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3-TOTAL QUOTIENT LABELING OF SOME GRAPHS

R. Ponraj, J. Maruthamani, and R. Kala

Abstract. In this paper we introduce a new graph labeling method called k-

Total quotient cordial. Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k}
be a map where k ∈ N is a variable and k > 1. For each edge uv, assign the

label
[

f(u)
f(v)

]

or
[

f(v)
f(u)

]

according as f(u) > f(v) or f(v) > f(u). f is called k-

Total quotient cordial labeling of G if
∣

∣tqf (i) − tqf (j)
∣

∣ 6 1, i, j ∈ {1, 2, . . . , k}

where tqf (x) denotes the total number of vertices and the edges labeled with
x. In this paper we investigate the the 3-total quotient cordial behaviour of
some graphs like corona of graphs, fan, ladder, KDn, P 2

n and Pn ⊙ K2.

1. Introduction

We consider graphs in this paper are finite, simple and undirected only. Pon-
raj. et. al introduced the concept of quotient cordial labeling [4]. Ponraj.R,
Maruthamani.J and Kala.R has been recently introduced the k-total quotient cor-
dial labeling [5]. In [5], we prove that every graph is a subgraph of a k-total quotient
graph and investigate the 3-total quotient cordial behaviour of path, cycle, star,
bistar and some corona of graphs. In this paper we investigate the the 3-total quo-
tient cordial behaviour of some graphs like corona of graphs, fan, ladder, KDn, P 2

n

and Pn ⊙ K2. Terms not defined are used from Harray [3].

2. k-Total quotient cordial labeling

Definition 2.1. Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a

map where k ∈ N is a variable and k > 1. For each edge uv, assign the label
[

f(u)
f(v)

]

or
[

f(v)
f(u)

]

according as f(u) > f(v) or f(v) > f(u). f is called k-Total quotient

cordial labeling of G if |tqf (i) − tqf (j)| 6 1, i, j ∈ {1, 2, . . . , k} where tqf (x) denotes
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the total number of vertices and the edges labeled with x. A graph with k-total
quotient cordial labeling is called k-total quotient cordial graph.

3. Preliminaries

Definition 3.1. Let G1, G2 respectively be (p1, q1), (p2, q2) graphs. The
corona of G1 with G2 is the graph G1 ⊙G2 obtained by taking one copy of G1 , p1

copies of G2 and joining the ith vertex of G1 by an edge to every vertex in the ith

copy of G2 where 1 6 i 6 p1.

Definition 3.2. The graph Fn = Pn + K1 is called a Fan graph where Pn :
u1u2 . . . un is a Path and V (K1) = u.

Definition 3.3. The graph Ln = Pn × P2 is called a Ladder .

Definition 3.4. The cartesian product of two graphs G1 and G2 is the graph
G1 × G2 with vertex set V1 × V2 and two vertices u = (u1, u2) and v = (v1, v2) are
adjacent whenever [u1 = v1 and u2 adj v2] or [u2 = v2 and u1 adj v1].

Definition 3.5. The graph KDn is obtained from two copies of the path
Pn : u1u2 . . . un and Pn : v1v2 . . . vn with V (KDn) = {u, ui, vi : 1 6 i 6 n} and
E(KDn) = {uiui+1, vivi+1 : 1 6 i 6 n − 1} ∪ {uui, vvi : 1 6 i 6 n}.

Definition 3.6. For a simple connected graph G the square of graph G is
denoted by G2 and defined as the graph with the same vertex set as of G and two
vertices are adjacent in G2 if they are at a distance 1 or 2 apart in G.

4. Main Results

Theorem 4.1. The graph Fn is 3-total quotient cordial iff n 6≡ 1 (mod 3) where

n is odd.

Proof. The graph Fn = Pn+K1 where Pn : u1u2 . . . un is a Path and V (K1) =
u. Clearly, |V (Fn)| + |E(Fn)| = 3n.

Case 1. n ≡ 0 (mod 3).
Let n = 3r, r ∈ N. Assign the label 1 to the vertex u. Now we assign the labels
3, 1 and 2 respectively to the vertices u1, u2 and u3. Next we assign the labels 3,
1 and 2 to the next three vertices u4, u5 and u6 respectively. Proceeding like this
until we reach the last vertex u3r. Clearly the last vertex u3r receives the label 2
in this labeling pattern. It is easy to verify that tqf (1) = tqf (2) = tqf (3) = 3r.

