
BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE
ISSN (p) 2303-4874, ISSN (o) 2303-4955
www.imvibl.org /JOURNALS / BULLETIN
Bull. Int. Math. Virtual Inst., Vol. 10(3)(2020), 491-500.

DOI: 10.7251/BIMVI2003491R

Former
BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA

ISSN 0354-5792 (o), ISSN 1986-521X (p)

DECOMPOSITION THEOREMS IN PRINCIPAL

RESIDUATED ALMOST DISTRIBUTIVE LATTICES

G. C. Rao and S. S. Raju

Abstract. In this paper, we introduce the concept of meet representation of
an element in an ADL L with ascending chain condition ( a.c.c.). We prove
decomposition theorems in a P-ADL and introduce the concepts of normal

primary decomposition and isolated component of an element a in a com-
plete residuated ADL L. We also prove the fundamental theorem on primary
decompositions.

1. Introduction

Swamy, U.M. and Rao, G.C. [8] introduced the concept of an Almost Distribu-
tive Lattice as a common abstraction of almost all the existing ring theoretic
generalizations of a Boolean algebra (like regular rings, p−rings, biregular rings,
associate rings, P1−rings etc.) on one hand and distributive lattices on the other.

In [1], Dilworth, R.P., has introduced the concept of a residuation in lattices
and in [9, 10], Ward, M. and Dilworth, R.P., have studied residuated lattices. In
[11], Ward, M. has introduced the concept of a principal residuated lattice (or
simply a P-Lattice) and studied its properties. We introduced the concepts of a
residuation and a multiplication in an ADL and the concept of a residuated ADL
in our earlier paper [5]. We have proved some important properties of residuation
’:’ and multiplication ’·’ in a residuated ADL L in [6]. In [3], we introduced the
concept of Noether ADL. In [4], we introduced the concepts of principal element in
a residuated ADL and a principal residuated almost distributive lattice (or P-ADL).
In this paper, we introduce the concept of meet representation of an element in an
ADL L with ascending chain condition (a.c.c.). We prove decomposition theorems
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in a P-ADL and introduce the concepts of normal primary decomposition and
isolated component of an element a in a complete residuated ADL L. We also
prove the fundamental theorem on primary decompositions.

In Section 2, we recall the definition of an Almost Distributive Lattice (ADL)
and certain elementary properties of an ADL from [2, 8] and some important results
on a residuated almost distributive lattice from our earlier paper [6].

In Section 3, we define meet representation of an element in an ADL L with
a.c.c. If L is a residuated ADL with a.c.c. and L has a meet representation, then
we prove that the elements of L have primary decomposition if and only if every
meet irreducible element of L is primary. In a principal residuated ADL L with a
maximal element m, we prove that for each a ∈ L, there exist distinct primes p1,
p2, ..., pl such that

a ∧ m = pα1
1 ∧ pα2

2 ∧ ... ∧ pαl

l ∧ m = (pα1
1 · pα2

2 · ... · pαl

l ) ∧ m.

We introduce the concepts of normal decomposition and isolated component of an
element a in a complete residuated ADL L and prove that in a complete residu-
ated ADL L, any two isolated components of an element a with the same set of
corresponding primes are assosiates to each other.

2. Preliminaries

In this section we collect a few important definitions and results which are
already known and which will be used more frequently in the paper.

We begin with the definition of an ADL.

Definition 2.1. ([2]). An Almost Distributive Lattice(ADL) is an
algebra (L,∨,∧) of type (2, 2) satisfying

(1) (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c)
(2) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
(3) (a ∨ b) ∧ b = b
(4) (a ∨ b) ∧ a = a
(5) a ∨ (a ∧ b) = a, for all a, b, c ∈ L.

It can be seen directly that every distributive lattice is an ADL. If there is an
element 0 ∈ L such that 0 ∧ a = 0 for all a ∈ L, then (L,∨,∧, 0) is called an ADL
with 0.

