DECOMPOSITION THEOREMS IN PRINCIPAL RESIDUATED ALMOST DISTRIBUTIVE LATTICES

G. C. Rao and S. S. Raju

Abstract

In this paper, we introduce the concept of meet representation of an element in an ADL L with ascending chain condition (a.c.c.). We prove decomposition theorems in a P-ADL and introduce the concepts of normal primary decomposition and isolated component of an element a in a complete residuated ADL L. We also prove the fundamental theorem on primary decompositions.

1. Introduction

Swamy, U.M. and Rao, G.C. [8] introduced the concept of an Almost Distributive Lattice as a common abstraction of almost all the existing ring theoretic generalizations of a Boolean algebra (like regular rings, p-rings, biregular rings, associate rings, P_{1}-rings etc.) on one hand and distributive lattices on the other.

In [1], Dilworth, R.P., has introduced the concept of a residuation in lattices and in $[\mathbf{9}, \mathbf{1 0}]$, Ward, M. and Dilworth, R.P., have studied residuated lattices. In [11], Ward, M. has introduced the concept of a principal residuated lattice (or simply a P-Lattice) and studied its properties. We introduced the concepts of a residuation and a multiplication in an ADL and the concept of a residuated ADL in our earlier paper [5]. We have proved some important properties of residuation ' $'$ ' and multiplication '. ' in a residuated ADL L in [6]. In [3], we introduced the concept of Noether ADL. In [4], we introduced the concepts of principal element in a residuated ADL and a principal residuated almost distributive lattice (or P-ADL). In this paper, we introduce the concept of meet representation of an element in an ADL L with ascending chain condition (a.c.c.). We prove decomposition theorems

[^0]in a P-ADL and introduce the concepts of normal primary decomposition and isolated component of an element a in a complete residuated ADL L. We also prove the fundamental theorem on primary decompositions.

In Section 2, we recall the definition of an Almost Distributive Lattice (ADL) and certain elementary properties of an ADL from $[\mathbf{2}, \mathbf{8}]$ and some important results on a residuated almost distributive lattice from our earlier paper $[\mathbf{6}]$.

In Section 3, we define meet representation of an element in an ADL L with a.c.c. If L is a residuated ADL with a.c.c. and L has a meet representation, then we prove that the elements of L have primary decomposition if and only if every meet irreducible element of L is primary. In a principal residuated ADL L with a maximal element m, we prove that for each $a \in L$, there exist distinct primes p_{1}, p_{2}, \ldots, p_{l} such that

$$
a \wedge m=p_{1}^{\alpha_{1}} \wedge p_{2}^{\alpha_{2}} \wedge \ldots \wedge p_{l}^{\alpha_{l}} \wedge m=\left(p_{1}^{\alpha_{1}} \cdot p_{2}^{\alpha_{2}} \cdot \ldots \cdot p_{l}^{\alpha_{l}}\right) \wedge m .
$$

We introduce the concepts of normal decomposition and isolated component of an element a in a complete residuated ADL L and prove that in a complete residuated ADL L, any two isolated components of an element a with the same set of corresponding primes are assosiates to each other.

2. Preliminaries

In this section we collect a few important definitions and results which are already known and which will be used more frequently in the paper.

We begin with the definition of an ADL.
Definition 2.1. ([2]). An Almost Distributive Lattice (ADL) is an algebra (L, \vee, \wedge) of type $(2,2)$ satisfying
(1) $(a \vee b) \wedge c=(a \wedge c) \vee(b \wedge c)$
(2) $a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$
(3) $(a \vee b) \wedge b=b$
(4) $(a \vee b) \wedge a=a$
(5) $a \vee(a \wedge b)=a$, for all $a, b, c \in L$.

It can be seen directly that every distributive lattice is an ADL. If there is an element $0 \in L$ such that $0 \wedge a=0$ for all $a \in L$, then $(L, \vee, \wedge, 0)$ is called an ADL with 0 .

Example 2.1. ([2]). Let X be a non-empty set. Fix $x_{0} \in X$. For any $x, y \in L$, define

$$
x \wedge y=\left\{\begin{array}{ll}
x_{0}, & \text { if } x=x_{0} \\
y, & \text { if } x \neq x_{0}
\end{array} \quad x \vee y= \begin{cases}y, & \text { if } x=x_{0} \\
x, & \text { if } x \neq x_{0} .\end{cases}\right.
$$

Then $\left(X, \vee, \wedge, x_{0}\right)$ is an ADL, with x_{0} as its zero element. This ADL is called a discrete ADL.

For any $a, b \in L$, we say that a is less than or equals to b and write $a \leqslant b$, if $a \wedge b=a$. Then " \leqslant " is a partial ordering on L.

