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COMPLETE RESIDUATED
ALMOST DISTRIBUTIVE LATTICES

G. C. Rao and S. S. Raju

ABSTRACT. The concepts of the radical of an element and a p-primary element
in a complete ADL L with a maximal element m are introduced and important
properties of radical of an element in a complete residuated ADL are derived.

1. Introduction

Swamy, U.M. and Rao, G.C. [9] introduced the concept of Almost Distributive
Lattices (ADL) as a common abstraction of almost all the existing ring theoretic
generalizations of a Boolean algebra (like regular rings, p—rings, bi-regular rings,
associate rings, P;—rings and etc.) on one hand and distributive lattices on the
other.

In [1], Dilworth, R.P., has introduced the concept of a residuation in lattices
and Ward, M. and Dilworth, R.P., have studied residuated lattices in [10, 11].
In [12], Ward, M., has studied residuated distributive lattices. We introduced
the concepts of a residuation and a multiplication in an ADL and the concept of a
residuated ADL in our earlier paper [6]. We have proved some important properties
of residuation > and multiplication ’’ in a residuated ADL L in [7].

In this paper, we introduce the concepts of the radical of an element and a
p-primary element in a complete ADL L with a maximal element m and derive
some properties of radical of an element in a complete residuated ADL. We prove
important results in a complete residuated ADL with a maximal element m. In
Section 2, we recall the definition of an Almost Distributive Lattice (ADL), com-
plete ADL and certain elementary properties of an ADL from Swamy, U.M. and
Rao, G.C. [9], Rao, G.C. [2], Rao, G. C., and Venugopalam Undurthi [8] and some
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important results on a residuated almost distributive lattice from our earlier papers
[6, 7]. In Section 3, we introduce the concepts of the radical r(a) of an element a
in a complete ADL L and derive its important properties in a complete residuated
ADL L. We prove that the radical of a primary element in a complete ADL L is a
prime element of L. If p is a prime element of a complete ADL L, then we define
the concept of a p-primary element in L. We prove important results in a complete
residuated ADL L with a maximal element m.

2. Preliminaries

In this section we collect a few important definitions and results which are
already known and which will be used more frequently in the paper.
We begin with the definition of an ADL :

DEFINITION 2.1. ([2]). An Almost Distributive Lattice (ADL) is an algebra
(L,V, A) of type (2,2) satisfying
()(a\/b)/\cf( )V (bAc)
(a

aN(bVe)= b)V(aANc)

>>

)
Y(aVb)Ab=Db
Y(avVb)ha=a

(5) aV(aAb)=a,
for all a,b,c € L.

1
(2
(3
(4

It can be seen directly that every distributive lattice is an ADL.

If there is an element 0 € L such that 0 A a =0 for all @ € L, then (L, V, A,0)
is called ADL with 0.

ExAMPLE 2.1. ([2]). Let X be a non-empty set. Fix zy € X. For any z,y € X,
define

oz, fxz=x0 _Jy, ifx=ux
xAy—{y’ if © # g xVy—{L if © # xo.

Then (X,V,A,x0) is an ADL, with xo as its zero element. This ADL is called a
discrete ADL.

For any a,b € L, we say that a is less than or equals to b and write a < b, if
a Ab=a. Then ”<” is a partial ordering on L.

THEOREM 2.1 ([2]). Let (L,V,A,0) be an ADL with 0°. Then, for anya,b € L,
we have
)a/\O—O and OVa=a

2)
3) (and)Vb=b, aV(bAa)=aand aA(aVb)=
4)aNb=a<=aVb=band a/\b—b<:>a\/b—a
5)aAb=bAa and aVb=>bVa whenever a <b

6) aAb<band a<aVb
7) A is associative in L
8)aNbAec=bAaAc

(1
(
(
(
(
(
(
(
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(9) (avb)Ac=(bVa)Ac
(10) aAnb=0<=bAa=0
(1) av (bVa)=aVb.

It can be observed that an ADL L satisfies almost all the properties of a
distributive lattice except, possible the right distributivity of V over A, the com-
mutativity of V, the commutativity of A and the absorption law (a A b) V a = a.
Any one of these properties convert L into a distributive lattice.

THEOREM 2.2 ([2]). Let (L,V,A,0) be an ADL with 0. Then the following are
equivalent:

(1) (L,V,A,0) is a distributive lattice;

(2) avb=0bVa, for alla,b e L;

(3) anb=0bAa, for alla,b e L;

(4) (anb)Ve=(aVe)A(bVec), for all a,b,c € L.