Example 2.1. ([2]). Let X be a non-empty set. Fix x0 ∈ X. For any x, y ∈ L,
define

x ∧ y =

{
x0, if x = x0

y, if x ̸= x0
x ∨ y =

{
y, if x = x0

x, if x ̸= x0.

Then (X,∨,∧, x0) is an ADL, with x0 as its zero element. This ADL is called a
discrete ADL.

For any a, b ∈ L, we say that a is less than or equals to b and write a 6 b, if
a ∧ b = a. Then “6” is a partial ordering on L.
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Theorem 2.1 ([2]). Let (L,∨,∧, 0) be an ADL with ’0’. Then, for any a, b ∈ L,
we have

(1) a ∧ 0 = 0 and 0 ∨ a = a
(2) a ∧ a = a = a ∨ a
(3) (a ∧ b) ∨ b = b, a ∨ (b ∧ a) = a and a ∧ (a ∨ b) = a
(4) a ∧ b = a ⇐⇒ a ∨ b = b and a ∧ b = b ⇐⇒ a ∨ b = a
(5) a ∧ b = b ∧ a and a ∨ b = b ∨ a whenever a 6 b
(6) a ∧ b 6 b and a 6 a ∨ b
(7) ∧ is associative in L
(8) a ∧ b ∧ c = b ∧ a ∧ c
(9) (a ∨ b) ∧ c = (b ∨ a) ∧ c
(10) a ∧ b = 0 ⇐⇒ b ∧ a = 0
(11) a ∨ (b ∨ a) = a ∨ b.

It can be observed that an ADL L satisfies almost all the properties of a
distributive lattice except, possible the right distributivity of ∨ over ∧, the com-
mutativity of ∨, the commutativity of ∧ and the absorption law (a ∧ b) ∨ a = a.
Any one of these properties convert L into a distributive lattice.

Theorem 2.2 ([2]). Let (L,∨,∧, 0) be an ADL with 0.
Then the following are equivalent:

(1) (L,∨,∧, 0) is a distributive lattice
(2) a ∨ b = b ∨ a, for all a, b ∈ L
(3) a ∧ b = b ∧ a, for all a, b ∈ L
(4) (a ∧ b) ∨ c = (a ∨ c) ∧ (b ∨ c), for all a, b, c ∈ L.

Proposition 2.1 ([2]). Let (L,∨,∧) be an ADL. Then for any a, b, c ∈ L with
a 6 b, we have

(1) a ∧ c 6 b ∧ c
(2) c ∧ a 6 c ∧ b
(3) c ∨ a 6 c ∨ b.

Definition 2.2. ([2]) An element m ∈ L is called maximal if it is maximal as
in the partially ordered set (L,6). That is, for any a ∈ L, m 6 a implies m = a.

Theorem 2.3 ([2]). Let L be an ADL and m ∈ L. Then the following are
equivalent:

(1) m is maximal with respect to 6
(2) m ∨ a = m, for all a ∈ L (3) m ∧ a = a, for all a ∈ L.

Lemma 2.1 ([2]). Let L be an ADL with a maximal element m and x, y ∈ L.
If x ∧ y = y and y ∧ x = x then x is maximal if and only if y is maximal.Also the
following conditions are equivalent:

(i) x ∧ y = y and y ∧ x = x
(ii) x ∧m = y ∧m.

Definition 2.3. ([7]) If (L,∨,∧, 0,m) is an ADL with 0 and with a maximal
element m, then the set I(L) of all ideals of L is a complete lattice under set
inclusion. In this lattice, for any I, J ∈ I(L), the l.u.b. and g.l.b. of I, J are given
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by I ∨ J = {(x ∨ y) ∧m | x ∈ I, y ∈ J} and I ∧ J = I ∩ J .
The set PI(L) = {(a] | a ∈ L} of all principal ideals of L forms a sublattice of I(L).
(Since (a] ∨ (b] = (a ∨ b] and (a] ∩ (b] = (a ∧ b].)

Definition 2.4. ([7]) An ADL L = (L,∨,∧, 0,m) with a maximal element m
is said to be a complete ADL , if PI(L) is a complete sub lattice of the lattice I(L).