Theorem $2.1([\mathbf{2}])$. Let $(L, \vee, \wedge, 0)$ be an $A D L$ with 0 '. Then, for any $a, b \in L$, we have
(1) $a \wedge 0=0$ and $0 \vee a=a$
(2) $a \wedge a=a=a \vee a$
(3) $(a \wedge b) \vee b=b, a \vee(b \wedge a)=a$ and $a \wedge(a \vee b)=a$
(4) $a \wedge b=a \Longleftrightarrow a \vee b=b$ and $a \wedge b=b \Longleftrightarrow a \vee b=a$
(5) $a \wedge b=b \wedge a$ and $a \vee b=b \vee a$ whenever $a \leqslant b$
(6) $a \wedge b \leqslant b$ and $a \leqslant a \vee b$
(7) \wedge is associative in L
(8) $a \wedge b \wedge c=b \wedge a \wedge c$
(9) $(a \vee b) \wedge c=(b \vee a) \wedge c$
(10) $a \wedge b=0 \Longleftrightarrow b \wedge a=0$
(11) $a \vee(b \vee a)=a \vee b$.

It can be observed that an ADL L satisfies almost all the properties of a distributive lattice except, possible the right distributivity of \vee over \wedge, the commutativity of \vee, the commutativity of \wedge and the absorption law $(a \wedge b) \vee a=a$. Any one of these properties convert L into a distributive lattice.

Theorem $2.2([\mathbf{2}])$. Let $(L, \vee, \wedge, 0)$ be an ADL with 0.
Then the following are equivalent:
(1) $(L, \vee, \wedge, 0)$ is a distributive lattice
(2) $a \vee b=b \vee a$, for all $a, b \in L$
(3) $a \wedge b=b \wedge a$, for all $a, b \in L$
(4) $(a \wedge b) \vee c=(a \vee c) \wedge(b \vee c)$, for all $a, b, c \in L$.

Proposition $2.1([\mathbf{2}])$. Let (L, \vee, \wedge) be an $A D L$. Then for any $a, b, c \in L$ with $a \leqslant b$, we have
(1) $a \wedge c \leqslant b \wedge c$
(2) $c \wedge a \leqslant c \wedge b$
(3) $c \vee a \leqslant c \vee b$.

Definition 2.2. ([2]) An element $m \in L$ is called maximal if it is maximal as in the partially ordered set (L, \leqslant). That is, for any $a \in L, m \leqslant a$ implies $m=a$.

Theorem 2.3 ([2]). Let L be an $A D L$ and $m \in L$. Then the following are equivalent:
(1) m is maximal with respect to \leqslant
(2) $m \vee a=m$, for all $a \in L$ (3) $m \wedge a=a$, for all $a \in L$.

Lemma 2.1 ([2]). Let L be an ADL with a maximal element m and $x, y \in L$. If $x \wedge y=y$ and $y \wedge x=x$ then x is maximal if and only if y is maximal.Also the following conditions are equivalent:
(i) $x \wedge y=y$ and $y \wedge x=x$
(ii) $x \wedge m=y \wedge m$.

Definition 2.3. ([7]) If $(L, \vee, \wedge, 0, m)$ is an ADL with 0 and with a maximal element m , then the set $I(L)$ of all ideals of L is a complete lattice under set inclusion. In this lattice, for any $I, J \in I(L)$, the l.u.b. and g.l.b. of I, J are given
by $I \vee J=\{(x \vee y) \wedge m \mid x \in I, y \in J\}$ and $I \wedge J=I \cap J$.
The set $P I(L)=\{(a] \mid a \in L\}$ of all principal ideals of L forms a sublattice of $I(L)$. (Since $(a] \vee(b]=(a \vee b]$ and $(a] \cap(b]=(a \wedge b]$.)

Definition 2.4. ([7]) An ADL $L=(L, \vee, \wedge, 0, m)$ with a maximal element m is said to be a complete ADL, if $P I(L)$ is a complete sub lattice of the lattice $I(L)$.

Theorem $2.4([\mathbf{7}])$. Let $L=(L, \vee, \wedge, 0, m)$ be an $A D L$ with a maximal element m. Then L is a complete $A D L$ if and only if the lattice $([0, m], \vee, \wedge)$ is a complete lattice.

In the following, we give the concepts of residuation and multiplication in an almost distributive lattice $(A D L) L$ and the definition of a residuated almost distributive lattice taken from our earlier paper [5].

