3-TOTAL QUOTIENT LABELING OF SOME GRAPHS

R. Ponraj, J. Maruthamani, and R. Kala

Abstract

In this paper we introduce a new graph labeling method called k Total quotient cordial. Let G be a (p, q) graph. Let $f: V(G) \rightarrow\{1,2, \ldots, k\}$ be a map where $k \in \mathbb{N}$ is a variable and $k>1$. For each edge $u v$, assign the label $\left[\frac{f(u)}{f(v)}\right]$ or $\left[\frac{f(v)}{f(u)}\right]$ according as $f(u) \geqslant f(v)$ or $f(v) \geqslant f(u) . f$ is called k Total quotient cordial labeling of G if $\left|t_{q f}(i)-t_{q f}(j)\right| \leqslant 1, i, j \in\{1,2, \ldots, k\}$ where $t_{q f}(x)$ denotes the total number of vertices and the edges labeled with x. In this paper we investigate the the 3 -total quotient cordial behaviour of some graphs like corona of graphs, fan, ladder, $K D_{n}, P_{n}^{2}$ and $P_{n} \odot K_{2}$.

1. Introduction

We consider graphs in this paper are finite, simple and undirected only. Ponraj. et. al introduced the concept of quotient cordial labeling [4]. Ponraj.R, Maruthamani.J and Kala.R has been recently introduced the k-total quotient cordial labeling [5]. In [5], we prove that every graph is a subgraph of a k-total quotient graph and investigate the 3 -total quotient cordial behaviour of path, cycle, star, bistar and some corona of graphs. In this paper we investigate the the 3 -total quotient cordial behaviour of some graphs like corona of graphs, fan, ladder, $K D_{n}, P_{n}^{2}$ and $P_{n} \odot K_{2}$. Terms not defined are used from Harray [3].

2. k-Total quotient cordial labeling

Definition 2.1. Let G be a (p, q) graph. Let $f: V(G) \rightarrow\{1,2, \ldots, k\}$ be a map where $k \in \mathbb{N}$ is a variable and $k>1$. For each edge $u v$, assign the label $\left[\frac{f(u)}{f(v)}\right]$ or $\left[\frac{f(v)}{f(u)}\right]$ according as $f(u) \geqslant f(v)$ or $f(v) \geqslant f(u) . \quad f$ is called k-Total quotient cordial labeling of G if $\left|t_{q f}(i)-t_{q f}(j)\right| \leqslant 1, i, j \in\{1,2, \ldots, k\}$ where $t_{q f}(x)$ denotes

Key words and phrases. Corona of graphs, fan, ladder, $K D_{n}$ and $P_{n} \odot K_{2}$.
the total number of vertices and the edges labeled with x. A graph with k-total quotient cordial labeling is called k-total quotient cordial graph.

3. Preliminaries

Definition 3.1. Let G_{1}, G_{2} respectively be $\left(p_{1}, q_{1}\right)$, $\left(p_{2}, q_{2}\right)$ graphs. The corona of G_{1} with G_{2} is the graph $G_{1} \odot G_{2}$ obtained by taking one copy of G_{1}, p_{1} copies of G_{2} and joining the $i^{t h}$ vertex of G_{1} by an edge to every vertex in the $i^{t h}$ copy of G_{2} where $1 \leqslant i \leqslant p_{1}$.

Definition 3.2. The graph $F_{n}=P_{n}+K_{1}$ is called a Fan graph where P_{n} : $u_{1} u_{2} \ldots u_{n}$ is a Path and $V\left(K_{1}\right)=u$.

Definition 3.3. The graph $L_{n}=P_{n} \times P_{2}$ is called a Ladder.
Definition 3.4. The cartesian product of two graphs G_{1} and G_{2} is the graph $G_{1} \times G_{2}$ with vertex set $V_{1} \times V_{2}$ and two vertices $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$ are adjacent whenever $\left[u_{1}=v_{1}\right.$ and u_{2} adj $\left.v_{2}\right]$ or $\left[u_{2}=v_{2}\right.$ and u_{1} adj v_{1}].