Theorem 2.4 ([7]). Let L = (L,∨,∧, 0,m) be an ADL with a maximal element
m. Then L is a complete ADL if and only if the lattice ([0,m],∨,∧) is a complete
lattice.

In the following, we give the concepts of residuation and multiplication in
an almost distributive lattice (ADL) L and the definition of a residuated almost
distributive lattice taken from our earlier paper [5].

Definition 2.5. ([5]) Let L be an ADL with a maximal element m. A binary
operation : on an ADL L is called a residuation over L if, for a, b, c ∈ L the following
conditions are satisfied.

(R1) a ∧ b = b if and only if a : b is maximal
(R2) a ∧ b = b =⇒ (i) (a : c) ∧ (b : c) = b : c and (ii) (c : b) ∧ (c : a) = c : a
(R3) [(a : b) : c] ∧m = [(a : c) : b] ∧m
(R4) [(a ∧ b) : c] ∧m = (a : c) ∧ (b : c) ∧m
(R5) [c : (a ∨ b)] ∧m = (c : a) ∧ (c : b) ∧m.

Definition 2.6. ([5]) Let L be an ADL with a maximal element m. A binary
operation . on an ADL L is called a multiplication over L if, for a, b, c ∈ L the
following conditions are satisfied.

(M1) (a · b) ∧m = (b · a) ∧m
(M2) [(a · b) · c] ∧m = [a · (b · c)] ∧m
(M3) (a ·m) ∧m = a ∧m
(M4) [a · (b ∨ c)] ∧m = [(a · b) ∨ (a · c)] ∧m.

Definition 2.7. ([5]) An ADL L with a maximal element m is said to be a
residuated almost distributive lattice (residuated ADL), if there exists two binary
operations ’:’ and ’·’ on L satisfying conditions R1 to R5, M1 to M4 and the
following condition (A).

(A) (x : a) ∧ b = b if and only if x ∧ (a · b) = a · b, for any x, a, b ∈ L.

We use the following properties frequently later in the results.

Lemma 2.2 ([5]). Let L be an ADL with a maximal element m and . a binary
operation on L satisfying the conditions M1−M4. Then for any a, b, c, d ∈ L,

(i) a ∧ (a · b) = a · b and b ∧ (a · b) = a · b
(ii) a ∧ b = b =⇒ (c · a) ∧ (c · b) = c · b and (a · c) ∧ (b · c) = b · c
(iii) d ∧ [(a · b) · c] = (a · b) · c if and only if d ∧ [a · (b · c)] = a · (b · c)
(iv) (a · c) ∧ (b · c) ∧ [(a ∧ b) · c] = (a ∧ b) · c
(v) d ∧ (a · c) ∧ (b · c) = (a · c) ∧ (b · c) =⇒ d ∧ [(a ∧ b) · c] = (a ∧ b) · c
(vi) d ∧ [(a · c) ∨ (b · c)] = (a · c) ∨ (b · c) ⇔ d ∧ [(a ∨ b) · c] = (a ∨ b) · c

The following result is a direct consequence of M1 of Definition 2.5.
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Lemma 2.3 ([5]). Let L be an ADL with a maximal element m and · a binary
operation on L satisfying the condition M1. For a, b, x ∈ L, a ∧ (x.b) = x.b if and
only if a ∧ (b · x) = b · x

In the following, we give some important properties of residuation ’:’ and mul-
tiplication ’·’ in a residuated ADL L. These are taken from our earlier paper [6].

Lemma 2.4 ([6]). Let L be a residuated ADL with a maximal element m. For
a, b, c, d ∈ L, the following hold in L.

