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STRUCTURE OF WEAK IDEMPOTENT RINGS

Venkateswarlu Kolluru, Dereje Wasihun, and Tilahun Abebaw

Abstract. We construct a partial synthesis of a Weak idempotent ring and a
subclass 2-Weak idempotent ring of Weak idempotent ring. Also we investigate
the structure of a Weak idempotent ring with unity of 4 and 8 elements.

Further we prove that every maximal ideal is nil whenever 0 and 1 are the
only idempotent elements of the Weak idempotent ring with unity. We obtain
certain properties of semiprime and submaximal ideals of a commutative Weak
idempotent ring with unity. Finally we prove that the Weak idempotent ring

satisfies the Köthe’s conjecture.

1. Introduction

The notion of a BLR is due to A. L. Foster [2]. A BLR is a commutative
ring R with unity of characteristic 2 in which ab(1 + a)(1 + b) = 0 for all a, b in
R. Clearly Foster’s Boolean - like rings are a natural generalization of Boolean
rings. Later V. Swaminathan [6, 7, 8] has extensively studied Boolean - like
rings by considering both algebraic and geometric aspects of this class of rings.
D. D. Anderson [1], H. A. Khuzam and A. Yaqub [3] and A. Yaqub [10] have
introduced and studied certain generalizations of Boolean rings and Boolean - like
rings in a different direction. Recently, K. Venkateswarlu, D. Wasihun, T. Abebaw
and Y. Yitayew [9] have introduced the notion of a weak idempotent ring (WIR,
for short) as a generalization of BLRs and have studied the basic properties of a
WIR. Further results concerning certain properties of completely prime ideals and
left(right) completely primary ideals were obtained in [9].

This paper continues the study of the theory of weak idempotent rings. We
construct a partial synthesis of WIR. This means that, given a Boolean - like ring,
we can construct a WIR taking the product of the set of all idempotent elements
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of the ring and the set of all nilpotent elements of the ring. Also we prove that a
non-commutative WIR with unity of eight elements has only one non-zero nilpotent
element. We classify WIR of 4 elements and 8 elements in terms of Boolean rings
and Boolean like rings. We study the relation between maximal and submaximal
ideals. Finally we use quasi regular ideals to prove Köthe’s conjecture.

Throughout this paper, ring R stands for weak idempotent ring (WIR, for
short) unless otherwise specified.

2. Preliminaries

We recall certain definitions and results concerning Weak idempotent rings and
its properties from [9].

Definition 2.1. A ring (R,+, ·) is called a weak idempotent ring (WIR, for
short) if R is of characteristic 2 and a4 = a2 for each a ∈ R

The following is a commutative WIR of cardinality 2 without unity:

0 + 0 = 1 + 1 = 0; 1 + 0 = 0 + 1 = 1; 0 · 0 = 0 · 1 = 1 · 0 = 1 · 1 = 0.

Since 1 · 1 = 0, then it is not a Boolean ring. By Prover9 (see [5]), the least WIR
that is not a Boolean like ring has cardinality 16.

Let R be a ring. We say that a ∈ R is a quadratic residue if a = x2, for some
x ∈ R.

Lemma 2.1. Let R be a WIR. Then a ∈ R is idempotent if and only if it is a
quadratic residue.

Lemma 2.2. Let R be a WIR. Then for all a ∈ R

(1) an = a, a2 or a3 for any positive integer n.
(2) If 0 ̸= a is a nilpotent element, then a2 = 0.
(3) a = a2 + (a2 + a), where a2 is idempotent and a2 + a is nilpotent.

Proof. 2. If 0 = an = a3, thena2 = a4 = aa3 = a0 = 0.
3. (a2 + a)2 = a4 + a2 = a2 + a2 = 0. �
Remark 2.1. Every element a of R is the sum of a nilpotent and an idempotent

element. In general this representation is not unique as in Boolean like rings.

Lemma 2.3 ([4], Proposition 19.2). If R is a local ring with unity, then the
only idempotents are 0 and 1.