Definition 3.5. The graph $K D_{n}$ is obtained from two copies of the path $P_{n}: u_{1} u_{2} \ldots u_{n}$ and $P_{n}: v_{1} v_{2} \ldots v_{n}$ with $V\left(K D_{n}\right)=\left\{u, u_{i}, v_{i}: 1 \leqslant i \leqslant n\right\}$ and $E\left(K D_{n}\right)=\left\{u_{i} u_{i+1}, v_{i} v_{i+1}: 1 \leqslant i \leqslant n-1\right\} \cup\left\{u u_{i}, v v_{i}: 1 \leqslant i \leqslant n\right\}$.

Definition 3.6. For a simple connected graph G the square of graph G is denoted by G^{2} and defined as the graph with the same vertex set as of G and two vertices are adjacent in G^{2} if they are at a distance 1 or 2 apart in G.

4. Main Results

Theorem 4.1. The graph F_{n} is 3 -total quotient cordial iff $n \not \equiv 1(\bmod 3)$ where n is odd.

Proof. The graph $F_{n}=P_{n}+K_{1}$ where $P_{n}: u_{1} u_{2} \ldots u_{n}$ is a Path and $V\left(K_{1}\right)=$ u. Clearly, $\left|V\left(F_{n}\right)\right|+\left|E\left(F_{n}\right)\right|=3 n$.

Case 1. $n \equiv 0(\bmod 3)$.
Let $n=3 r, r \in \mathbb{N}$. Assign the label 1 to the vertex u. Now we assign the labels 3,1 and 2 respectively to the vertices u_{1}, u_{2} and u_{3}. Next we assign the labels 3 , 1 and 2 to the next three vertices u_{4}, u_{5} and u_{6} respectively. Proceeding like this until we reach the last vertex $u_{3 r}$. Clearly the last vertex $u_{3 r}$ receives the label 2 in this labeling pattern. It is easy to verify that $t_{q f}(1)=t_{q f}(2)=t_{q f}(3)=3 r$.

Case 2. $n \equiv 1(\bmod 3)$.
Let $n=3 r+1, n$ is even and $r \in \mathbb{N}$. Assign the label 3 to the vertices $u_{1}, u_{2}, \ldots, u_{\frac{3 r+1}{2}}$. Next we assign the label 2 to the vertices $u_{\frac{3 r+1}{2}+1}, u_{\frac{3 r+1}{2}+2}, \ldots, u_{3 r+1}$. Here $t_{q f}(1)^{2}=$ $t_{q f}(2)=t_{q f}(3)=3 r+1$.

Case 3. $n \not \equiv 1(\bmod 3)$, when n is odd.
Suppose f is a 3-total quotient cordial labelling of F_{n} then $t_{q f}(1)=t_{q f}(2)=$ $t_{q f}(3)=n$.

Subcase 3.1. $f(u)=1$.

To get the edge label 3 , then 3 should be adjacent to the vertex which is labelled by 1. If we assign the label 3 to the first $r+1$ vertices starts from u_{1} and label 2 to the remaining vertices, then $t_{q f}(3)<n, t_{q f}(2)>n$ and $t_{q f}(1)=n$, a contradiction. Next 3 is label to the alternating vertices and 2 is label to the remaining vertices then $t_{q f}(3)>n, t_{q f}(2)<n$ and $t_{q f}(1)=n$. This is the maximum possible to get the value of $t_{f}(3)$ and $t_{q f}(2)$ nearest to n, a contradiction.

Subcase 3.2. $f(u)=3$.

Subcase 3.2(a).

3 is label to the consecutive vertices $u_{1}, u_{2}, \ldots, u_{r+1}$ and remaining vertices are labelled by 2 , then $t_{q f}(3)<n, t_{q f}(2)<n$ and $t_{q f}(1)>n$, a contradiction.

Subcase 3.2(b).
1 and 3 is label to the vertices u_{1} and u_{2} respectively. Next label 1 to the alternating vertices starts from u_{3} and the remaining vertices are labelled by 2 , then $t_{q f}(3)>n$, $t_{q f}(2)>n$ and $t_{q f}(1)=n$, a contradiction.