(1) (a : b) ∧ a = a
(2) [a : (a : b)] ∧ (a ∨ b) = a ∨ b
(3) [(a : b) : c] ∧ [a : (b · c)] = a : (b · c)
(4) [a : (b · c)] ∧ [(a : b) : c] = (a : b) : c
(5) [(a ∧ b) : b] ∧ (a : b) = a : b
(6) (a : b) ∧ [(a ∧ b) : b] = (a ∧ b) : b
(7) [a : (a ∨ b)] ∧m = (a : b) ∧m
(8) [c : (a ∧ b)] ∧ [(c : a) ∨ (c : b)] = (c : a) ∨ (c : b)
(9) If a : b = a then a ∧ (b · d) = b · d =⇒ a ∧ d = d
(10) {a : [a : (a : b)]} ∧ (a : b) = a : b
(11) [(a ∨ b) : c] ∧ [(a : c) ∨ (b : c)] = (a : c) ∨ (b : c)
(12) a ∧m > b ∧m =⇒ (a : c) ∧m > (b : c) ∧m
(13) (a : b) ∧ {a : [a : (a : b)]} = a : [a : (a : b)]
(14) a ∧ b = b =⇒ (a · c) ∧ (b · c) = b · c
(15) a ∧ b ∧ (a · b) = a · b
(16) [(a · b) : a] ∧ b = b
(17) (a · b) ∧ [(a ∧ b) · (a ∨ b)] = (a ∧ b) · (a ∨ b)
(18) a ∨ b is maximal =⇒ (a · b) ∧ a ∧ b = a ∧ b

We recall the following concepts on a residuated ADL L from our earlier paper
[3].

Definition 2.8. ([3]) An element p of a residuated ADL L is called
(i) irreducible, if for any f, g ∈ L, f ∧ g = p =⇒ either f = p or g = p.
(ii) prime, if for any a, b ∈ L, p ∧ (a.b) = a.b =⇒ either p ∧ a = a or p ∧ b = b.
(iii) primary, if for any a, b ∈ L, p∧ (a · b) = a · b and p∧ a ̸= a =⇒ p∧ bs = bs,

for some s ∈ Z+.

Definition 2.9. ([3]) An ADL L is said to satisfy the ascending chain condi-
tion(a.c.c.), if for every increasing sequence x1 6 x2 6 x3 6 ... in L, there exists a
positive integer n such that xn = xn+1 = xn+2 = ...

Definition 2.10. ([3]) Let L be a residuated ADL. An element a of L is called
principal, if b ∈ L and a ∧ b = b, then a · c = b, for some c ∈ L.

Definition 2.11. ([3]) A residuated ADL L is said to be a Noether ADL, if
(N1) the ascending chain condition(a.c.c.) holds in L and

(N2) every irreducible element of L is primary.

Now, we have taken the following definitions from our earlier paper [4].
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Definition 2.12. ([4]) Let L be an ADL and x, y ∈ L.
(i) y is called a divisor of x if y ∧ x = x.
Observe that every maximal element m is a divisor of x, for any x ∈ L and

every associate of x is a divisor of x.
(ii) A divisor y of x other than maximal elements and associates of x is called

a proper divisor of x.

Definition 2.13. ([4]) Let L be an ADL with a maximal element m. An
element x of L is called an associate of y if x∧m = y ∧m (or x is equivalent to y).

Definition 2.14. ([4]) Let L be a residuated ADL with a.c.c. If every element
of L is principal then L is called a Principal Residuated Almost Distributive Lattice
(or P-ADL).

The following Lemma was proved in our earlier paper [3] and is used frequently
later in the results.

Lemma 2.5 ([3]). Let L be a residuated ADL with a maximal element m. If
a, b ∈ L such that a is principal and a ∧ b = b then [(b : a) · a] ∧m = b ∧m.

3. Decomposition Theorems in a P-ADL

In this section, we define meet representation of an element in an ADL L with
a.c.c. If L is a residuated ADL with a.c.c. and if L has a meet representation, then
we prove that the elements of L have primary decomposition if and only if every
meet irreducible element of L is primary. In a P-ADL L, with a maximal element
m, we prove that for each a ∈ L, there exist distinct primes p1, p2, ..., pl such that

a ∧ m = pα1
1 ∧ pα2

2 ∧ ... ∧ pαl

l ∧ m = (pα1
1 · pα2

2 ...pαl

l ) ∧ m.