Definition 2.5. ([5]) Let L be an ADL with a maximal element m. A binary operation : on an ADL L is called a residuation over L if, for $a, b, c \in L$ the following conditions are satisfied.
(R1) $a \wedge b=b$ if and only if $a: b$ is maximal
$(R 2) a \wedge b=b \Longrightarrow($ i $)(a: c) \wedge(b: c)=b: c$ and (ii) $(c: b) \wedge(c: a)=c: a$
$(R 3)[(a: b): c] \wedge m=[(a: c): b] \wedge m$
$(R 4)[(a \wedge b): c] \wedge m=(a: c) \wedge(b: c) \wedge m$
$(R 5)[c:(a \vee b)] \wedge m=(c: a) \wedge(c: b) \wedge m$.
Definition 2.6. ([5]) Let L be an ADL with a maximal element m. A binary operation. on an ADL L is called a multiplication over L if, for $a, b, c \in L$ the following conditions are satisfied.
$(M 1)(a \cdot b) \wedge m=(b \cdot a) \wedge m$
(M2) $[(a \cdot b) \cdot c] \wedge m=[a \cdot(b \cdot c)] \wedge m$
(M3) $(a \cdot m) \wedge m=a \wedge m$
$(M 4)[a \cdot(b \vee c)] \wedge m=[(a \cdot b) \vee(a \cdot c)] \wedge m$.
Definition 2.7. ([5]) An ADL L with a maximal element m is said to be a residuated almost distributive lattice (residuated ADL), if there exists two binary operations ' $:$ ' and ' $'$ ' on L satisfying conditions R1 to R5, M1 to M4 and the following condition (A).
(A) $(x: a) \wedge b=b$ if and only if $x \wedge(a \cdot b)=a \cdot b$, for any $x, a, b \in L$.

We use the following properties frequently later in the results.
Lemma 2.2 ([5]). Let L be an ADL with a maximal element m and. a binary operation on L satisfying the conditions $M 1-M 4$. Then for any $a, b, c, d \in L$,
(i) $a \wedge(a \cdot b)=a \cdot b$ and $b \wedge(a \cdot b)=a \cdot b$
(ii) $a \wedge b=b \Longrightarrow(c \cdot a) \wedge(c \cdot b)=c \cdot b$ and $(a \cdot c) \wedge(b \cdot c)=b \cdot c$
(iii) $d \wedge[(a \cdot b) \cdot c]=(a \cdot b) \cdot c$ if and only if $d \wedge[a \cdot(b \cdot c)]=a \cdot(b \cdot c)$
(iv) $(a \cdot c) \wedge(b \cdot c) \wedge[(a \wedge b) \cdot c]=(a \wedge b) \cdot c$
(v) $d \wedge(a \cdot c) \wedge(b \cdot c)=(a \cdot c) \wedge(b \cdot c) \Longrightarrow d \wedge[(a \wedge b) \cdot c]=(a \wedge b) \cdot c$
(vi) $d \wedge[(a \cdot c) \vee(b \cdot c)]=(a \cdot c) \vee(b \cdot c) \Leftrightarrow d \wedge[(a \vee b) \cdot c]=(a \vee b) \cdot c$

The following result is a direct consequence of M1 of Definition 2.5.

Lemma 2.3 ([5]). Let L be an ADL with a maximal element m and \cdot a binary operation on L satisfying the condition M1. For $a, b, x \in L, a \wedge(x . b)=x . b$ if and only if $a \wedge(b \cdot x)=b \cdot x$

In the following, we give some important properties of residuation ' $:$ ' and multiplication ' \cdot ' in a residuated ADL L. These are taken from our earlier paper [6].

Lemma 2.4 ([6]). Let L be a residuated ADL with a maximal element m. For $a, b, c, d \in L$, the following hold in L.
(1) $(a: b) \wedge a=a$
(2) $[a:(a: b)] \wedge(a \vee b)=a \vee b$
(3) $[(a: b): c] \wedge[a:(b \cdot c)]=a:(b \cdot c)$
(4) $[a:(b \cdot c)] \wedge[(a: b): c]=(a: b): c$
(5) $[(a \wedge b): b] \wedge(a: b)=a: b$
(6) $(a: b) \wedge[(a \wedge b): b]=(a \wedge b): b$
(7) $[a:(a \vee b)] \wedge m=(a: b) \wedge m$
(8) $[c:(a \wedge b)] \wedge[(c: a) \vee(c: b)]=(c: a) \vee(c: b)$
(9) If $a: b=a$ then $a \wedge(b \cdot d)=b \cdot d \Longrightarrow a \wedge d=d$
(10) $\{a:[a:(a: b)]\} \wedge(a: b)=a: b$
(11) $[(a \vee b): c] \wedge[(a: c) \vee(b: c)]=(a: c) \vee(b: c)$
(12) $a \wedge m \geqslant b \wedge m \Longrightarrow(a: c) \wedge m \geqslant(b: c) \wedge m$
(13) $(a: b) \wedge\{a:[a:(a: b)]\}=a:[a:(a: b)]$
(14) $a \wedge b=b \Longrightarrow(a \cdot c) \wedge(b \cdot c)=b \cdot c$
(15) $a \wedge b \wedge(a \cdot b)=a \cdot b$
(16) $[(a \cdot b): a] \wedge b=b$
(17) $(a \cdot b) \wedge[(a \wedge b) \cdot(a \vee b)]=(a \wedge b) \cdot(a \vee b)$
(18) $a \vee b$ is maximal $\Longrightarrow(a \cdot b) \wedge a \wedge b=a \wedge b$

We recall the following concepts on a residuated ADL L from our earlier paper [3].