PRrROPOSITION 2.1 ([2]). Let (L,V,A) be an ADL. Then for any a,b,c € L with
a < b, we have

(Danec<bAc

(2) cha<cAbD

(3) eva<eVh.

DEFINITION 2.2. ([2]). An element m € L is called mazimal if it is maximal as
in the partially ordered set (L, <). That is, for any a € L, m < a implies m = a.

THEOREM 2.3 ([2]). Let L be an ADL and m € L. Then the following are
equivalent:

(1) m is maximal with respect to <;

(2) mVa=m forall a€ L; and

(3) mAa=a forall a€ L.

LEMMA 2.1 ([2]). Let L be an ADL with a mazimal element m and x,y € L.
Ifxt ANy =y and y N x = x, then x is mazximal if and only if y is mazximal. Also,
the following conditions are equivalent:

i)zAy=y and y Nz =z; and

(i) zAm=yAm.

DEFINITION 2.3. ([2]) If (L,V,A,0,m) is an ADL with 0 and with a maximal
element m, then the set I(L) of all ideals of L is a complete lattice under set
inclusion. In this lattice, for any I,J € I(L), the Lu.b. and g.lb. of I,J are
given by IVJ = {(zVy) Am |z € I,y € J} and IANJ = INJ. The set
PI(L) ={(a] | a € L} of all principal ideals of L forms a sublattice of I(L). (Since
(a] V (b] = (a Vv b] and (a] N (b] = (a A D].)

DEFINITION 2.4. ([8]) An ADL L = (L,V, A,0,m) with a maximal element m
is said to be a complete ADL, if PI(L) is a complete sublattice of the lattice I(L).

It can be noted that this concept of complete ADL generalizes the concept of a
complete lattice in the sense that if (L, V, A,0,m) is complete ADL and if (L, V, A)
is a lattice, then it is a complete lattice.
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THEOREM 2.4 ([8]). Let L = (L,V,A,0,m) be an ADL with a mazimal element
m. Then L is a complete ADL if and only if the lattice ([0,m],V,A) is a complete
lattice.

In the following, we give the concepts of residuation and multiplication in
an almost distributive lattice (ADL) L and the definition of a residuated almost
distributive lattice taken from our earlier paper [6].

DEFINITION 2.5. ([6]) Let L be an ADL with a maximal element m. A binary
operation : on an ADL L is called a residuation over L if, for a, b, ¢ € L the following
conditions are satisfied:

(R1) aAb=0" if and only if a:b is maximal;

(R2) anb=b = (i) (a:c)A(b:c)=b:cand (ii) (c:b) A(c:a)=c:a;
(R3) [(a:b):cJAm= [(a:c):b]Am;

(R4) [(andb):c]Am=(a:c)AN(b:c)Am;

(R5) [c:(aVD)]Am=(c:a)A(c:b)Am.

DEFINITION 2.6. ([6]) Let L be an ADL with a maximal element m. A binary
operation - on an ADL L is called a multiplication over L if, for a,b,c € L the
following conditions are satisfied:

(M1) (a.b) Am = (b.a) A m;

(M2) [(a.b).c] Am = [a.(b.c)] Am

(M3) (a.m) Am =aAm; and (M4) [a.(bV )] Am = [(a.b) V (a.c)] Am.

DEFINITION 2.7. ([6]) An ADL L with a maximal element m is said to be a
residuated almost distributive lattice (residuated ADL), if there exists two binary
operations :’ and ’-’ on L satisfying conditions R1 to R5, M1 to M4 and the
following condition

(A) (x:a) Ab=>bif and only if z A (a.b) = a.b, for any z,a,b € L.

We use the following properties frequently later in the results.

LEMMA 2.2 ([6]). Let L be an ADL with a mazimal element m and - a binary
operation on L satisfying the conditions M1 — —M4. Then for any a,b,c,d € L,
(i) an(a.b)=a-band bA (ab) =a-b;

(11)a/\b—b:>(c'a)/\(c~b):c'band(aoc)/\(b'c):lrc;
(iii) dA[(a-b)-cJ=(a-b)-cif and only if dA[a- (b-c)] =a(b-c);
(iv) (@-c) A (b-c)A[(anb)-c] = (aAb)-¢;

(V)d/\(a )AND-c)=(a-c)AN(b-c) = dA[(aAD)-c]=(aAD)-c;
(vi)dA[(a-c)V(b-c))=(a-c)V(b-c) & dA[(aVbd) = (aVb)-c;
(vil) aAm=bAm = (a-c)Am=(b-¢c) Am; and

(viii) (eAm=bAm andcAm=dAm) = (a-c) Am=(b-d) Am.