Lemma 2.4. Let R be a WIR with unity. Then a ∈ R is a unit if and only if
a2 = 1.

Proof. Let a be a unit with inverse a−1. Since

a2(1 + a2) = a2 + a4 = a2 + a2 = 0,

then by multiplying by a−2 on the left we get 1+a2 = 0 that implies the conclusion.
�

Lemma 2.5. Let R be a WIR with unity. Then a ∈ R is a unit if and only if
1 + a is nilpotent.
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Proof. (1 + a)2 = 1 + a2 = 0 iff a2 = 1. �
Corollary 2.1. Every non-zero non-unit in a WIR with unity is a zero-

divisor.

Proof. Let a ̸= 0 be a non-unit. Then 1 + a2 ̸= 0. If a(1 + a2) = 0, then
we get the conclusion. If a(1 + a2) ̸= 0, then we get the conclusion: aa(1 + a2) =
a2 + a4 = a2 + a2 = 0. �

If the ring is a commutative WIR, then the representation of each element
as the sum of an idempotent and a nilpotent element is unique and we use the
notation aB for the idempotent a2 and aN for the nilpotent a + a2 of the unique
representation.

The following result is well known.

Lemma 2.6. If R is a commutative ring of characteristic 2, then the Frobenius
map τ : R → R, defined by τ(x) = x2, is an endomorphism of R.

We denote by RB the set of idempotent elements of a ring R and by N the set
of nilpotent elements of R.

Proposition 2.1. Let R be a commutative WIR and τ be the Frobenius endo-
morphism. Then N is the kernel of τ , RB is the image of τ , and R/N ∼= RB is a
Boolean ring.

If R is a commutative WIR, then RB is both a subring of R and a homomorphic
image of R. Hence, RB is a retract of R.

Proposition 2.2. Let R be a commutative WIR with unity.

(1) An ideal is maximal iff it is prime.
(2) Every maximal ideal of R contains the ideal N of nilpotents of R.
(3) The ideal N is the intersection of all maximal ideals of R.

Proof. (1) Let P be a prime ideal. Then R/P is an integral domain. By
Corollary 2.1, R/P is a field. Then P is maximal. The converse is trivial.

(2) By (1) and by Lemma 2.2.
(3) The lattice interval [N,R] is isomorphic to the Boolean lattice of ideals

of the Boolean ring R/N . Then the result follows from the fact that {0} is the
intersection of the maximal ideals of the the Boolean ring R/N . �

Theorem 2.1. If R is a WIR with unity such that I(R) = {0, 1}, then every
proper ideal of R is a nil ideal.

Proof. For every x(̸= 0, 1), Since x2 is idempotent, then either x2 = 0 or
x2 = 1. Thus x is nilpotent or a unit. Let M be proper ideal of R. If x ∈ M then
x ̸= 1. Suppose x ̸= 0. Then x is nilpotent or a unit. But M does not contain a
unit element. Thus x is nilpotent and hence M ⊆ N . Hence, M is nil. �

Theorem 2.2. Let R be WIR which is a local ring with unity. Then we have:
1. The set N(R) of all nilpotent elements of R is the unique maximal ideal of

R;
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2. R is a commutative ring.

Proof. (1) Let M be the unique maximal ideal. By Lemma 2.3 and by The-
orem 2.1 we have that M is a nil ideal. Let a be a nilpotent element such that
a /∈ M . Then there exist r, s ̸= 0 such that 1 = ras. This implies that r = rras
and s = rass. Hence, r and s are units (i.e., r2 = s2 = 1). By 1 = ras we derive
rs = rrass = a. Thus rsrs = 0 and, multiplying by s−1r−1 on the left, we get
a = rs = 0. Contradiction. We conclude that M = N(R).

(2) The product of units is commutative: ab = ba iff a = abb = bab iff 1 =
aa = abab. This last condition is true because ab and ba are units. The product
of nilpotents is commutative. If a, b are nilpotents, then 1 + a and 1 + b are units.
Then, 1+b+a+ab = (1+a)(1+b) = (1+b)(1+a) = 1+a+b+ba. By subtracting
1+ a+ b we get ab = ba. The product of a unit and a nilpotent is commutative. If
a is nilpotent and b is a unit, then we have b+ ab = (1 + a)b = b(1 + a) = b+ ba.
Then subtracting b we get ab = ba. �

Corollary 2.2. Every non-commutative WIR R with unity is not local.