Subcase 3.2(c).

3 is label to the alternating vertices and 2 is label to the remaining vertices, then $t_{q f}(3)<n, t_{q f}(2)<n$ and $t_{q f}(1)>n$, a contradiction

Subcase 3.3.

The proof is symmetry to subcase 2 of case 4 .
Case 4. $n \equiv 2(\bmod 3)$.
Let $n=3 r+2, r \in \mathbb{N}$. As in case 1 , assign the same labelling scheme for the vertices u and $u_{i}(1 \leqslant i \leqslant 3 r)$. Finally, we assign the labels 3,2 to the vertices $u_{3 r+1}$ and $u_{3 r+2}$ respectively. Clearly $t_{q f}(1)=t_{q f}(2)=t_{q f}(3)=3 r+2$.

Case 5. $n=2$.
A 3 -total quotient cordial labeling of F_{2} is given in Figure 1.

Figure 1

Theorem 4.2. The graph $K D_{n}$ is 3 -total quotient cordial for all n.
Proof. The graph $K D_{n}$ is obtained from two copies of the path $P_{n}: u_{1} u_{2} \ldots u_{n}$ and $P_{n}: v_{1} v_{2} \ldots v_{n}$ with $V\left(K D_{n}\right)=\left\{u, u_{i}, v_{i}: 1 \leqslant i \leqslant n\right\}$ and $E\left(K D_{n}\right)=$ $\left\{u_{i} u_{i+1}, v_{i} v_{i+1}: 1 \leqslant i \leqslant n-1\right\} \cup\left\{u u_{i}, v v_{i}: 1 \leqslant i \leqslant n\right\}$. Clearly $\left|V\left(K D_{n}\right)\right|+$ $\left|E\left(K D_{n}\right)\right|=6 n-1$.

Case 1. $n \equiv 0(\bmod 3)$.
Let $n=3 r, r \in \mathbb{N}$. Assign the label 1 to the vertex u. Now we consider the vertices $u_{i}(1 \leqslant i \leqslant 3 r)$. Then we assign the labels 3,1 and 2 respectively to the vertices u_{1}, u_{2} and u_{3}. Next we assign the labels 3,1 and 2 to the next three vertices u_{4}, u_{5}
and u_{6} respectively. Proceeding like this until we reach the last vertex $u_{3 r}$. Clearly the last vertex $u_{3 r}$ receives the label 2 in this labeling pattern. Next we move to the pendent vertices $v_{i}(1 \leqslant i \leqslant 3 r)$. Assign the label 1 to the vertex u. Now we assign the labels 3,1 and 2 respectively to the vertices v_{1}, v_{2} and v_{3}. Next we assign the labels 3,1 and 2 to the next three vertices v_{4}, v_{5} and v_{6} respectively. Proceeding like this until we reach the last vertex $v_{3 r}$. Clearly the last vertex $v_{3 r}$ receives the label 2 in this labeling scheme. Here $t_{q f}(1)=6 r-1$ and $t_{q f}(2)=t_{q f}(3)=6 r$.

Case 2. $n \equiv 1(\bmod 3)$.
Let $n=3 r+1, r \in \mathbb{N}$. As in case 1 , assign the same labeling method to the vertices u, $u_{i}(1 \leqslant i \leqslant 3 r)$ and $v_{i}(1 \leqslant i \leqslant 3 r)$. Finally, we assign the labels 2,3 to the vertices $u_{3 r+1}$ and $v_{3 r+2}$ respectively. Clearly $t_{q f}(1)=6 r+1$ and $t_{q f}(2)=t_{q f}(3)=6 r+2$.

Case 3. $n \equiv 2(\bmod 3)$.
Let $n=3 r+2, r \in \mathbb{N}$. Assign the same labeling pattern to the vertices u, u_{i} $(1 \leqslant i \leqslant 3 r+1)$ and $v_{i}(1 \leqslant i \leqslant 3 r+1)$ as in case 2 . Next, we assign the labels 2,3 respectively to the vertices $u_{3 r+1}$ and $v_{3 r+2}$. It is easy to verify that $t_{q f}(1)=6 r+3$ and $t_{q f}(2)=t_{q f}(3)=6 r+4$.
Case 4. $n=2$.
A 3-total quotient cordial labeling of $K D_{2}$ is given in Figure 2.