The following result is a direct consequence of M1 of Definition 2.6.

LEMMA 2.3 ([6]). Let L be an ADL with a mazimal element m and - a binary
operation on L satisfying the condition M1. For a,b,x € L, aA(x-b) =x-b if and
only ifaN(b-xz)=b-x.
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In the following, we give some important properties of residuation ’:” and mul-
tiplication -’ in a residuated ADL L. These are taken from our earlier paper [7].

LEMMA 2.4 ([7]). Let L be a residuated ADL with a mazimal element m. For
a,b,c,d € L, the following hold in L:
(1) (a:b)ANa=a;

[@a:(a:b)]A(aVb)=aVb;

[(@:0):c]Afa: (b.c)] =a: (b.c);

[a: (b-c)]A[(a:b):c]=(a:b):¢c;
[(@AD):b)A(a:b)=a:b;
(a:0)A[(anb):b=(aAbd):b;
[a:(aVb)]Am=(a:b)Am;
[c:(@anb)|A[(c:a)V(c:b)]=(c:a)V(c:b);
Ifa:b=athenaA(b-d)=b-d = aNd=d;

){a:.[a:(a:b)]}/\(a:b)za:b;
Y[(avd):cJA[(a:c)V(b:c)]=(a:c)V(b:c);
JarnmZ=ZbAm = (a:c)Am=(b:c)Am;
Y(a:)A{a:[a:(a:d)]}=a:]a:(a:d)];
Yanb=b= (a-c)A(b-c)=b-¢;
YaAbA(a-b)=a-b;

) [(a-b):a] ANb=b;

) (@-b)Al(and)-(aVDb)]=(and) (aVD);

) aVbis marimal => (a-b) Na Ab=aAb;

)

for any x1,72 € L and n € Z*; and
(20) (21 V @2)f1H02 A < (28 v 2b2) Am, for any x1, 20 € L and k1, ko € Z7.

3. Complete residuated Almost Distributive Lattices

In this section, we introduce the concepts of the radical of an element and a
p-primary element in a complete ADL L with a maximal element m and derive
some properties of radical of an element in a complete residuated ADL. We prove
important results in a complete residuated ADL with a maximal element m.

We recall the following concepts on a residuated ADL L

DEFINITION 3.1. ([4]] An element p of a residuated ADL L is called
(i) prime, if p is not a maximal element of L and for any a,b € L holds

pA(a-b)=a-b = eitherpAa=a or pAb=0.
(ii) primary, if p is not a maximal element of L and for any a,b € L holds
pA(a-b)=a-bandpAha#a = pAb’ =b°
for some s € Z7.
NotE 3.1. Clearly, every prime element in a residuated ADL is primary.

DEFINITION 3.2. ([4]) An ADL L is said to satisfy the ascending chain condition
(a.c.c.) if for every increasing sequence 1 < z2 < 23 < ... in L, there exists a
positive integer n such that x, = z,4+1 = Tp42 = ...
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In this case, we say that L is an ADL with a.c.c.

DEFINITION 3.3. Let L be a residuated ADL with a maximal element m and
with a.c.c. and @ € L. We define a™, by induction, as follows a' = @ and a"*! =
a" - a for all n € Z+ — {1}. By convention, we take a® = m.

In the following theorem we define a binary operation ’:’ on L from the multi-
plication *-’. Using only the properties M1, M2, M3 and M4 of ’-’, we prove some
properties of :’.

THEOREM 3.1. Let L be a complete ADL with a mazimal element m. Suppose
is a multiplication on L. For a,b € L, write By ={x € L|aA(x-b) =z-b}

and definea:b= \/ (x Am). Then for a,b,z,c € L, we have
TEBqa b

(i)anb=b=c:a<c:b;
(i) xA(a-b)=ab= (x:a) Nb=b; and
(iii) [a: (b-¢)] < (a:b):c.

