BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Bull. Int. Math. Virtual Inst., Vol. **10**(3)(2020), 483-490 DOI: 10.7251/BIMVI2003483R

> Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

3-TOTAL QUOTIENT LABELING OF SOME GRAPHS

R. Ponraj, J. Maruthamani, and R. Kala

ABSTRACT. In this paper we introduce a new graph labeling method called k-Total quotient cordial. Let G be a (p,q) graph. Let $f: V(G) \to \{1,2,\ldots,k\}$ be a map where $k \in \mathbb{N}$ is a variable and k > 1. For each edge uv, assign the label $\left[\frac{f(u)}{f(v)}\right]$ or $\left[\frac{f(v)}{f(u)}\right]$ according as $f(u) \ge f(v)$ or $f(v) \ge f(u)$. f is called k-Total quotient cordial labeling of G if $|t_{qf}(i) - t_{qf}(j)| \le 1, i, j \in \{1, 2, \ldots, k\}$ where $t_{qf}(x)$ denotes the total number of vertices and the edges labeled with x. In this paper we investigate the the 3-total quotient cordial behaviour of some graphs like corona of graphs, fan, ladder, KD_n , P_n^2 and $P_n \odot K_2$.

1. Introduction

We consider graphs in this paper are finite, simple and undirected only. Ponraj. et. al introduced the concept of quotient cordial labeling [4]. Ponraj.R, Maruthamani.J and Kala.R has been recently introduced the k-total quotient cordial labeling [5]. In [5], we prove that every graph is a subgraph of a k-total quotient graph and investigate the 3-total quotient cordial behaviour of path, cycle, star, bistar and some corona of graphs. In this paper we investigate the the 3-total quotient cordial behaviour of some graphs like corona of graphs, fan, ladder, KD_n , P_n^2 and $P_n \odot K_2$. Terms not defined are used from Harray [3].

2. k-Total quotient cordial labeling

DEFINITION 2.1. Let G be a (p,q) graph. Let $f: V(G) \to \{1,2,\ldots,k\}$ be a map where $k \in \mathbb{N}$ is a variable and k > 1. For each edge uv, assign the label $\left[\frac{f(u)}{f(v)}\right]$ or $\left[\frac{f(v)}{f(u)}\right]$ according as $f(u) \ge f(v)$ or $f(v) \ge f(u)$. f is called k-Total quotient cordial labeling of G if $|t_{qf}(i) - t_{qf}(j)| \le 1, i, j \in \{1, 2, \ldots, k\}$ where $t_{qf}(x)$ denotes

483

¹⁹⁹¹ Mathematics Subject Classification. 05C78.

Key words and phrases. Corona of graphs, fan, ladder, KD_n and $P_n \odot K_2$.

the total number of vertices and the edges labeled with x. A graph with k-total quotient cordial labeling is called k-total quotient cordial graph.

3. Preliminaries

DEFINITION 3.1. Let G_1 , G_2 respectively be (p_1, q_1) , (p_2, q_2) graphs. The corona of G_1 with G_2 is the graph $G_1 \odot G_2$ obtained by taking one copy of G_1 , p_1 copies of G_2 and joining the i^{th} vertex of G_1 by an edge to every vertex in the i^{th} copy of G_2 where $1 \le i \le p_1$.

DEFINITION 3.2. The graph $F_n = P_n + K_1$ is called a *Fan graph* where $P_n : u_1 u_2 \dots u_n$ is a Path and $V(K_1) = u$.

DEFINITION 3.3. The graph $L_n = P_n \times P_2$ is called a *Ladder*.

DEFINITION 3.4. The cartesian product of two graphs G_1 and G_2 is the graph $G_1 \times G_2$ with vertex set $V_1 \times V_2$ and two vertices $u = (u_1, u_2)$ and $v = (v_1, v_2)$ are adjacent whenever $[u_1 = v_1 \text{ and } u_2 \text{ adj } v_2]$ or $[u_2 = v_2 \text{ and } u_1 \text{ adj } v_1]$.

DEFINITION 3.5. The graph KD_n is obtained from two copies of the path $P_n: u_1u_2...u_n$ and $P_n: v_1v_2...v_n$ with $V(KD_n) = \{u, u_i, v_i: 1 \leq i \leq n\}$ and $E(KD_n) = \{u_iu_{i+1}, v_iv_{i+1}: 1 \leq i \leq n-1\} \cup \{uu_i, vv_i: 1 \leq i \leq n\}.$

DEFINITION 3.6. For a simple connected graph G the square of graph G is denoted by G^2 and defined as the graph with the same vertex set as of G and two vertices are adjacent in G^2 if they are at a distance 1 or 2 apart in G.