Definition 2.8. ([3]) An element p of a residuated ADL L is called
(i) irreducible, if for any $f, g \in L, f \wedge g=p \Longrightarrow$ either $f=p$ or $g=p$.
(ii) prime, if for any $a, b \in L, p \wedge(a . b)=a . b \Longrightarrow$ either $p \wedge a=a$ or $p \wedge b=b$.
(iii) primary, if for any $a, b \in L, p \wedge(a \cdot b)=a \cdot b$ and $p \wedge a \neq a \Longrightarrow p \wedge b^{s}=b^{s}$, for some $s \in Z^{+}$.

Definition 2.9. ([3]) An ADL L is said to satisfy the ascending chain condition(a.c.c.), if for every increasing sequence $x_{1} \leqslant x_{2} \leqslant x_{3} \leqslant \ldots$ in L, there exists a positive integer n such that $x_{n}=x_{n+1}=x_{n+2}=\ldots$

Definition 2.10. ([3]) Let L be a residuated ADL. An element a of L is called principal, if $b \in L$ and $a \wedge b=b$, then $a \cdot c=b$, for some $c \in L$.

Definition 2.11. ([3]) A residuated ADL L is said to be a Noether $A D L$, if (N1) the ascending chain condition(a.c.c.) holds in L and
(N2) every irreducible element of L is primary.
Now, we have taken the following definitions from our earlier paper [4].

Definition 2.12. ([4]) Let L be an ADL and $x, y \in L$.
(i) y is called a divisor of x if $y \wedge x=x$.

Observe that every maximal element m is a divisor of x, for any $x \in L$ and every associate of x is a divisor of x.
(ii) A divisor y of x other than maximal elements and associates of x is called a proper divisor of x.

Definition 2.13. ([4]) Let L be an ADL with a maximal element m. An element x of L is called an associate of y if $x \wedge m=y \wedge m$ (or x is equivalent to y).

Definition 2.14. ([4]) Let L be a residuated ADL with a.c.c. If every element of L is principal then L is called a Principal Residuated Almost Distributive Lattice (or $P-A D L$).

The following Lemma was proved in our earlier paper [3] and is used frequently later in the results.

Lemma 2.5 ([3]). Let L be a residuated $A D L$ with a maximal element m. If $a, b \in L$ such that a is principal and $a \wedge b=b$ then $[(b: a) \cdot a] \wedge m=b \wedge m$.

3. Decomposition Theorems in a P-ADL

In this section, we define meet representation of an element in an ADL L with a.c.c. If L is a residuated ADL with a.c.c. and if L has a meet representation, then we prove that the elements of L have primary decomposition if and only if every meet irreducible element of L is primary. In a P-ADL L, with a maximal element m, we prove that for each $a \in L$, there exist distinct primes $p_{1}, p_{2}, \ldots, p_{l}$ such that

$$
a \wedge m=p_{1}^{\alpha_{1}} \wedge p_{2}^{\alpha_{2}} \wedge \ldots \wedge p_{l}^{\alpha_{l}} \wedge m=\left(p_{1}^{\alpha_{1}} \cdot p_{2}^{\alpha_{2}} \ldots p_{l}^{\alpha_{l}}\right) \wedge m
$$

We introduce the concepts of normal decomposition and isolated component of an element a in a complete residuated ADL L and also prove the fundamental theorem on primary decompositions.

First we prove the following result in an ADL L.
Theorem 3.1. If an ADL L satisfies the ascending chain condition then every non empty subset of L has a maximal element.

Proof. Suppose L is an ADL satisfying the ascending chain condition. Let S be a non empty subset of L. Assume that S has no maximal element. If $x_{1} \in S$, then x_{1} is not a maximal element. Therefore, there exists an element $x_{2} \in S$ such that $x_{1}<x_{2}$. Again since x_{2} is not a maximal element, there exists an element $x_{3} \in S$ such that $x_{1}<x_{2}<x_{3}$. Proceeding like this, we get a strictly increasing chain $x_{1}<x_{2}<x_{3}<x_{4}<\ldots$ of elements of S in L. This contradicts the fact that every increasing sequence in L is stationary. Hence every non empty subset S of L has a maximal element.

Definition 3.1. Let L be an ADL and L satisfying the ascending chain condition. An element a of L is said to have a meet reprsentation if there exists a finite number of irreducible elements $s_{1}, s_{2}, \ldots, s_{m}$ in L such that $a=s_{1} \wedge s_{2} \wedge \ldots \wedge s_{m}$.