Case 2. n ≡ 1 (mod 3).
Let n = 3r+1, n is even and r ∈ N. Assign the label 3 to the vertices u1, u2, . . . , u 3r+1

2

.

Next we assign the label 2 to the vertices u 3r+1

2
+1, u 3r+1

2
+2, . . . , u3r+1. Here tqf (1) =

tqf (2) = tqf (3) = 3r + 1.
Case 3. n 6≡ 1 (mod 3), when n is odd.

Suppose f is a 3-total quotient cordial labelling of Fn then tqf (1) = tqf (2) =
tqf (3) = n.

Subcase 3.1. f(u) = 1.
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To get the edge label 3, then 3 should be adjacent to the vertex which is labelled by
1. If we assign the label 3 to the first r+1 vertices starts from u1 and label 2 to the
remaining vertices , then tqf (3) < n, tqf (2) > n and tqf (1) = n, a contradiction.
Next 3 is label to the alternating vertices and 2 is label to the remaining vertices
then tqf (3) > n, tqf (2) < n and tqf (1) = n. This is the maximum possible to get
the value of tf (3) and tqf (2) nearest to n, a contradiction.

Subcase 3.2. f(u) = 3.
Subcase 3.2(a).

3 is label to the consecutive vertices u1, u2, . . . , ur+1 and remaining vertices are
labelled by 2, then tqf (3) < n, tqf (2) < n and tqf (1) > n, a contradiction.

Subcase 3.2(b).
1 and 3 is label to the vertices u1 and u2 respectively. Next label 1 to the alternating
vertices starts from u3 and the remaining vertices are labelled by 2, then tqf (3) > n,
tqf (2) > n and tqf (1) = n, a contradiction.

Subcase 3.2(c).
3 is label to the alternating vertices and 2 is label to the remaining vertices, then
tqf (3) < n, tqf (2) < n and tqf (1) > n, a contradiction

Subcase 3.3.
The proof is symmetry to subcase 2 of case 4.

Case 4. n ≡ 2 (mod 3).
Let n = 3r + 2, r ∈ N. As in case 1, assign the same labelling scheme for the
vertices u and ui (1 6 i 6 3r). Finally, we assign the labels 3, 2 to the vertices
u3r+1 and u3r+2 respectively. Clearly tqf (1) = tqf (2) = tqf (3) = 3r + 2.

Case 5. n = 2.
A 3-total quotient cordial labeling of F2 is given in Figure 1.

b

b b

1

23

Figure 1

�

Theorem 4.2. The graph KDn is 3-total quotient cordial for all n.

Proof. The graph KDn is obtained from two copies of the path Pn : u1u2 . . . un

and Pn : v1v2 . . . vn with V (KDn) = {u, ui, vi : 1 6 i 6 n} and E(KDn) =
{uiui+1, vivi+1 : 1 6 i 6 n − 1} ∪ {uui, vvi : 1 6 i 6 n}. Clearly |V (KDn)| +
|E(KDn)| = 6n − 1.

Case 1. n ≡ 0 (mod 3).
Let n = 3r, r ∈ N. Assign the label 1 to the vertex u. Now we consider the vertices
ui (1 6 i 6 3r). Then we assign the labels 3, 1 and 2 respectively to the vertices
u1, u2 and u3. Next we assign the labels 3, 1 and 2 to the next three vertices u4, u5
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and u6 respectively. Proceeding like this until we reach the last vertex u3r. Clearly
the last vertex u3r receives the label 2 in this labeling pattern. Next we move to the
pendent vertices vi (1 6 i 6 3r). Assign the label 1 to the vertex u. Now we assign
the labels 3, 1 and 2 respectively to the vertices v1, v2 and v3. Next we assign the
labels 3, 1 and 2 to the next three vertices v4, v5 and v6 respectively. Proceeding
like this until we reach the last vertex v3r. Clearly the last vertex v3r receives the
label 2 in this labeling scheme. Here tqf (1) = 6r − 1 and tqf (2) = tqf (3) = 6r.

Case 2. n ≡ 1 (mod 3).
Let n = 3r + 1, r ∈ N. As in case 1, assign the same labeling method to the
vertices u, ui (1 6 i 6 3r) and vi (1 6 i 6 3r). Finally, we assign the labels
2, 3 to the vertices u3r+1 and v3r+2 respectively. Clearly tqf (1) = 6r + 1 and
tqf (2) = tqf (3) = 6r + 2.