4. Main Results

THEOREM 4.1. The graph F_n is 3-total quotient cordial iff $n \not\equiv 1 \pmod{3}$ where n is odd.

PROOF. The graph $F_n = P_n + K_1$ where $P_n : u_1 u_2 \dots u_n$ is a Path and $V(K_1) = u$. Clearly, $|V(F_n)| + |E(F_n)| = 3n$.

Case 1. $n \equiv 0 \pmod{3}$.

Let n = 3r, $r \in \mathbb{N}$. Assign the label 1 to the vertex u. Now we assign the labels 3, 1 and 2 respectively to the vertices u_1 , u_2 and u_3 . Next we assign the labels 3, 1 and 2 to the next three vertices u_4 , u_5 and u_6 respectively. Proceeding like this until we reach the last vertex u_{3r} . Clearly the last vertex u_{3r} receives the label 2 in this labeling pattern. It is easy to verify that $t_{qf}(1) = t_{qf}(2) = t_{qf}(3) = 3r$. Case 2. $n \equiv 1 \pmod{3}$.

Let n = 3r+1, n is even and $r \in \mathbb{N}$. Assign the label 3 to the vertices $u_1, u_2, \ldots, u_{\frac{3r+1}{2}}$. Next we assign the label 2 to the vertices $u_{\frac{3r+1}{2}+1}, u_{\frac{3r+1}{2}+2}, \ldots, u_{3r+1}$. Here $t_{qf}(1) = t_{qf}(2) = t_{qf}(3) = 3r+1$.

Case 3. $n \not\equiv 1 \pmod{3}$, when n is odd.

Suppose f is a 3-total quotient cordial labelling of F_n then $t_{qf}(1) = t_{qf}(2) = t_{qf}(3) = n$.

Subcase 3.1. f(u) = 1.

To get the edge label 3, then 3 should be adjacent to the vertex which is labelled by 1. If we assign the label 3 to the first r+1 vertices starts from u_1 and label 2 to the remaining vertices, then $t_{qf}(3) < n$, $t_{qf}(2) > n$ and $t_{qf}(1) = n$, a contradiction. Next 3 is label to the alternating vertices and 2 is label to the remaining vertices then $t_{qf}(3) > n$, $t_{qf}(2) < n$ and $t_{qf}(1) = n$. This is the maximum possible to get the value of $t_f(3)$ and $t_{qf}(2)$ nearest to n, a contradiction.

Subcase 3.2. f(u) = 3.

Subcase 3.2(a).

3 is label to the consecutive vertices $u_1, u_2, \ldots, u_{r+1}$ and remaining vertices are labelled by 2, then $t_{qf}(3) < n$, $t_{qf}(2) < n$ and $t_{qf}(1) > n$, a contradiction.

Subcase
$$3.2(b)$$
.

1 and 3 is label to the vertices u_1 and u_2 respectively. Next label 1 to the alternating vertices starts from u_3 and the remaining vertices are labelled by 2, then $t_{qf}(3) > n$, $t_{qf}(2) > n$ and $t_{qf}(1) = n$, a contradiction.

Subcase 3.2(c).

3 is label to the alternating vertices and 2 is label to the remaining vertices, then $t_{qf}(3) < n$, $t_{qf}(2) < n$ and $t_{qf}(1) > n$, a contradiction

Subcase 3.3.

The proof is symmetry to subcase 2 of case 4.

Case 4. $n \equiv 2 \pmod{3}$.

Let n = 3r + 2, $r \in \mathbb{N}$. As in case 1, assign the same labelling scheme for the vertices u and u_i $(1 \leq i \leq 3r)$. Finally, we assign the labels 3, 2 to the vertices u_{3r+1} and u_{3r+2} respectively. Clearly $t_{qf}(1) = t_{qf}(2) = t_{qf}(3) = 3r + 2$. Case 5. n = 2.

A 3-total quotient cordial labeling of F_2 is given in Figure 1.

Figure 1

THEOREM 4.2. The graph KD_n is 3-total quotient cordial for all n.