PRrROOF. Let a,b,c,xz € L.
i) Suppose aAb =b. Let x € B.,. Then cA(z-a) = z-a and cA(z-a)A(z-b) =
(x-a)A(z-b). Thus cA(x-b) = z-b by Lemma 2.2 (ii). From here, it follows x € B,

xAm<c:b ThuseAm < c:b, forall z € Beg. Sothat \/ (zAm)<c:b.
rEDB¢

o

Therefore, ¢c:a < c:bsince c:a<m and c: b < m).

(ii) Suppose A (a-b) = a-b Then z A (b-a) = b-a by Lemma 2.3 and b € B, ,.
Thus bAm < x:a and (x : a) AbAm = bAm. From here, it follows (z : a) Ab =b.

(iii) Let € By (3.¢)- Then aA[z-(c-b)] =x-(c-b) and aA[(z-c)-b] = (z-c)-b
By Lemma 2.2 (iii). From here, it follows a A[b- (- ¢)] =b- (z - ¢) by Lemma 2.3
and (a: b) A (z-¢) =z -c By (ii), above. from here, it follows (a: b)) A(c-z) =c-x
by Lemma 2.3 and [(a : b) : ¢] Ax = x again by (ii), above. Thus x Am < (a: b) : ¢
for all € B, (5.c). Sothat \/  (z Am) < (a:b):c. Therefore,

TEBa, (b-c)

a:(b-¢c)<(a:d):c.

The following Lemma is taken from our earlier paper [5].

LEMMA 3.1. Let L be an ADL with a maximal element m, -’ a multiplication
on L and a,b € L such that a Ab=>b. Then a™ ANV™ =", for anyn € Z+.

In the following, we introduce the concept of radical of an element in a complete
ADL with a maximal element m.

DEFINITION 3.4. Let L be a complete ADL with a maximal element m. Sup-
pose ’-7 is a multiplication on L and a € L. Let R, = {x € L | a A 2% = 2* for
some k € ZT}. Then \/ (z Am) is called radical of a and it is denoted by r(a).

TER,

We derive important properties of radical of an element in a complete residuated

ADL L with a maximal element m.
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THEOREM 3.2. Let L be a complete residuated ADL with a mazimal element
m and a,b € L. Then
(1) r(a) Na=a and r(a) < r(r(a));

(2)

(3) anb=b= r(b) < r(a) and hence b < a = r(b) < r(a);
(4) r(a-b) =r(a Ab) < r(a) Ar(b);

(5) r(a) Vr() < r(aVd) <rlr(a) Vr);

(6) If a AbF =bF for some k € Z7T, then r(b) < r(a) and hence

vV <a = r(b) < r(a);
(7) If p is a prime element of L, then r(p) =p Am =r(p Am) and
r(p")=pAm, forallnecZ",
(8) r(m) = m.

PROOF. Let a,b € L and R, = {x € L | a A 2% = 2F, for some k € Z*t}.

Define radical of an element a by r(a) = \/ (x Am).
z€R,
(1) Since a A a = a, we get that a € R,. Therefore, a A m < r(a). Hence

r(a) A a = a. Now, replacing a by r(a) in the above, we get that r(a) < r(r(a)).

(2) Suppose that a is a maximal element of L. By (1), we have r(a) A a = a.
Then r(a) Aa At =aAt, for any t € L. Since a is a maximal element of L, we get
that r(a) At =t, for any t € L. Therefore, r(a) is a maximal element of L.

(3) Suppose a Ab=b. Let x € Ry. Then b A x* = ¥, for some k € Z+. Thus
oF =aAbAzF (sinceaAb=1b)=aAzF (since bA2* = 2% ). Hence, x € R,.
Therefore, R, C R,. So that \/ (x Am) < V (z Am). Hence r(b) < r(a).

TERy TER,
Therefore, a Ab=b = r(b) < r(a) and hence b < a = r(b) < r(a).

(4) By property (15) of Lemma 2.4, we have a AbA (a-b) = a-b. Now, by (3)
above, we get that 7(a-b) < r(aAb). Let € Rynp. Then a AbA2* = ¥, for some
k € Z*. Thus
anNzF =anbAzF=2F and bAxP =aAbA2F =aF, for some k € ZT.