Case 3. n ≡ 2 (mod 3).
Let n = 3r + 2, r ∈ N. Assign the same labeling pattern to the vertices u, ui

(1 6 i 6 3r +1) and vi (1 6 i 6 3r +1) as in case 2. Next, we assign the labels 2, 3
respectively to the vertices u3r+1 and v3r+2 . It is easy to verify that tqf (1) = 6r+3
and tqf (2) = tqf (3) = 6r + 4.
Case 4. n = 2.
A 3-total quotient cordial labeling of KD2 is given in Figure 2.

b

b b

bb

1

3
2

23

Figure 2

�

Theorem 4.3. If n ≡ 0, 1 (mod 3), then P 2
n is 3-total quotient cordial.

Proof. Let u1u2 . . . un be the path. Let ui is adjacent to ui+2, (1 6 i 6 n−2).
Clearly

∣

∣V (P 2
n)

∣

∣ +
∣

∣E(P 2
n)

∣

∣ = 3n − 3.
Case 1. n ≡ 0 (mod 3).

Let n = 3r, r ∈ N. Assign the labels 3, 1 and 2 respectively to the vertices u1,
u2 and u3. Next we assign the labels 3, 1 and 2 to the next three vertices u4, u5

and u6 respectively. Proceeding like until we reach the last vertex u3r. Clearly the
last vertex u3r receives the label 2 in this labeling pattern. It is easy to verify that
tqf (1) = tqf (2) = tqf (3) = 3r − 1.

Case 2. n ≡ 1 (mod 3).
Let n = 3r + 1, r ∈ N. Assign the labels 3, 1, 1, 2 to the vertices u1, u2, u3 and
u4 respectively. Next we assign the labels 3, 1 and 2 respectively to the vertices
u5, u6 and u7. Next we assign the labels 3, 1 and 2 to the next three vertices
u8, u9 and u10 respectively. Proceeding like until we reach the last vertex u3r+1.
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Clearly the last vertex u3r+1 receives the label 2 in this labeling pattern. Clearly
tqf (1) = tqf (2) = tqf (3) = 3r. �

Theorem 4.4. The ladder Ln is 3-total quotient cordial for all n.

Proof. Let V (Ln) = {ui, vi : 1 6 i 6 n} and E(Ln) = {uiui+1, vivi+1 : 1 6

i 6 n − 1} ∪ {uivi : 1 6 i 6 n}. Clearly |V (Ln)| + |E(Ln)| = 5n − 2.
Case 1. n ≡ 0 (mod 3).

Let n = 3r, r ∈ N. Assign the labels 3, 1 and 2 respectively to the vertices u1,
u2 and u3. Next we assign the labels 3, 1 and 2 to the next three vertices u4, u5

and u6 respectively. Proceeding like until we reach the last vertex u3r. Clearly the
last vertex u3r receives the label 2 in this labeling pattern. Next we consider the
vertices vi (1 6 i 6 3r). Assign the labels 1, 2 and 3 respectively to the vertices
v1, v2 and v3. Next we assign the labels 1, 2 and 3 to the next three vertices v4, v5

and v6 respectively. Proceeding like until we reach the last vertex v3r. Clearly the
last vertex v3r receives the label 3 in this labeling scheme. It is easy to verify that
tqf (1) = tqf (2) = 5r and tqf (3) = 5r − 1.

Case 2. n ≡ 1 (mod 3).
Let n = 3r + 1, r ∈ N. As in case 1, assign the same labeling technique to the
vertices ui (1 6 i 6 3r) and vi (1 6 i 6 3r). Finally we assign the labels 2, 1 to the
vertices u3r+1 and v3r+1 respectively. Clearly tqf (1) = tqf (2) = tqf (3) = 5r + 1.

Case 3. n ≡ 2 (mod 3).
Let n = 3r+2, r ∈ N. As in case 2, assign the same labeling pattern to the vertices
ui (1 6 i 6 3r + 1) and vi (1 6 i 6 3r + 1). Finally we assign the labels 3, 2
to the vertices u3r+2 and v3r+2 respectively. Here tqf (1) = tqf (3) = 5r + 3 and
tqf (2) = 5r + 2.

Case 4. n = 2.
A 3-total quotient cordial labeling of L2 is given in Figure 3.

b b

bb

3

1 2

1

Figure 3

�

Theorem 4.5. The graph Pn ⊙ K2 is 3-total quotient cordial for all n.