Figure 2

Theorem 4.3. If $n \equiv 0,1(\bmod 3)$, then P_{n}^{2} is 3 -total quotient cordial.
Proof. Let $u_{1} u_{2} \ldots u_{n}$ be the path. Let u_{i} is adjacent to $u_{i+2},(1 \leqslant i \leqslant n-2)$. Clearly $\left|V\left(P_{n}^{2}\right)\right|+\left|E\left(P_{n}^{2}\right)\right|=3 n-3$.

Case 1. $n \equiv 0(\bmod 3)$.
Let $n=3 r, r \in \mathbb{N}$. Assign the labels 3,1 and 2 respectively to the vertices u_{1}, u_{2} and u_{3}. Next we assign the labels 3,1 and 2 to the next three vertices u_{4}, u_{5} and u_{6} respectively. Proceeding like until we reach the last vertex $u_{3 r}$. Clearly the last vertex $u_{3 r}$ receives the label 2 in this labeling pattern. It is easy to verify that $t_{q f}(1)=t_{q f}(2)=t_{q f}(3)=3 r-1$.

Case 2. $n \equiv 1(\bmod 3)$.
Let $n=3 r+1, r \in \mathbb{N}$. Assign the labels $3,1,1,2$ to the vertices u_{1}, u_{2}, u_{3} and u_{4} respectively. Next we assign the labels 3,1 and 2 respectively to the vertices u_{5}, u_{6} and u_{7}. Next we assign the labels 3,1 and 2 to the next three vertices u_{8}, u_{9} and u_{10} respectively. Proceeding like until we reach the last vertex $u_{3 r+1}$.

Clearly the last vertex $u_{3 r+1}$ receives the label 2 in this labeling pattern. Clearly $t_{q f}(1)=t_{q f}(2)=t_{q f}(3)=3 r$.

Theorem 4.4. The ladder L_{n} is 3 -total quotient cordial for all n.
Proof. Let $V\left(L_{n}\right)=\left\{u_{i}, v_{i}: 1 \leqslant i \leqslant n\right\}$ and $E\left(L_{n}\right)=\left\{u_{i} u_{i+1}, v_{i} v_{i+1}: 1 \leqslant\right.$ $i \leqslant n-1\} \cup\left\{u_{i} v_{i}: 1 \leqslant i \leqslant n\right\}$. Clearly $\left|V\left(L_{n}\right)\right|+\left|E\left(L_{n}\right)\right|=5 n-2$.

Case 1. $n \equiv 0(\bmod 3)$.
Let $n=3 r, r \in \mathbb{N}$. Assign the labels 3,1 and 2 respectively to the vertices u_{1}, u_{2} and u_{3}. Next we assign the labels 3,1 and 2 to the next three vertices u_{4}, u_{5} and u_{6} respectively. Proceeding like until we reach the last vertex $u_{3 r}$. Clearly the last vertex $u_{3 r}$ receives the label 2 in this labeling pattern. Next we consider the vertices $v_{i}(1 \leqslant i \leqslant 3 r)$. Assign the labels 1,2 and 3 respectively to the vertices v_{1}, v_{2} and v_{3}. Next we assign the labels 1,2 and 3 to the next three vertices v_{4}, v_{5} and v_{6} respectively. Proceeding like until we reach the last vertex $v_{3 r}$. Clearly the last vertex $v_{3 r}$ receives the label 3 in this labeling scheme. It is easy to verify that $t_{q f}(1)=t_{q f}(2)=5 r$ and $t_{q f}(3)=5 r-1$.

Case 2. $n \equiv 1(\bmod 3)$.
Let $n=3 r+1, r \in \mathbb{N}$. As in case 1 , assign the same labeling technique to the vertices $u_{i}(1 \leqslant i \leqslant 3 r)$ and $v_{i}(1 \leqslant i \leqslant 3 r)$. Finally we assign the labels 2,1 to the vertices $u_{3 r+1}$ and $v_{3 r+1}$ respectively. Clearly $t_{q f}(1)=t_{q f}(2)=t_{q f}(3)=5 r+1$.