= (a-b)A (2% -b) = 2% -band (2% b) A (2% - 2%) = 2% - 2% (by Lemma 2.1.6 (ii) )
= (a-b)A (¥ -b) A (2F - b) A (2F - 2F) = (2F - b) A (2F - 2F)

= (a-b)A(2F-2F)=2F 2

= (a-b) Nz = 2%

= x € Ry

Therefore, Roap € Rgp- Hence \/ (zAm) <V (xAm). Therefore, r(aAb) <

TERAD TERaq.b
r(a-b). Thus r(a-b) =r(aAb). Since aNaAb=aAband bAaAb=aAb. By (3),
above, we get that r(a Ab) < r(a) and r(a A b) < r(b) and r(a A b) < r(a) A r(b).
Hence r(a - b) = r(a Ab) < r(a) A r(b).

(5) Since (a Vb) Aa = a and (aVb) Ab = 0. By (3), above, we get that
r(a) < r(aVb) and r(b) < r(a Vb). Therefore, r(a) vV r(b) < r(aVb). Now, by (1)
above, we have 7(a) A a = a and r(b) Ab =b. Then [r(a) Aa]V [r(b) Ab] = aVb.
Now,
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[r(@) Vr®)] A (aVb) =[r(a) v rb)] A{r(a) Aa} v {r(b) Abj]
— [{r(@) v r(B)} Ar(a) Aal v [{r(@) V ()} Ar(b) Ab] = [r(@) Aa]V [r(b) AB] = a Vb
since r(a)Aa = a and r(b)Ab = b ). By (3) above, we get that r(aVb) < r[r(a)Vvr(b)].
Hence r(a) Vr(b) <r(aVb) < r[r(a) vV r(b)].

(6) Suppose a A b* = b¥, for some k € Z+. Let v € R,. Then b A 2™ = o™
for some m € Z*. Thus b¥ A 2™ = 2™* for any k € Z* (b Lemma 3.1). From
here, it follows a A 2% = a A bF A 2™F = bE A 2™F (since a A BF = bF) = ™k

(since b* A x™F = ™% ). Hence, z € R,. Therefore, R, C R,. So, \/ (x Am)
zERy

< 'V (z Am) and 7(b) < r(a). Therefore, a A b* = b*, for some k € Z+ which it
xERa
follows r(b) < r(a) and hence b* < a = r(b) < 7(a).
(7) Suppose p is a prime element of L. By (1) above, we have r(p) Ap = p.
Them pAm < r(p). Now, let € R,. Then pAz* = z¥, for some k € Z+. Since pis
a prime element of L, we get that pAxz = x. This is true for any x € R,,. Therefore,

xAm < pAm. Sothat \/ (z Am) < pAm. Therefore, r(p) < p A m. Hence
TER)

r(p) = pAm. Since p is a prime element of L, we get that p Am is a prime element
of L. By last equality, we get that r(p Am) = pAm. Thus r(p) = pAm =r(pAm).
Now, we prove that r(p") = p Am, for all n € Z*. By Lemma 2.2 (i), we have
p" Ap"*tl =pnTl Then p € Ryn. Therefore, p Am < r(p") Again, by Lemma 2.2
(i), we get that p Ap™ = p™. By (3) above, we get that r(p") < r(p) = pAm (since
r(p) = p Am). Thus r(p™) < p Am. Finally, we get that r(p") = p A m for all
nezr.

(8) We have that every maximal element of L is a prime element of L. Then,
m is a prime element of L. By (7), above, we get that r(m) = m. O

The following result is taken from our earlier paper [3].

THEOREM 3.3. If an ADL L satisfies the ascending chain condition, then every
non empty subset of L has a maximal element.

In the following, we prove an important result in a complete ADL L with a
multiplication ’-’. We do not use M5 and define a binary operation ’:” on L which
satisfies many properties of residuation.

THEOREM 3.4. Let L be a complete ADL with a mazimal element m satisfying
the a.c.c. and ™’ a multiplication on L. Then, for any a € L, there exists k € ZT

such that a A (r(a))* = (r(a))* and a A (r(a))k=1 # (r(a))k— 1.