If every element of L has a meet representation, then L is said to have a meet representation.

Let us recall the following definition from [3].
Definition 3.2. ([3]) An element a of a residuated ADL L is said to have a primary decomposition, if there exists primary elements $q_{1}, q_{2}, \ldots, q_{l}$ in L such that $a=q_{1} \wedge q_{2} \wedge \ldots \wedge q_{l}$.

Now, we prove the following result.
Theorem 3.2. Let L be a residuated ADL with a.c.c. Suppose L has a meet representation. Then every element of L has a primary decomposition if and only if every meet irreducible element of L is primary.

Proof. Suppose every element of L has a primary decompositin and p is a meet irreducible element of L. Then there exists primary elements $q_{1}, q_{2}, \ldots, q_{l}$ in L such that $p=q_{1} \wedge q_{2} \wedge \ldots \wedge q_{l}$. Since p is meet irreducible, we get $p=q_{1}$ or $p=q_{2}$ or \ldots or $p=q_{l}$ and hence p is primary.

Now, suppose that every irreducible element of L is primary and $a \in L$. Since L has a meet representation, we can write $a=s_{1} \wedge s_{2} \wedge \ldots \wedge s_{m}$, for irreducible elements $s_{1}, s_{2}, \ldots, s_{m}$ of L. Thus a has a primary decomposition. (Since each s_{i} is a primary element of L)

We have taken the following definition and results from our earlier paper [4].
Definition 3.3. ([4]) Let L be a residuated ADL with a.c.c. and q a primary element of L. A prime element p of L is called the prime corresponding to q if $p \wedge q=q, q \wedge p^{k}=p^{k}$ and $q \wedge p^{k-1} \neq p^{k-1}$, for some $k \in Z^{+}$.

Lemma 3.1 ([4]). Let L be a residuated $A D L$ with a maximal element m and $a, b \in L$ such that $a \wedge m=b \wedge m$. Then $(p \cdot a) \wedge m=(p \cdot b) \wedge m$, for any $p \in L$.

Lemma 3.2 ([4]). Let L be a residuated $A D L$ with a maximal element m and L satisfies the a.c.c. If q is a primary element of L and p is the prime corresponding to q. Then, for any $a \in L,(q: a) \wedge m=q \wedge m$ if and only if $p \wedge a \neq a$.

Theorem 3.3 ([4]). Let L be a $P-A D L$ with a maximal element m. If q is a primary element of L and p is the prime corresponding to q then $q \wedge m=p^{r} \wedge m$, for some $r \in Z^{+}$.

Now, we prove the following in a P-ADL.
Theorem 3.4. Let L be a $P-A D L$ with a maximal element m. Suppose L has a meet representation. Then, for each $a \in L$, there exist distinct primes $p_{1}, p_{2}, \ldots, p_{l}$ in L such that $a \wedge m=p_{1}^{\alpha_{1}} \wedge p_{2}^{\alpha_{2}} \wedge \ldots \wedge p_{l}^{\alpha_{l}} \wedge m$.

Proof. Suppose L is a P-ADL with a maximal element m and $a \in L$. Since L has a meet representation, we can write $a=q_{1} \wedge q_{2} \wedge \ldots \wedge q_{l}$, where q_{i} 's are irreducible elements of L. Since L is a P-ADL, it is a Noether ADL. Since every irreducible element of a Noether ADL is primary, we get that $q_{1}, q_{2}, \ldots, q_{l}$ are primary elements of L. Suppose $p_{1}, p_{2}, \ldots, p_{l}$ be the primes corresponding to $q_{1}, q_{2}, \ldots, q_{l}$, respectively. By Theorem 3.3, we get that

$$
q_{1} \wedge m=p_{1}^{\alpha_{1}} \wedge m, q_{2} \wedge m=p_{2}^{\alpha_{2}} \wedge m, \ldots, q_{l} \wedge m=p_{l}^{\alpha_{l}} \wedge m
$$

for some natural numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}$.

$$
\begin{aligned}
& \text { Now, } \\
& a \wedge m=q_{1} \wedge q_{2} \wedge \ldots \wedge q_{l} \wedge m \\
& =q_{1} \wedge m \wedge q_{2} \wedge m \wedge \ldots \wedge q_{l} \wedge m \\
& =p_{1}^{\alpha_{1}} \wedge m \wedge p_{2}^{\alpha_{2}} \wedge m \wedge \ldots \wedge p_{l}^{\alpha_{l}} \wedge m \\
& =p_{1}^{\alpha_{1}} \wedge p_{2}^{\alpha_{2}} \wedge \ldots \wedge p_{l}^{\alpha_{l}} \wedge m
\end{aligned}
$$

Theorem 3.5. Let L be a $P-A D L$ with a maximal element m and L has a meet representation. Then, for each $a \in L$, there exist distinct primes $p_{1}, p_{2}, \ldots, p_{l}$ in L such that $a \wedge m=\left(p_{1}^{\alpha_{1}} \cdot p_{2}^{\alpha_{2}} \cdot \ldots \cdot p_{l}^{\alpha_{l}}\right) \wedge m$.