Theorem 2.3. Let R be a commutative WIR. Then RB is a Boolean ring
isomorphic to R/N .

Proposition 2.3. If R is a commutative WIR with unity such that the product
of any two elements of N is zero, then R is a Boolean like ring.

Proof. By Lemma 2.2 a(1 + a) = a2 + a is nilpotent for every a. Then
a(1 + a)b(1 + b) = 0 by hypothesis. �

Proposition 2.4. A field F of characteristic 2 is a WIR if and only if it is
the 2-element field.

Proof. The polynomial x4 − x2 has exactly two double roots in a field of
characteristic 2: x = 0 and x = 1. �

A commutative ring is semiprimitive if and only if it is a subdirect product of
fields.

Theorem 2.4. If P is any completely prime ideal of a Weak idempotent ring
R with unity, then R/P is isomorphic to the 2- element field.

Definition 2.2. Let S be an arbitrary ring with unity and Q be an ideal of a
ring S . Q is said to be:

(1) left completely primary ideal of S if, for a, b ∈ S, ab ∈ Q implies a ∈ Q
or bn ∈ Q for some n ∈ N.

(2) right completely primary ideal of S if, for a, b ∈ S, ab ∈ Q implies an ∈ Q
or b ∈ Q for some n ∈ N.

Theorem 2.5. An ideal of a WIR R with unity is left completely primary if
and only if for any idempotent element b ∈ R, either b ∈ I or 1 + b ∈ I.
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Proof. (⇒) By b(1+ b) = b+ b2 = b+ b = 0 ∈ I we get b2 ∈ I or (1+ b)n ∈ I,
for some n. Since 1+b is idempotent, then (1+b)n = 1+b and we get the conclusion.

(⇐) Let ab ∈ I with a /∈ I. Since b2 is idempotent, then by hypothesis either
b2 ∈ I or 1 + b2 ∈ I. If 1 + b2 ∈ I, then a(1 + b2) = a + ab2 ∈ I. Since ab2 ∈ I,
then a = a+ ab2 + ab2 ∈ I contradicting the assumption. Then b2 ∈ I and I is left
completely primary. �

Corollary 2.3. An ideal I ̸= R of a WIR with unity is left completely primary
ideal if and only if R/I has only two idempotents.

Theorem 2.6. In a WIR with unity, a left completely primary ideal I is com-
pletely prime if and only if all nilpotent elements of R contained in I.

3. 2-Weak Idempotent Rings

We introduce partial synthesis of Weak idempotent ring by the following the-
orem and construct the subclass of weak idempotent ring.

Definition 3.1. Let R be a WIR. Then

(1) For a ∈ R, if ab = b (ba = b) for every b ∈ R, then a is said to be left(right)
unity of R.

(2) For any a, b, c ∈ R, if abc = bac (abc = acb), then R is said to be left(right)
weak-commutative.

Theorem 3.1. Let R be a Boolean like ring, RB be the set of all idempotent
elements of R and N be the set of all nilpotent elements of R. Let R̄ = RB ×N =
{(b, n) : b ∈ RB and n ∈ N}. Define the operations of addition and multiplication
as follows (b1, n1)+(b2, n2) = (b1+b2, n1+n2) and (b1, n1)∗(b2, n2) = (b1b2, b1n2).
Then (R̄,+, ∗) is a left weak-commutative WIR and has a left unity of the form
(1, n) for all n ∈ N .

Proof. It is a routine verification that R̄ is a left weak-commutative WIR and
it has a left unity of the form (1, n) for all n ∈ N . �

Note 3.1. Similarly we can obtain right weak-commutative WIR (R̄,+, ∗)
with having right identity element(s)of the form (1, n) if we replace the operation
of multiplication with (b1, n1) ∗ (b2, n2) = (b2b1, b2n1) in the above theorem. It can
easily be seen that one sided unity is not necessarily unique.