We introduce the concepts of normal decomposition and isolated component of an
element a in a complete residuated ADL L and also prove the fundamental theorem
on primary decompositions.

First we prove the following result in an ADL L.

Theorem 3.1. If an ADL L satisfies the ascending chain condition then every
non empty subset of L has a maximal element.

Proof. Suppose L is an ADL satisfying the ascending chain condition. Let S
be a non empty subset of L. Assume that S has no maximal element. If x1 ∈ S,
then x1 is not a maximal element. Therefore, there exists an element x2 ∈ S such
that x1 < x2. Again since x2 is not a maximal element, there exists an element
x3 ∈ S such that x1 < x2 < x3. Proceeding like this, we get a strictly increasing
chain x1 < x2 < x3 < x4 < ... of elements of S in L. This contradicts the fact that
every increasing sequence in L is stationary. Hence every non empty subset S of L
has a maximal element. �

Definition 3.1. Let L be an ADL and L satisfying the ascending chain condi-
tion. An element a of L is said to have a meet reprsentation if there exists a finite
number of irreducible elements s1, s2, ..., sm in L such that a = s1 ∧ s2 ∧ ... ∧ sm.
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If every element of L has a meet representation, then L is said to have a meet
representation.

Let us recall the following definition from [3].

Definition 3.2. ([3]) An element a of a residuated ADL L is said to have a
primary decomposition, if there exists primary elements q1, q2, ..., ql in L such that
a = q1 ∧ q2 ∧ ... ∧ ql.

Now, we prove the following result.

Theorem 3.2. Let L be a residuated ADL with a.c.c. Suppose L has a meet
representation. Then every element of L has a primary decomposition if and only
if every meet irreducible element of L is primary.

Proof. Suppose every element of L has a primary decompositin and p is a
meet irreducible element of L. Then there exists primary elements q1, q2, ..., ql in
L such that p = q1 ∧ q2 ∧ ... ∧ ql. Since p is meet irreducible, we get p = q1 or
p = q2 or ... or p = ql and hence p is primary.

Now, suppose that every irreducible element of L is primary and a ∈ L. Since
L has a meet representation, we can write a = s1 ∧ s2 ∧ ... ∧ sm, for irreducible
elements s1, s2, ..., sm of L. Thus a has a primary decomposition. (Since each si is
a primary element of L) �

We have taken the following definition and results from our earlier paper [4].

Definition 3.3. ([4]) Let L be a residuated ADL with a.c.c. and q a primary
element of L. A prime element p of L is called the prime corresponding to q if
p ∧ q = q, q ∧ pk = pk and q ∧ pk−1 ̸= pk−1, for some k ∈ Z+.

Lemma 3.1 ([4]). Let L be a residuated ADL with a maximal element m and
a, b ∈ L such that a ∧ m = b ∧ m. Then (p · a) ∧ m = (p · b) ∧ m, for any p ∈ L.

Lemma 3.2 ([4]). Let L be a residuated ADL with a maximal element m and L
satisfies the a.c.c. If q is a primary element of L and p is the prime corresponding
to q. Then, for any a ∈ L, (q : a) ∧ m = q ∧ m if and only if p ∧ a ̸= a.

Theorem 3.3 ([4]). Let L be a P-ADL with a maximal element m. If q is a
primary element of L and p is the prime corresponding to q then q ∧ m = pr ∧ m,
for some r ∈ Z+.

Now, we prove the following in a P-ADL.

Theorem 3.4. Let L be a P-ADL with a maximal element m. Suppose L has a
meet representation. Then, for each a ∈ L, there exist distinct primes p1, p2, ..., pl
in L such that a ∧ m = pα1

1 ∧ pα2
2 ∧ ... ∧ pαl

l ∧ m.