Case 3. $n \equiv 2(\bmod 3)$.
Let $n=3 r+2, r \in \mathbb{N}$. As in case 2, assign the same labeling pattern to the vertices $u_{i}(1 \leqslant i \leqslant 3 r+1)$ and $v_{i}(1 \leqslant i \leqslant 3 r+1)$. Finally we assign the labels 3,2 to the vertices $u_{3 r+2}$ and $v_{3 r+2}$ respectively. Here $t_{q f}(1)=t_{q f}(3)=5 r+3$ and $t_{q f}(2)=5 r+2$.

Case 4. $n=2$.
A 3-total quotient cordial labeling of L_{2} is given in Figure 3.

Figure 3

Theorem 4.5. The graph $P_{n} \odot K_{2}$ is 3-total quotient cordial for all n.
Proof. Let $V\left(P_{n} \odot K_{2}\right)=\left\{u_{i}, v_{i}, w_{i}: 1 \leqslant i \leqslant n\right\}$ and $E\left(P_{n} \odot K_{2}\right)=$ $\left\{u_{i} v_{i}, u_{i} w_{i}, v_{i} w_{i}: 1 \leqslant i \leqslant n\right\} \cup\left\{u_{i} u_{i+1}: 1 \leqslant i \leqslant n-1\right\}$. Obviously $\left|V\left(P_{n} \odot K_{2}\right)\right|+$ $\left|E\left(P_{n} \odot K_{2}\right)\right|=7 n-1$.

Case 1. $n \equiv 0(\bmod 3)$.

Let $n=3 r, r \in \mathbb{N}$. Assign the labels 3,1 and 2 respectively to the vertices u_{1}, u_{2} and u_{3}. Next we assign the labels 3,1 and 2 to the next three vertices u_{4}, u_{5} and u_{6} respectively. Proceeding like until we reach the last vertex $u_{3 r}$. Clearly the last vertex $u_{3 r}$ receives the label 2 in this labeling pattern. Next we consider the vertices $v_{i}(1 \leqslant i \leqslant 3 r)$. Assign the labels 1,3 and 1 respectively to the vertices v_{1}, v_{2} and v_{3}. Next we assign the labels 1,3 and 1 to the next three vertices v_{4}, v_{5} and v_{6} respectively. Proceeding like until we reach the last vertex $v_{3 r}$. Clearly the last vertex $v_{3 r}$ receives the label 1 in this labeling scheme. Now we move to the vertices $w_{i}(1 \leqslant i \leqslant 3 r)$. Assign the labels 3,2 and 2 respectively to the vertices w_{1}, w_{2} and w_{3}. Next we assign the labels 3,2 and 2 to the next three vertices w_{4}, w_{5} and w_{6} respectively. Proceeding like until we reach the last vertex $w_{3 r}$. Clearly the last vertex $w_{3 r}$ receives the label 2 in this labeling technique. It is easy to verify that $t_{q f}(1)=7 r-1$ and $t_{q f}(2)=t_{q f}(3)=7 r$.

Case 2. $n \equiv 1(\bmod 3)$.
Let $n=3 r+1, r \in \mathbb{N}$. As in case 1 , assign the same labeling technique to the vertices $u_{i}(1 \leqslant i \leqslant 3 r), v_{i}(1 \leqslant i \leqslant 3 r)$ and $w_{i}(1 \leqslant i \leqslant 3 r)$. Finally we assign the labels $1,3,2$ to the vertices $u_{3 r+1}, v_{3 r+1}$ and $w_{3 r+1}$ respectively. Clearly $t_{q f}(1)=t_{q f}(2)=t_{q f}(3)=7 r+2$.