Proof. Suppose L is a P-ADL with a maximal element m and L has a meet representation and let $a \in L$. Then, by Theorem 3.4, there exist distinct prime elements $p_{1}, p_{2}, \ldots, p_{l}$ in L such that $a \wedge m=p_{1}^{\alpha_{1}} \wedge p_{2}^{\alpha_{2}} \wedge \ldots \wedge p_{l}^{\alpha_{l}} \wedge m$. We prove that $p_{1}^{\alpha_{1}} \wedge p_{2}^{\alpha_{2}} \wedge \ldots \wedge p_{l}^{\alpha_{l}} \wedge m=\left(p_{1}^{\alpha_{1}} \cdot p_{2}^{\alpha_{2}} \cdot \ldots \cdot p_{l}^{\alpha_{l}}\right) \wedge m, \quad \longrightarrow$ (1) by using induction on l.

Clearly (1) is true for $l=1$. Assume that (1) is true for any $l-1$ distinct primes of L. We select from $p_{1}, p_{2}, \ldots \ldots, p_{l}$ a prime not divisible by any other prime, let it be p_{1}. Then for $2 \leqslant j \leqslant l, p_{j} \wedge p_{1} \neq p_{1}$ and hence $p_{j} \wedge p_{1}^{\alpha_{1}} \neq p_{1}^{\alpha_{1}}$. Hence, by Lemma 3.2, $\left(p_{j}^{\alpha_{j}}: p_{1}^{\alpha_{1}}\right) \wedge m=p_{j}^{\alpha_{j}} \wedge m$. Since $p_{1}^{\alpha_{1}} \wedge m \geqslant a \wedge m$, we get $p_{1}^{\alpha_{1}} \wedge a=a$. Now, $(a \wedge m): p_{1}^{\alpha_{1}}=\left(p_{1}^{\alpha_{1}} \wedge p_{2}^{\alpha_{2}} \wedge \ldots . . \wedge p_{l}^{\alpha_{l}} \wedge m\right): p_{1}^{\alpha_{1}}$. Thus
$\left[(a \wedge m): p_{1}^{\alpha_{1}}\right] \wedge m=\left[\left(p_{1}^{\alpha_{1}} \wedge p_{2}^{\alpha_{2}} \wedge \ldots \ldots \wedge p_{l}^{\alpha_{l}} \wedge m\right): p_{1}^{\alpha_{1}}\right] \wedge m$

$$
=\left(p_{1}^{\alpha_{1}}: p_{1}^{\alpha_{1}}\right) \wedge\left(p_{2}^{\alpha_{2}}: p_{1}^{\alpha_{1}}\right) \wedge \ldots \ldots \wedge\left(p_{l}^{\alpha_{l}}: p_{1}^{\alpha_{1}}\right) \wedge\left(m: p_{1}^{\alpha_{1}}\right) \wedge m
$$

$=p_{2}^{\alpha_{2}} \wedge p_{3}^{\alpha_{3}} \wedge \ldots \ldots \wedge p_{l}^{\alpha_{l}} \wedge m$.
$=\left(p_{2}^{\alpha_{2}} . p_{3}^{\alpha_{3}} \ldots \ldots p_{l}^{\alpha_{l}}\right) \wedge m$. (By induction hypothesis $)$
$\Longrightarrow\left(a: p_{1}^{\alpha_{1}}\right) \wedge\left(m: p_{1}^{\alpha_{1}}\right) \wedge m=\left(p_{2}^{\alpha_{2}} . p_{3}^{\alpha_{3}} \ldots \ldots p_{l}^{\alpha_{l}}\right) \wedge m$.
$\Longrightarrow\left(a: p_{1}^{\alpha_{1}}\right) \wedge m=\left(p_{2}^{\alpha_{2}} \cdot p_{3}^{\alpha_{3}} \ldots \ldots . p_{l}^{\alpha_{l}}\right) \wedge m$. (Since $\left.\left(m: p_{1}^{\alpha_{1}}\right) \wedge m=m\right)$
$\Longrightarrow\left[\left(a: p_{1}^{\alpha_{1}}\right) \cdot p_{1}^{\alpha_{1}}\right] \wedge m=\left[\left(p_{2}^{\alpha_{2}} \cdot p_{3}^{\alpha_{3}} \ldots \ldots . p_{l}^{\alpha_{l}}\right) \cdot p_{1}^{\alpha_{1}}\right] \wedge m=\left(p_{1}^{\alpha_{1}} \cdot p_{2}^{\alpha_{2}} . p_{3}^{\alpha_{3}} \ldots \ldots . p_{l}^{\alpha_{l}}\right) \wedge m$.
(By Lemma 3.1 and by condition M1 of definition 2.6)

