̸= a · b (by Theorem 3.5, again). Thus r(q) is a prime element
of L. �

In the following, we introduce the concept of p-primary element in a complete
ADL L with a maximal element m.

Definition 3.5. Let L be a complete ADL with a maximal element m and let
p be a prime element of L. An element q of L is called p-primary, if q is a primary
element of L and r(q) = p.

The following Corollary is a directly consequences of Theorem 3.5.

Corollary 3.1. Let L be a complete ADL with a maximal element m and
a ∈ L. Suppose ’ · ’ is a multiplication on L and q is a p-primary element of L.
Then p ∧ a ̸= a if and only if q : a = q ∧m.

Theorem 3.7. Let L be a complete residuated ADL with a maximal element m
satisfying the a.c.c. If q is a p-primary element of L and a is any element of L such
that q ∧ a ̸= a, then q : a is a p-primary element of L such that (q : a) ∧ [r(q)]k =
[r(q)]k and (q : a) ∧ [r(q)]k−1 ̸= [r(q)]k−1, for some k ∈ Z+.

Proof. Suppose q is a p-primary element of L and a ∈ L such that q ∧ a ̸= a.
First we will prove that q : a is primary. Let b, c ∈ L such that (q : a)∧(b·c) = b·c

and (q : a) ∧ b ̸= b. Now, (q : a) ∧ (b · c) = b · c and q ∧ [a · (b · c)] = a · (b · c) (by
condition (A) of Definition 2.7). Then q ∧ [(a.b).c] = (a.b).c ( By (iii) of Lemma
2.2)

Since q is a primary element of L, we get that either q ∧ (a · b) = a · b or
q∧ck = ck for some k ∈ Z+. If q∧(a ·b) = a ·b, then, by condition (A) of Definition
2.7, we get that (q : a) ∧ b = b which is not true. Therefore, have to be q ∧ ck = ck

for some k ∈ Z+. By R2 (i) of Definition 2.5, we get that (q : a)∧ (ck : a) = ck : a.
So (q : a) ∧ (ck : a) ∧ ck = (ck : a) ∧ ck. Hence, by Lemma 2.4 (1), we have
(q : a) ∧ ck = ck. Thus q : a is a primary element of L. Since q is primary and
r(q) = p, by Theorem 3.4, Theorem 3.2 (1), we get that p ∧ q = q, q ∧ pk = pk and
q ∧ pk−1 ̸= pk−1 for some k ∈ Z+. Now, since (q : a) ∧ (q : a) = q : a, by condition
(A) of Definition 2.7, we get that q ∧ [a · (q : a)] = a · (q : a). Since q is a primary
element of L and q∧a ̸= a, we get that q∧ (q : a)s = (q : a)s for some s ∈ Z+. Now
p∧ (q : a)s = p∧ [q∧ (q : a)s] = q∧ (q : a)s (since p∧ q = q) = (q : a)s. Since p is a
prime element of L, we get that p∧ (q : a) = q : a. So that r(q : a) 6 r(p) = p∧m.
Therefore, p ∧ r(q : a) = r(q : a). Also, since (q : a) ∧ q = q, by Theorem 3.2 (3),
we get that p = r(q) 6 r(q : a). Therefore, r(q : a) = p. Thus q : a is a p-primary
element of L.
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Now, by Lemma 2.4 (1), we have (pk : a) ∧ pk = pk. So that (q : a) ∧ pk = (q :
a) ∧ (pk : a) ∧ pk = [(q ∧ pk) : a] ∧ pk (by R4 of Definition 2.4) = (pk : a) ∧ pk

= pk. Therefore, (q : a) ∧ [r(q)]k = [r(q)]k, for some k ∈ Z+. Choose least positive
integer l such that (q : a) ∧ pl = pl, where l 6 k. Therefore, (q : a) ∧ pl−1 ̸= pl−1.
Hence (q : a) ∧ [r(q)]l−1 ̸= [r(q)]l−1, for some l ∈ Z+. �
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