Proof. Let V (Pn ⊙ K2) = {ui, vi, wi : 1 6 i 6 n} and E(Pn ⊙ K2) =
{uivi, uiwi, viwi : 1 6 i 6 n}∪ {uiui+1 : 1 6 i 6 n− 1}. Obviously |V (Pn ⊙ K2)|+
|E(Pn ⊙ K2)| = 7n − 1.

Case 1. n ≡ 0 (mod 3).
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Let n = 3r, r ∈ N. Assign the labels 3, 1 and 2 respectively to the vertices u1,
u2 and u3. Next we assign the labels 3, 1 and 2 to the next three vertices u4, u5

and u6 respectively. Proceeding like until we reach the last vertex u3r. Clearly the
last vertex u3r receives the label 2 in this labeling pattern. Next we consider the
vertices vi (1 6 i 6 3r). Assign the labels 1, 3 and 1 respectively to the vertices v1,
v2 and v3. Next we assign the labels 1, 3 and 1 to the next three vertices v4, v5 and
v6 respectively. Proceeding like until we reach the last vertex v3r. Clearly the last
vertex v3r receives the label 1 in this labeling scheme. Now we move to the vertices
wi (1 6 i 6 3r). Assign the labels 3, 2 and 2 respectively to the vertices w1, w2

and w3. Next we assign the labels 3, 2 and 2 to the next three vertices w4, w5 and
w6 respectively. Proceeding like until we reach the last vertex w3r. Clearly the last
vertex w3r receives the label 2 in this labeling technique. It is easy to verify that
tqf (1) = 7r − 1 and tqf (2) = tqf (3) = 7r.

Case 2. n ≡ 1 (mod 3).
Let n = 3r + 1, r ∈ N. As in case 1, assign the same labeling technique to the
vertices ui (1 6 i 6 3r), vi (1 6 i 6 3r) and wi (1 6 i 6 3r). Finally we
assign the labels 1, 3, 2 to the vertices u3r+1, v3r+1 and w3r+1 respectively. Clearly
tqf (1) = tqf (2) = tqf (3) = 7r + 2.

Case 3. n ≡ 2 (mod 3).
Let n = 3r + 2, r ∈ N. Assign the same labeling pattern to the vertices ui (1 6

i 6 3r + 1), vi (1 6 i 6 3r + 1) and wi (1 6 i 6 3r + 1) by case 2. Finally we
assign the labels 1, 3, 2 to the vertices u3r+2, v3r+2 and w3r+2 respectively. Clearly
tqf (1) = 7r + 5 and tqf (2) = tqf (3) = 7r + 4.

Case 4. n = 2.
A 3-total quotient cordial labeling of Pn ⊙ K2 is given in Figure 4.

b b

b bbb

3

2131

2

Figure 4

�

Corollary 4.1. The graph Cn ⊙ K2 is 3-total quotient cordial for all n.

Proof. Let V (Pn ⊙ K2) = {ui, vi, wi : 1 6 i 6 n} and E(Pn ⊙ K2) =
{u1un, v1vn} ∪ {uivi, uiwi, viwi : 1 6 i 6 n} ∪ {uiui+1 : 1 6 i 6 n − 1}. Clearly
|V (Cn ⊙ K2)| + |E(Cn ⊙ K2)| = 7n.

Case 1. n ≡ 0 (mod 3).
Let n = 3r, r ∈ N. The vertex labelled in case 1 of Theorem 4.5 is also a 3-total
quotient cordial of Cn ⊙ K2. Here tqf (1) = tqf (2) = tqf (3) = 7r.

Case 2. n ≡ 1 (mod 3).
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Let n = 3r + 1, r ∈ N. Assign the same labeling technique in case 2 of Theorem
4.5 is also a 3-total quotient cordial of Cn ⊙ K2. It is easy to verify that tqf (1) =
tqf (2) = 7r + 2 and tqf (3) = 7r + 3.

Case 3. n ≡ 3 (mod 3).
Let n = 3r + 2, r ∈ N. Assign the same labeling pattern in case 3 of Theorem
4.5 is also a 3-total quotient cordial of Cn ⊙ K2. Clearly tqf (1) = 7r + 4 and
tqf (2) = tqf (3) = 7r + 5. �

Example 4.1. A 3-total quotient cordial labeling of C5⊙K2 is given in Figure
5.
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