Case 3. $n \equiv 2(\bmod 3)$.
Let $n=3 r+2, r \in \mathbb{N}$. Assign the same labeling pattern to the vertices $u_{i}(1 \leqslant$ $i \leqslant 3 r+1), v_{i}(1 \leqslant i \leqslant 3 r+1)$ and $w_{i}(1 \leqslant i \leqslant 3 r+1)$ by case 2 . Finally we assign the labels $1,3,2$ to the vertices $u_{3 r+2}, v_{3 r+2}$ and $w_{3 r+2}$ respectively. Clearly $t_{q f}(1)=7 r+5$ and $t_{q f}(2)=t_{q f}(3)=7 r+4$.

Case 4. $n=2$.
A 3-total quotient cordial labeling of $P_{n} \odot K_{2}$ is given in Figure 4.

Figure 4

Corollary 4.1. The graph $C_{n} \odot K_{2}$ is 3 -total quotient cordial for all n.
Proof. Let $V\left(P_{n} \odot K_{2}\right)=\left\{u_{i}, v_{i}, w_{i}: 1 \leqslant i \leqslant n\right\}$ and $E\left(P_{n} \odot K_{2}\right)=$ $\left\{u_{1} u_{n}, v_{1} v_{n}\right\} \cup\left\{u_{i} v_{i}, u_{i} w_{i}, v_{i} w_{i}: 1 \leqslant i \leqslant n\right\} \cup\left\{u_{i} u_{i+1}: 1 \leqslant i \leqslant n-1\right\}$. Clearly $\left|V\left(C_{n} \odot K_{2}\right)\right|+\left|E\left(C_{n} \odot K_{2}\right)\right|=7 n$.

Case 1. $n \equiv 0(\bmod 3)$.
Let $n=3 r, r \in \mathbb{N}$. The vertex labelled in case 1 of Theorem 4.5 is also a 3 -total quotient cordial of $C_{n} \odot K_{2}$. Here $t_{q f}(1)=t_{q f}(2)=t_{q f}(3)=7 r$.

Case 2. $n \equiv 1(\bmod 3)$.

Let $n=3 r+1, r \in \mathbb{N}$. Assign the same labeling technique in case 2 of Theorem 4.5 is also a 3-total quotient cordial of $C_{n} \odot K_{2}$. It is easy to verify that $t_{q f}(1)=$ $t_{q f}(2)=7 r+2$ and $t_{q f}(3)=7 r+3$.

Case 3. $n \equiv 3(\bmod 3)$.
Let $n=3 r+2, r \in \mathbb{N}$. Assign the same labeling pattern in case 3 of Theorem 4.5 is also a 3-total quotient cordial of $C_{n} \odot K_{2}$. Clearly $t_{q f}(1)=7 r+4$ and $t_{q f}(2)=t_{q f}(3)=7 r+5$.

Example 4.1. A 3-total quotient cordial labeling of $C_{5} \odot K_{2}$ is given in Figure 5.

Figure 5

References

[1] I. Cahit. Cordial graphs: A weaker version of graceful and harmonious graphs. Ars Combinatoria 23 (1987), 201-207.
[2] J. A. Gallian. A dynamic survey of graph labeling. The Electronic Journal of Combinatorics 19 (2019), 000-000.
[3] F. Harary. Graph theory. Addision wesley, New Delhi, 1969.
[4] R. Ponraj, M. Sivakumar and R. Singh. k-quotient cordial labeling of graphs. Palestine Journal of Mathematics 8(1) (2019), 361-366.
[5] R. Ponraj, J. Maruthamani and R. Kala. k-total quotient cordial labeling of graphs. Journal of Applied and Pure Mathematics, 1(3-4)(2019), 157-165.
R. Ponraj. Department of Mathematics, Sri Paramakalyani College, Alwarkurichi627412, Tamilnadu, India

E-mail address: ponrajmaths@gmail.com
J. Maruthamani. Research Scholar, Register number: 18124012091054, Department of Mathematics, Manonmaniam sundarnar university, Abishekapatti, Tirunelveli-627 012, Tamilnadu, India

E-mail address: mmani2011@gmail.com
R. Kala. Department of Mathematics, Manonmaniam sundarnar university, Abishekapatti, Tirunelveli-627 012, Tamilnadu, India

E-mail address: karthipyi91@yahoo.co.in