Theorem 3.2. Let R̄ be the left weak-commutative WIR defined in Theorem

3.1 . Let ¯̄R = R̄ × Z2 = {(r, b) : r ∈ R̄ and b ∈ Z2} and define the operations of
addition and multiplication as follows: (r1, b1) + (r2, b2) = (r1 + r2, b1 + b2) and

(r1, b1) ∗ (r2, b2) = (r1r2 + b1r2 + b2r1, b1b2). Then ( ¯̄R,+, ∗) is a non-commutative
WIR with unity (0, 1).

Proof. It is well known that R̄ can be embedded into a ring with unity, that

is, ¯̄R since R̄ is characteristic 2. We claim that ¯̄R is a WIR. Let (r, b) ∈ ¯̄R. Then
(r, b) + (r, b) = (r + r, b + b) = (0, 0) and (r, b)2 = (r2 + br + br, b2) = (r2, b) and

(r, b)4 = (r2, b)2 = (r4 + br2 + br2, b2) = (r2, b). Thus, (r, b)4 = (r, b)2. Hence ¯̄R is



540 V. KOLLURU, D. WASIHUN, AND T. ABEBAW

a WIR with unity (0, 1). Let (r, b)2 = 0. Then (r2, b) = 0 implies that b = 0 and

r is nilpotent element of R̄. Hence a nilpotent element of ¯̄R is of the form (n, 0)
where n is a nilpotent element of R̄. �

Note 3.2. If we replace the ring R̄ in Theorem 3.2 by the right weak-commuta-
tive WIR, we obtain a non-commutative WIR with unity.

Definition 3.2. The ring ( ¯̄R,+, ∗) defined in Theorem 3.2 is called 2-Weak
idempotent ring (2-WIR, for short)

Theorem 3.3. Let ¯̄R be a 2-WIR. Then the product of any two nilpotent ele-

ments of ¯̄R is zero.

Proof. Let (n1, 0) and (n2, 0) be two distinct nilpotent elements of ¯̄R. Then
(n1, 0)(n2, 0) = (n1n2, 0) = (0, 0) since the product of any two nilpotent elements
of R̄ is zero. �

Theorem 3.4. Let ¯̄R be a 2-WIR and N be the set of all nilpotent elements of
¯̄R. Then N is an ideal of ¯̄R.

Proof. WE recall from Theorem 3.2 that ¯̄R = R̄×Z2, where R̄ is the left weak-
commutative WIR defined in Theorem 3.1. Let n1, n2 ∈ N . Then (n1 + n2)

2 =
n1n2 + n2n1=0 since the product of any two nilpotent element is zero. Thus,

n1+n2 ∈ N . For r ∈ ¯̄R and n′ ∈ N , r = (s, b) and n′ = (n, 0), n is nilpotent element
of S. We have rn′ = (s, b)(n, 0) = (sn+ bn, 0) and (rn′)2 = ((sn+ bn)2, 0) = (0, 0)

since S is left weak-commutative. Thus, ¯̄RN ⊆ N and hence N is a left ideal of ¯̄R.

In a similar way we prove that N is a right ideal of ¯̄R. �

Theorem 3.5. The set of all unit elements of a WIR R with unity is precisely
{1 + n : n ∈ N}, where N is the set of nilpotent elements of R.