$$
\begin{aligned}
& \Longrightarrow a \wedge m=\left(p_{1}^{\alpha_{1}} \cdot p_{2}^{\alpha_{2}} \cdot p_{3}^{\alpha_{3}} \ldots \ldots . p_{l}^{\alpha_{l}}\right) \wedge m .\left(\text { Since } p_{1}^{\alpha_{1}} \text { is principal }\right) \\
& \Longrightarrow p_{1}^{\alpha_{1}} \wedge p_{2}^{\alpha_{2}} \wedge \ldots \ldots . \wedge p_{l}^{\alpha_{l}} \wedge m=\left(p_{1}^{\alpha_{1}} . p_{2}^{\alpha_{2}} \ldots \ldots . p_{l}^{\alpha_{l}}\right) \wedge m
\end{aligned}
$$

Definition 3.4. Let L be a complete residuated ADL with a maximal element m and $a \in L$. A primary decomposition of $a, a=q_{1} \wedge q_{2} \wedge \ldots \ldots \wedge q_{l}$ is said to be reduced if for each $q_{i} \in L, q_{1} \wedge q_{2} \wedge \ldots \ldots \wedge q_{i-1} \wedge q_{i+1} \wedge \ldots \ldots \wedge q_{l} \neq a$.

Definition 3.5. Let L be a complete residuated ADL with a maximal element m and $a \in L$. Suppose $a=q_{1} \wedge q_{2} \wedge \ldots \ldots \wedge q_{l}$ be a primary decomposition of a. If superfluous q_{i} are removed and the primaries with same corresponding primes are combined, we obtain a reduced primary decomposition in which distinct primes corresponding to distinct primaries. Such a primary decomposition is called a normal primary decomposition (or a normal decomposition).

Definition 3.6. Let L be a complete residuated ADL with a maximal element m and $a \in L$. Suppose $a=q_{1} \wedge q_{2} \wedge \ldots \ldots \wedge q_{l}$ be a normal decomposition
of a and $p_{1}, p_{2}, \ldots \ldots, p_{l}$ denote distinct primes corresponding to primary elements $q_{1}, q_{2}, \ldots \ldots, q_{l}$. A subset S of $\left\{p_{1}, p_{2}, \ldots \ldots, p_{l}\right\}$ is said to be isolated if

$$
p_{i} \in S \Longrightarrow p_{j} \in S \text { when ever } p_{i} \wedge p_{j}=p_{j}
$$

In this case, the element $a_{s}=\wedge\left\{q_{i} \wedge m \mid p_{i} \in S\right\}$ is called the isolated component of a corresponding to S.

In the following, we prove the fundamental theorem on primary decompositions.
Theorem 3.6. Let L be a complete residuated ADL with a maximal element m and satisfying the a.c.c. Suppose $a \in L$. Then any two isolated components of a with the same set of corresponding primes are associates to each other.