Proof. Suppose L is a P-ADL with a maximal element m and a ∈ L. Since
L has a meet representation, we can write a = q1 ∧ q2 ∧ ... ∧ ql, where qi’s
are irreducible elements of L. Since L is a P-ADL, it is a Noether ADL. Since
every irreducible element of a Noether ADL is primary, we get that q1, q2, ..., ql
are primary elements of L. Suppose p1, p2, ..., pl be the primes corresponding to
q1, q2, ..., ql, respectively. By Theorem 3.3, we get that
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q1 ∧ m = pα1
1 ∧ m, q2 ∧ m = pα2

2 ∧ m,...,ql ∧ m = pαl

l ∧ m,

for some natural numbers α1, α2, ..., αl.
Now,
a ∧ m = q1 ∧ q2 ∧ ... ∧ ql ∧ m.
= q1 ∧ m ∧ q2 ∧ m ∧ ... ∧ ql ∧ m.
= pα1

1 ∧ m ∧ pα2
2 ∧ m ∧ ... ∧ pαl

l ∧ m.
= pα1

1 ∧ pα2
2 ∧ ... ∧ pαl

l ∧ m. �

Theorem 3.5. Let L be a P-ADL with a maximal element m and L has a meet
representation. Then, for each a ∈ L, there exist distinct primes p1, p2, ..., pl in L
such that a ∧m = (pα1

1 · pα2
2 · ... · pαl

l ) ∧ m.

Proof. Suppose L is a P-ADL with a maximal element m and L has a meet
representation and let a ∈ L. Then, by Theorem 3.4, there exist distinct prime
elements p1, p2, ..., pl in L such that a ∧ m = pα1

1 ∧ pα2
2 ∧ ... ∧ pαl

l ∧ m. We prove
that pα1

1 ∧ pα2
2 ∧ ... ∧ pαl

l ∧ m = (pα1
1 · pα2

2 · ... · pαl

l ) ∧ m, −→ (1) by using
induction on l.

Clearly (1) is true for l = 1. Assume that (1) is true for any l − 1 distinct
primes of L. We select from p1, p2, ......, pl a prime not divisible by any other prime,
let it be p1. Then for 2 6 j 6 l, pj ∧ p1 ̸= p1 and hence pj ∧ pα1

1 ̸= pα1
1 . Hence, by

Lemma 3.2, (p
αj

j : pα1
1 )∧m = p

αj

j ∧m. Since pα1
1 ∧m > a∧m, we get pα1

1 ∧ a = a.

Now, (a ∧m) : pα1
1 = (pα1

1 ∧ pα2
2 ∧ ...... ∧ pαl

l ∧m) : pα1
1 . Thus

[(a ∧m) : pα1
1 ] ∧m = [(pα1

1 ∧ pα2
2 ∧ ...... ∧ pαl

l ∧m) : pα1
1 ] ∧m

= (pα1
1 : pα1

1 ) ∧ (pα2
2 : pα1

1 ) ∧ ...... ∧ (pαl

l : pα1
1 ) ∧ (m : pα1

1 ) ∧m
= pα2

2 ∧ pα3
3 ∧ ...... ∧ pαl

l ∧m.
= (pα2

2 .pα3
3 ......pαl

l ) ∧m. ( By induction hypothesis )
=⇒ (a : pα1

1 ) ∧ (m : pα1
1 ) ∧m = (pα2

2 .pα3
3 ......pαl

l ) ∧m.
=⇒ (a : pα1

1 ) ∧m = (pα2
2 .pα3

3 ......pαl

l ) ∧m. (Since (m : pα1
1 ) ∧m = m)

=⇒ [(a : pα1
1 ).pα1

1 ]∧m = [(pα2
2 .pα3

3 ......pαl

l ).pα1
1 ]∧m = (pα1

1 .pα2
2 .pα3

3 ......pαl

l )∧m.
(By Lemma 3.1 and by condition M1 of definition 2.6)

=⇒ a ∧m = (pα1
1 .pα2

2 .pα3
3 ......pαl

l ) ∧m. ( Since pα1
1 is principal )

=⇒ pα1
1 ∧ pα2

2 ∧ ...... ∧ pαl

l ∧m = (pα1
1 .pα2

2 ......pαl

l ) ∧m. �

Definition 3.4. Let L be a complete residuated ADL with a maximal element
m and a ∈ L. A primary decomposition of a, a = q1 ∧ q2 ∧ ...... ∧ ql is said to be
reduced if for each qi ∈ L, q1 ∧ q2 ∧ ...... ∧ qi−1 ∧ qi+1 ∧ ...... ∧ ql ̸= a.