Proof. Let a be a unit element of R. Then (1 + a)2 = 1 + a + a + a2 = 0
since a2 +1 = 0. Hence, 1+ a is nilpotent and a = 1+ (1+ a). On the other hand,
for any nilpotent element n ∈ R, (1 + n)2 = 1 + n+ n+ n2 = 1. Hence, 1 + n is a
unit. �

Example 3.1. The BLR (H4,+, ⋆) with H4 = {0, 1, p, q} and + and ⋆ are
defined as follows:

+ 0 1 p q
0 0 1 p q
1 1 0 q p
p p q 0 1
q q p 1 0

⋆ 0 1 p q
0 0 0 0 0
1 0 1 p q
p 0 p 0 p
q 0 q p 1

Theorem 3.6. Let R be a WIR with unity of four elements. Then up to
isomorphism either R is the Boolean like ring H4 or R is a Boolean ring.
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Proof. Let R = {0, 1, a, b} be a WIR with unity 1. Clearly (R,+) is a Boolean
group with a+ b = 1. Suppose a is the only non-zero nilpotent element of R. Then
ab = a(1 + a) = a+ a2 = (1 + a)a = ba. Hence R is commutative. Thus, R is the
BLR H4. If N = {0}, then R, which is isomorphic to R/N = RB , is a Boolean
ring. No other possibilities exist because an ideal of R has a number of elements
that is a divisor of 4. �

Theorem 3.7. A non-commutative WIR with unity of eight elements has only
one non-zero nilpotent element.

Proof. Let R = {0, 1, a, b, c, d, e, f} be a non-commutative WIR with unity
of eight elements. If 0 is the only nilpotent, then R is a Boolean ring which is
commutative and hence a contradiction. Suppose R has three distinct non-zero
nilpotent elements, namely a, b, c. Then 1 + a, 1 + b and 1 + c are distinct units.
So, 0 and 1 are the only idempotent elements and thus R is commutative which
is a contradiction. Hence R has no three distinct non-zero nilpotent elements. If
R has more than three distinct non-zero nilpotent elements, then the number of
elements of R is strictly greater than eight and it contradicts. Hence, R has only
one non-zero nilpotent element. �

Now we have the following case for commutativity

Theorem 3.8. A commutative WIR with unity of eight elements is a Boolean
like ring.

Proof. Let R = {0, 1, a, b, c, d, e, f} be a commutative WIR with unity of eight
elements. If 0 is the only nilpotent, then R is a Boolean ring and hence a BLR.
Suppose a is the only non-zero nilpotent element of R. Then the product of any two
nipotent element is zero. Thus, by Theorem 2.3 R is a Boolean like ring. Suppose
R has three distinct non-zero nilpotent elements, namely a, b, c. Then 1+ a, 1+ b
and 1 + c are three distinct units. So, 0 and 1 are the only idempotent elements.
Suppose ab ̸= 0. Since (ab)2 = 0, either ab = a, ab = b or ab = c. If ab = a, then
a(1+ b) = a+ab = a+a = 0. Thus, a = 0 which is a contradiction. If ab = b, then
b(1 + a) = b+ ab = b+ b = 0. Thus, b = 0 which is a contradiction. If ab = c, then
ab + b = c + b = a. Thus, (ab + b)b = ab ⇒ ab = 0 = c which is a contradiction.
Thus, the product of any two nilpotent element is 0 and by theorem 2.3, R is a
BLR. R cannot have more than three distinct non-zero nilpotent elements. �

4. Maximal and Submaximal ideals

We introduce the properties of maximal ideals of a WIR and semiprime and
submaximal ideals of a commutative WIR with unity.

Theorem 4.1. Every completely prime ideal of a WIR R with unity is a max-
imal ideal.

Proof. Let P be a completely prime ideal and J be an ideal of R such that
P ( J ⊆ R. Let a ∈ J rP . Then a2 /∈ P . Since a4 = a2, then a2(a2 +1) = 0 ∈ P ;
hence a2 +1 ∈ P ⊆ J . Since a ∈ J , then a2 ∈ J , so that 1 = a2 + a2 +1 ∈ J . Thus
J = R. Hence, P is a maximal ideal. �
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Corollary 4.1. If M is a maximal ideal of a WIR R with unity, then R/M
is isomorphic to the 2-element field.

Theorem 4.2. If R is a WIR with unity such that I(R) = {0, 1}, then every
proper ideal of R is a nil ideal.