Proof. Let S be an isolated subset of $\left\{p_{1}, p_{2}, \ldots, p_{l}\right\}$ and $a_{s}=\wedge\left\{q_{i} \wedge m \mid p_{i} \in\right.$ $S\}$ be an isolated component of an element a. Now, let $a=q_{1}{ }^{1} \wedge q_{2}{ }^{1} \wedge . . \wedge q_{l}{ }^{1}$ be another normal decomposition of a and $a_{s}{ }^{1}=\wedge\left\{q_{i}{ }^{1} \wedge m \mid p_{i} \in S\right\}$. Take $b^{1}=\wedge\left\{q_{j}{ }^{1} \wedge m \mid p_{j} \notin S\right\}$. For $1 \leqslant i \leqslant l$, we have $q_{i} \wedge m \geqslant a \wedge m=a_{s}{ }^{1} \wedge b^{1} \wedge m$ $\geqslant\left(a_{s}{ }^{1} \cdot b^{1}\right) \wedge m$. (By property (15) of Lemma 2.4)
$\Longrightarrow q_{i} \wedge\left(a_{s}{ }^{1} \cdot b^{1}\right)=a_{s}{ }^{1} . b^{1}$
$\Longrightarrow q_{i} \wedge a_{s}{ }^{1}=a_{s}{ }^{1}$ or $q_{i} \wedge b^{1^{k}}=b^{1^{k}}$, for some $k \in Z^{+}$. (Since q_{i} is primary)
$\Longrightarrow q_{i} \wedge a_{s}{ }^{1}=a_{s}{ }^{1}$ or $b^{1^{k}}=q_{i} \wedge b^{1 k}=p_{i} \wedge q_{i} \wedge b^{1^{k}}=p_{i} \wedge b^{1^{k}}$, for some $k \in Z^{+}$.
$\Longrightarrow q_{i} \wedge a_{s}{ }^{1}=a_{s}{ }^{1}$ or $p_{i} \wedge b^{1}=b^{1}$. (Since p_{i} is prime)
If $p_{i} \wedge b^{1}=b^{1}=\wedge\left\{q_{j}{ }^{1} \wedge m \mid p_{j} \notin S\right\}$, then
$p_{i} \wedge q_{j}{ }^{1} \wedge m=q_{j}{ }^{1} \wedge m$ and hence $p_{i} \wedge q_{j}{ }^{1}=q_{j}{ }^{1}$, for all j such that $p_{j} \notin S$.
We have $q_{j}{ }^{1} \wedge p_{j}{ }^{k_{j}}=p_{j}{ }^{k_{j}}$, for some $k_{j} \in Z^{+}$. Now, $p_{j}{ }^{k_{j}}=q_{j}{ }^{1} \wedge p_{j}{ }^{k_{j}}=p_{i} \wedge q_{j}{ }^{1} \wedge$ $p_{j}{ }^{k_{j}}=p_{i} \wedge p_{j}^{k_{j}}$. Since p_{i} is prime, we get $p_{i} \wedge p_{j}=p_{j}$. Hence $p_{j} \in S$ if $p_{i} \in S$. This is a contradiction to $p_{j} \notin S$. Therefore, $q_{i} \wedge a_{s}{ }^{1}=a_{s}{ }^{1}$, for all i such that $p_{i} \in S$. Therefore, $\left[\wedge\left\{q_{i} \wedge m \mid p_{i} \in S\right\}\right] \wedge a_{s}{ }^{1}=a_{s}{ }^{1}$. (Since $\left.q_{i} \wedge a_{s}{ }^{1}=a_{s}{ }^{1}\right)$. Hence $a_{s} \wedge a_{s}{ }^{1}=a_{s}{ }^{1}$. Similarly, we get $a_{s}{ }^{1} \wedge a_{s}=a_{s}$. Hence $a_{s} \wedge m=a_{s}{ }^{1} \wedge m$. Thus any two isolated components of an element a are associates to each other.

References

[1] R. P. Dilworth. Abstract residuation over lattices. Bull. Amer. Math. Soc. 44(4) (1938), 262-268.
[2] G. C. Rao. Almost Distributive Lattices. Doctoral Thesis. Deptartment of Mathematics, Andhra University, Visakhapatnam, 1980.
[3] G. C. Rao and S. S. Raju. Noether Almost Distributive Lattices. Bull. Int. Math. Virtual Inst., 9(1)(2019), 39-46.
[4] G. C. Rao and S. S. Raju. Principal Residuated Almost Distributive Lattices. Bull. Int. Math. Virtual Inst., 9(2)(2019), 219-230.
[5] G. C. Rao and S. S. Raju. Residuated Almost Distributive Lattices - I. International Journal of Mathematical Archive, 8(10)(2017), 143-152.
[6] G. C. Rao and S. S. Raju. Residuated Almost Distributive Lattices - II. International Journal of Mathematical Archive, 8(10)(2017), 190-198.
[7] G. C. Rao and Venugopalam Undurthi. Complete almost distributive lattices. Asian-Eur. J. Math. $\mathbf{7}(3)(2014)$, ID: 1450052 (8 pages).
[8] U. M. Swamy and G. C. Rao. Almost Distributive Lattices. J. Aust. Math. Soc. (Series A), 31(1)(1981), 77-91.
[9] M. Ward and R. P. Dilworth. Residuated lattices. Proc. Natl. Acad. Sci. USA, 24(3)(1938), 162-164.
[10] M. Ward and R. P. Dilworth. Residuated lattices. Trans. Am. Math. Soc., 45(3)(1939), 335-354.
[11] M. Ward. Residuated distributive lattices. Duke Math. J., 6(3)(1940), 641-651.
Received by editors 15.07.2020; Revised version 19.03.2020; Available online 30.03.2020.
G. C. Rao: Department of Mathematics, Andhra University, Visakhpatanam - 530003, A.P., India

E-mail address: gcraomaths@yahoo.co.in
S. S. Raju: Department of Mathematics, Andhra University, Visakhpatanam - 530003, A.P.,India

E-mail address: ssrajumaths@gmail.com

[^0]: 2010 Mathematics Subject Classification. 06D99, 06D15.
 Key words and phrases. Almost Distributive Lattice(ADL), Residuation, Multiplication, Residuated ADL, P-ADL, Primary decomposition, Normal decomposition and Isolated component.