Definition 3.5. Let L be a complete residuated ADL with a maximal element
m and a ∈ L. Suppose a = q1 ∧ q2 ∧ ...... ∧ ql be a primary decomposition of a.
If superfluous qi are removed and the primaries with same corresponding primes
are combined, we obtain a reduced primary decomposition in which distinct primes
corresponding to distinct primaries. Such a primary decomposition is called a
normal primary decomposition (or a normal decomposition).

Definition 3.6. Let L be a complete residuated ADL with a maximal ele-
ment m and a ∈ L. Suppose a = q1 ∧ q2 ∧ ...... ∧ ql be a normal decomposition
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of a and p1, p2, ......, pl denote distinct primes corresponding to primary elements
q1, q2, ......, ql. A subset S of {p1, p2, ......, pl} is said to be isolated if

pi ∈ S =⇒ pj ∈ S when ever pi ∧ pj = pj .

In this case, the element as = ∧{qi ∧m | pi ∈ S} is called the isolated component
of a corresponding to S.

In the following, we prove the fundamental theorem on primary decompositions.

Theorem 3.6. Let L be a complete residuated ADL with a maximal element
m and satisfying the a.c.c. Suppose a ∈ L. Then any two isolated components of a
with the same set of corresponding primes are associates to each other.

Proof. Let S be an isolated subset of {p1, p2, ..., pl} and as = ∧{qi ∧m | pi ∈
S} be an isolated component of an element a. Now, let a = q1

1 ∧ q2
1 ∧ .. ∧ ql

1

be another normal decomposition of a and as
1 = ∧{qi1 ∧ m | pi ∈ S}. Take

b1 = ∧{qj1 ∧ m | pj /∈ S}. For 1 6 i 6 l, we have qi ∧ m > a ∧ m = as
1 ∧ b1 ∧ m

> (as
1 · b1) ∧ m. ( By property (15) of Lemma 2.4 )

=⇒ qi ∧ (as
1 · b1) = as

1.b1

=⇒ qi ∧ as
1 = as

1 or qi ∧ b1
k
= b1

k
, for some k ∈ Z+. ( Since qi is primary )

=⇒ qi ∧ as
1 = as

1 or b1
k
= qi ∧ b1

k
= pi ∧ qi ∧ b1

k
= pi ∧ b1

k
, for some k ∈ Z+.

=⇒ qi ∧ as
1 = as

1 or pi ∧ b1 = b1. ( Since pi is prime )

If pi ∧ b1 = b1 = ∧{qj1 ∧m | pj /∈ S}, then

pi ∧ qj
1 ∧m = qj

1 ∧m and hence pi ∧ qj
1 = qj

1, for all j such that pj /∈ S.

We have qj
1 ∧ pj

kj = pj
kj , for some kj ∈ Z+. Now, pj

kj = qj
1 ∧ pj

kj = pi ∧ qj
1 ∧

pj
kj = pi ∧ pj

kj . Since pi is prime, we get pi ∧ pj = pj . Hence pj ∈ S if pi ∈ S.
This is a contradiction to pj /∈ S. Therefore, qi ∧ as

1 = as
1, for all i such that

pi ∈ S. Therefore, [∧{qi ∧m | pi ∈ S}] ∧ as
1 = as

1. ( Since qi ∧ as
1 = as

1 ). Hence
as ∧ as

1 = as
1. Similarly, we get as

1 ∧ as = as. Hence as ∧m = as
1 ∧m. Thus any

two isolated components of an element a are associates to each other. �
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