Proof. For every x(̸= 0, 1), Since x2 is idempotent, then either x2 = 0 or
x2 = 1. Thus x is nilpotent or a unit. Let M be proper ideal of R. If x ∈ M then
x ̸= 1. Suppose x ̸= 0. Then x is nilpotent or a unit. But M does not contain a
unit element. Thus x is nilpotent and hence M ⊆ N . Hence, M is nil. �

Theorem 4.3. Let R be a commutative WIR with unity and I be an ideal of
R. Let x ∈ R be such that x /∈ I.

(1) If xB /∈ I, then there exists a maximal ideal J of R such that I ⊂ J and
x /∈ J .

(2) If xN /∈ I, then there exists a primary ideal P of R such that I ⊂ P and
x /∈ P .

Proof. (1) Let Σ = {J : J is an ideal of R, I ⊆ J and xB /∈ J}. Then by
Zorn’s lemma , Σ, has a maximal element say J . Clearly xB /∈ J . Let a, b ∈ R
such that a /∈ J and b /∈ J . Then xB ∈ J + Ra. Thus, xB = j1 + r1a = j2 + r2b
where j1, j2 ∈ J and r1, r2 ∈ R. That is xB = x2

B = j3 + r1r2ab with j3 ∈ J
and hence ab /∈ J . Therefore, J is prime and hence maximal such that I ⊂ J and
x /∈ J .

(2) Let Σ = {J : J is an ideal of R, I ⊆ J and xN /∈ J}. Σ is non-empty since
{0} ∈ Σ. By Zorn’s lemma, Σ ordered by inclusion, has a maximal element. Let P
be a maximal element of Σ. Now claim that P is primary. Let xy ∈ P and x /∈ P .
Clearly, xN /∈ P . Since x /∈ P, P ( P + Rx. Thus P + Rx /∈ Σ and hence xN ∈
P +Rx. So, xN = i+ rx for i ∈ P and r ∈ R. Then xNy = iy+ rxy ∈ P . Assume
no positive power of y belongs to P . That is, y3 /∈ P . Hence, xN ∈ P +Ry3 since
P ( P +Ry3 and hence P +Ry3 /∈ Σ. Let xN = j+sy3 = j+sy2+sy3+sy4 where
j ∈ P and s ∈ R which implies xN = j+syB(1+yN ). By multiplying both sides by
1+yN , we get xN +xNyN = j(1+yN )+syB(1+yN )2 = j(1+yN )+syB = k+syB
where j(1+yN ) = k ∈ P . In addition to that xN = j+sy3 implies xNy = jy+syB.
Using the two results, we obtained xN + xNyN + xNy = k + jy ∈ P , but xNy ∈ P
and xNyN ∈ P . Thus, xN ∈ P which is a contradiction. Therefore, ym ∈ P for
some positive integer m. Thus, P is primary. Since xN /∈ P ∈ Σ, x /∈ P . �

The following theorem gives a characterization of semiprime ideals of a com-
mutative WIR with unity.

Theorem 4.4. Let I be an ideal of a commutative WIR R with unity. Then
the following statements are equivalent.

1. I is semiprime
2. The nilradical N of R is contained in I
3. R/I is a Boolean ring
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Proof. (1 ⇒ 2) Let I be semiprime and a ∈ N . Then an = 0 ∈ I for some n.
Then a ∈ r(I) = I. Hence, the nilradical N of R is contained in I.

(2 ⇒ 3) Suppose the nilradical N of R is contained in I. By Theorem 2.3, R/N
is a Boolean ring. Then R/I, isomorphic to a Boolean ring, is a Boolean ring.

(3 ⇒ 1) Let R/I be a Boolean ring and x ∈ r(I). This implies that xn ∈ I for
some positive integer n and hence xn + I = I ∈ R/I. Thus, I = (x+ I)n = x+ I.
Hence, r(I) = I, that is, I is semiprime. �

Theorem 4.5. Every proper semiprime ideal I of a commutative WIR R with
unity is the intersection of all maximal ideals of R containing I.

Proof. A semiprime ideal I is intersection of all prime ideals containing I.
Since in a WIR an ideal is maximal if and only if it is prime, then we get the
conclusion. �

In a commutative ring R, an ideal Q is primary if, for a, b ∈ R, ab ∈ Q implies
a ∈ Q or bn ∈ Q for some n ∈ N. It coincide with the left completely primary ideal
in an arbitrary ring.