PROOF. Let a € L and write R, = {x € L | a A z® = 2%, for some s € ZT}.
Then r(a) = V (zAm).
r€R,
First we prove that R, is closed under the operation ’ V ’. Now, for 1,25 € R,

we have aAz$ = 2%, aAzb = 2b, for some s,t € ZT. Then (aAz$)V(anzl) = x5Vl
and a A (z§ Vb)) =25Vl Thusa Am > (25 Vab) Am > (1 Vx2)5t Am (by
property 20 of Lemma 2.4 . Hence a A (71 \/xg)‘”t (x1Va2)*Tt and 21 Vs € R,.
Therefore, R, is closed under the operation ’ V .
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Since L satisfies the a.c.c., by Theorem 3.3, we get that R, has a maximal
element, say z,. Then x, Am < r(a). For any x € R, since z, < z, V z, we get
that =, = x, V x. Therefore, xt Am < z, A'm. This is true for all x € R,. Hence
r(a) = V (xAm) <z Am. Thus r(a) = z, A'm. By Lemma 3.1, we get that

TER,
2 Am = (r(a))™ Am, for all n € Z*. Now, for x, € R, we have a A x5 = x3, for
some s € Zt. Then a Axi Am = x5 Am and a A (r(a))®* Am = (r(a))* Am. Thus
qA(r(a))® = (r(a))®, for some s € ZT. Now, qA(r(a))® = (r(a))?, for some s € ZT.
Then gA(r(a))™ = (r(a))™, for any n > s. Choose a smallest positive integer k such
that g A (r(a))* = ( (a))*. It is possible, since a A (r(a))® = a Am = a # (r(a))°.
Thus a A (r(a))*1 £ (r(a))* L. O

Now, we prove the following theorem.

THEOREM 3.5. Let L be a complete ADL with a maximal element m. Suppose
is a multiplication on L, q be a primary element of L and a,b € L. Then
r(q) Na # a if and only if ¢ : a = g A'm, where a : b is defined as in Theorem 3.1.

0

PROOF. Assume that r(g) Aa # a. For any « € By ., we have g\ (z-a) =2 -a.
Since ¢ is a primary element of L, we get that either ¢ A2 = x or ¢ A a® = a
for some t € ZT. If ¢ Aa® = a* for some t € Z*, then a € R,. Therefore,
r(@) AaAm =aAm or r(q) ANa = a. This is a contradiction to our assumption
that r(q) A a # a. Therefore, g A a® # at, for any ¢t € Z+. Hence g A x = x. This is
true for any « € By . Thus x Am < gAm, for all z € By ,. Hence ¢:a < gAm.

By Lemma 2.2 (i), we have gA(q-a) = ¢-a, so that ¢ € A, 4. Hence gAm < ¢ : a.
Thus ¢:a=qgAm.

Now, suppose that ¢ : a = ¢ A m and suppose, if possible, 7(q) A a = a. Then,
by condition (i) of Theorem 3.1, we get that ¢ : 7(¢) < ¢ : a = ¢ A'm. Thus
g:r(qg) =gAmA(qg:r(q) =g (g:7(q))

Now, by Lemma 2.2 (i), we have ¢ A (r(q) - q) = r(q) - g. Hence, by Theorem 3.1
(ii), we get that (q : r(q))Aq = q. Therefore, (¢ : 7(¢))Am = gAm. By Theorem 3.4,
there exists k € Z* such that ¢ A (r(¢))* = (r(q))*¥ and g A (7(q))*~* # (r(q))*~ 1.
Now, 4 A (r(9)" = (r(q))* mplies a A (r(0)-(r(@)") = r(q)-tr(@)*— and (
(@) A (r(q))F1 = (r(q)) 1 (by condition (ii) of Theorem 3.1 ). Then (g : 7(q)) A
mA(r(g)*~" = (r(g))" T and gAm A (r(q))*~" = (r(¢))" " (since (¢ :7(g)) Am =
gAm). Thus g A (r(¢))*~* = (r(q))*~!. This is a contradiction to g A (r(q))*~! #
(r(q))*—1. Therefore, have to be r(q) A a # a. O

THEOREM 3.6. Let L be a complete ADL with a mazximal element m satisfying
the a.c.c and -’ a multiplication on L. If q is a primary element of L, then r(q)
is a prime element of L.

PROOF. Let Ry = {z € L | ¢ N 2® = z*, for some s € ZT}. Define r(q) =

\/ (z Am). By Theorem 3.4, we get that ¢ A 7(q)* = r(¢)* and g A r(q)k~t #
TER,

r(q)*1, for some k € Z*. Let a € L and Ay, = {z € L | ¢ A (z.0) = z.a}.

Define g: a= \/ (zAm). By Theorem 3.5, we get that r(¢) A a # a if and only
T€Ag,a
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if ¢: a = g Am. Now, we will prove that r(g) is a prime element of L. Let a,b € L
such that r(q) Aa # a and r(¢) ANb # .