Theorem 4.6. Let I be an ideal of a commutative WIR R with unity. Then I
is contained in at least two maximal ideals of R if and only if I is not primary.

Proof. I is contained in only one maximal ideal of R if and only if the quotient
ring R/I is a local ring if and only if R/I has only two idempotent elements if and
only if I is primary. �

Definition 4.1. An ideal I of a WIR R is called submaximal if I is covered
by a maximal ideal of R i.e. there exists a maximal ideal M of R such that I ( M
and for any ideal J of R such that I ⊂ J ⊂ M we have that J = I or J = M .

Theorem 4.7 and Theorem 4.8 are trivial, because by Proposition 2.2 you can
read these theorems in the Boolean ring R/N .

Theorem 4.7. The intersection of any two distinct maximal ideals of a com-
mutative WIR R with unity is submaximal and it is covered by both of the maximal
ideals. Further, there exists no other maximal ideal containing it.

Theorem 4.8. If an ideal of a commutative WIR R with unity is submaximal,
then R/I is the four element Boolean ring.

5. Quasi-regular ideals

Definition 5.1. Let R be a ring.

(1) An element a ∈ R is said to be quasi-regular if and only if there exists
b ∈ R such that a+ b− ab = 0 and we call b the quasi inverse of a.

(2) An ideal I of R is said to be quasi-regular if every element of I is quasi-
regular.

Lemma 5.1. If R is a ring with unity, then a is quasi-regular if and only if
1− a is a unit.
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Proof. (1− a)(1− b) = 1− a− b+ ab = 1− (a+ b− ab) = 1 �

For any ring R with unity, the Jacobson radical of R is the largest quasi-regular
ideal of R and denoted by J(R). The set of all nilpotent elements in R denoted by
N . Every nilpotent element is quasi-regular, so N ⊆ Q(R) where Q(R) is the set of
all quasi-regular elements of the ring R. In fact if xn = 0, then −x−x2− ...−xn−1

is the quasi inverse of x. The upper nilradical of R is the largest nil ideal of R
and denoted by Nil∗(R). If R is commutative, then Nil∗(R) = N . For any ring
R, Nil∗(R) ⊆ J(R). The following theorem shows that the set of all nilpotent
elements of a WIR R with unity is precisely the set of all quasi-regular elements of
R.

Theorem 5.1. Let R be a WIR with unity and N be the set of all nilpotent
elements of R. Then N is the set of all quasi-regular elements of R.

Proof. a is quasi-regular if and only if 1 + a is a unit if and only if a is
nilpotent. �

In an arbitrary WIR R, N need not be an ideal of R. But we have the following

Corollary 5.1. If R is a WIR with unity, then J(R) = Nil∗(R).

Note 5.1. [4] Köthe’s Conjecture: If Nil∗(R) = 0, then R has no non-zero
nil one sided ideals. An equivalent formulation of the same conjecture is: Every nil
left or right ideal of a ring R is contained in Nil∗(R).

Theorem 5.2. Let R be a WIR with unity. Then R satisfies the Köthe’s
conjecture.

Proof. By corollary 5.1, Nil∗(R) = J(R) for a ring R, then R satisfies the
Köthe’s conjecture since J(R) contains every nil one-sided ideal. �

Theorem 5.3. Every 2-weak idempotent ring R has at least one idempotent
element which is neither 0 nor 1.

Proof. Let R be a 2-weak idempotent ring and N be the set of all nilpotent
elements of R. By theorem 3.4, N is an ideal of R. Thus, Nil∗R = N . By corollary
5.1, J(R) = Nil∗R = N . So, N ⊆ M for every maximal ideal M . Suppose 0 and
1 are the only idempotents of R. By Theorem 4.2, every maximal ideal is nil. So
M = N , that is, R is local which is a contradiction to Theorem 2.2. Hence the
theorem holds. �
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