First we prove that g : b= (gAm) : b. If x € A, it means that gA(z-b) = z-b.
Then gAmA(xz-b) = x-band x € Agam,p. Therefore, we get that ¢ : b= (¢Am) : b.
Since r(q) Aa # a and r(q) Ab # b, by Theorem 3.5, we get that ¢ : a = ¢ A'm and
g:b=qgAm. Now, q: (a.b)=(¢:a):b (by Theorem 3.1 )= (¢gAm):b (since
g:a=qgAm) =q:b (since (qAm):b=¢q:b) =qgAm (since q:b=qAm).
Hence r(q) A (a-b) #a-b (by Theorem 3.5, again). Thus r(g) is a prime element
of L. O

In the following, we introduce the concept of p-primary element in a complete
ADL L with a maximal element m.

DEFINITION 3.5. Let L be a complete ADL with a maximal element m and let
p be a prime element of L. An element q of L is called p-primary, if ¢ is a primary
element of L and r(¢) = p.

The following Corollary is a directly consequences of Theorem 3.5.

COROLLARY 3.1. Let L be a complete ADL with a mazximal element m and
a € L. Suppose -’ is a multiplication on L and q is a p-primary element of L.
Then p A a # a if and only if ¢ : a =g Am.

THEOREM 3.7. Let L be a complete residuated ADL with a maximal element m
satisfying the a.c.c. If q is a p-primary element of L and a is any element of L such
that ¢ A a # a, then q : a is a p-primary element of L such that (q : a) A [r(q)]F =
[r(@)]* and (q:a) Alr(g)]*~ # [r(@)]*~", for some k € Z7.

PROOF. Suppose ¢ is a p-primary element of L and a € L such that ¢ A a # a.

First we will prove that ¢ : a is primary. Let b, ¢ € L such that (g : a)A(b-c) = b-c
and (¢:a)Ab#b. Now, (g:a)A(b-c)=b-candgAfa-(b-¢c)]=a-(b-¢c) (by
condition (A) of Definition 2.7). Then ¢ A [(a.b).c] = (a.b).c ( By (iii) of Lemma
2.2)

Since ¢ is a primary element of L, we get that either ¢ A (a-b) = a-b or
gAcF = cF for some k € ZT. If gA(a-b) = a-b, then, by condition (A) of Definition
2.7, we get that (¢ : a) A b= b which is not true. Therefore, have to be g A cF = c*
for some k € Z*. By R2 (i) of Definition 2.5, we get that (¢: a) A (cF : a) = c¥ : a.
So (¢ :a)A(cF:a)Ack = (cF:a)AcF. Hence, by Lemma 2.4 (1), we have
(q:a)Ack = c* Thus q: ais a primary element of L. Since q is primary and
r(q) = p, by Theorem 3.4, Theorem 3.2 (1), we get that p A ¢ = ¢, ¢ A p* = p* and
g Ap*~1 # pF=1 for some k € Z*. Now, since (¢:a) A(q:a) = q: a, by condition
(A) of Definition 2.7, we get that ¢ Afa- (¢ :a)] =a-(¢: a). Since ¢ is a primary
element of L and g Aa # a, we get that gA (g : a)® = (¢ : a)® for some s € ZT. Now
pA(g:a)* =pAlgA(qg:a)’] =qgA(q:a)® (sincepAqg=gq) =(q:a)®. Sincepisa
prime element of L, we get that pA (¢ :a) = q: a. So that r(¢: a) < r(p) =pAm.
Therefore, p Ar(q : a) = r(q : a). Also, since (g : a) A ¢ = g, by Theorem 3.2 (3),
we get that p = r(q) < (¢ : a). Therefore, 7(¢ : a) = p. Thus ¢ : a is a p-primary
element of L.
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Now, by Lemma 2.4 (1), we have (p* : a) A p* = p*. So that (¢:a) Ap* = (¢:

a) A (p* 1 a) Ap* = [(g ApF) : a] Ap* (by R4 of Definition 2.4) = (p* : a) A p*
= pF. Therefore, (q: a) A [r(q)]* = [r(q)]¥, for some k € ZT. Choose least positive
integer [ such that (¢ : a) A p! = p!, where [ < k. Therefore, (q : a) A p'=! # p!=1L.

Hence (g : a) A [r(q)]'~! # [r(q)]'~!, for some | € Z7. O
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