PROOF. The graph KD_n is obtained from two copies of the path $P_n : u_1u_2 \ldots u_n$ and $P_n : v_1v_2 \ldots v_n$ with $V(KD_n) = \{u, u_i, v_i : 1 \leq i \leq n\}$ and $E(KD_n) = \{u_iu_{i+1}, v_iv_{i+1} : 1 \leq i \leq n-1\} \cup \{uu_i, vv_i : 1 \leq i \leq n\}$. Clearly $|V(KD_n)| + |E(KD_n)| = 6n - 1$.

Case 1. $n \equiv 0 \pmod{3}$.

Let $n = 3r, r \in \mathbb{N}$. Assign the label 1 to the vertex u. Now we consider the vertices u_i $(1 \leq i \leq 3r)$. Then we assign the labels 3, 1 and 2 respectively to the vertices u_1, u_2 and u_3 . Next we assign the labels 3, 1 and 2 to the next three vertices u_4, u_5

and u_6 respectively. Proceeding like this until we reach the last vertex u_{3r} . Clearly the last vertex u_{3r} receives the label 2 in this labeling pattern. Next we move to the pendent vertices v_i $(1 \le i \le 3r)$. Assign the label 1 to the vertex u. Now we assign the labels 3, 1 and 2 respectively to the vertices v_1 , v_2 and v_3 . Next we assign the labels 3, 1 and 2 to the next three vertices v_4 , v_5 and v_6 respectively. Proceeding like this until we reach the last vertex v_{3r} . Clearly the last vertex v_{3r} receives the label 2 in this labeling scheme. Here $t_{af}(1) = 6r - 1$ and $t_{af}(2) = t_{af}(3) = 6r$.

Case 2. $n \equiv 1 \pmod{3}$.

Let n = 3r + 1, $r \in \mathbb{N}$. As in case 1, assign the same labeling method to the vertices u, u_i $(1 \leq i \leq 3r)$ and v_i $(1 \leq i \leq 3r)$. Finally, we assign the labels 2, 3 to the vertices u_{3r+1} and v_{3r+2} respectively. Clearly $t_{qf}(1) = 6r + 1$ and $t_{qf}(2) = t_{qf}(3) = 6r + 2$.

Case 3.
$$n \equiv 2 \pmod{3}$$
.

Let n = 3r + 2, $r \in \mathbb{N}$. Assign the same labeling pattern to the vertices u, u_i $(1 \leq i \leq 3r+1)$ and v_i $(1 \leq i \leq 3r+1)$ as in case 2. Next, we assign the labels 2, 3 respectively to the vertices u_{3r+1} and v_{3r+2} . It is easy to verify that $t_{qf}(1) = 6r+3$ and $t_{qf}(2) = t_{qf}(3) = 6r+4$.

Case 4.
$$n = 2$$
.

A 3-total quotient cordial labeling of KD_2 is given in Figure 2.

FIGURE 2

THEOREM 4.3. If $n \equiv 0, 1 \pmod{3}$, then P_n^2 is 3-total quotient cordial.

PROOF. Let $u_1 u_2 \ldots u_n$ be the path. Let u_i is adjacent to u_{i+2} , $(1 \le i \le n-2)$. Clearly $|V(P_n^2)| + |E(P_n^2)| = 3n - 3$.

Case 1. $n \equiv 0 \pmod{3}$.

Let n = 3r, $r \in \mathbb{N}$. Assign the labels 3, 1 and 2 respectively to the vertices u_1 , u_2 and u_3 . Next we assign the labels 3, 1 and 2 to the next three vertices u_4 , u_5 and u_6 respectively. Proceeding like until we reach the last vertex u_{3r} . Clearly the last vertex u_{3r} receives the label 2 in this labeling pattern. It is easy to verify that $t_{qf}(1) = t_{qf}(2) = t_{qf}(3) = 3r - 1$.

Case 2. $n \equiv 1 \pmod{3}$.

Let n = 3r + 1, $r \in \mathbb{N}$. Assign the labels 3, 1, 1, 2 to the vertices u_1, u_2, u_3 and u_4 respectively. Next we assign the labels 3, 1 and 2 respectively to the vertices u_5, u_6 and u_7 . Next we assign the labels 3, 1 and 2 to the next three vertices u_8, u_9 and u_{10} respectively. Proceeding like until we reach the last vertex u_{3r+1} .

Clearly the last vertex u_{3r+1} receives the label 2 in this labeling pattern. Clearly $t_{qf}(1) = t_{qf}(2) = t_{qf}(3) = 3r$.

THEOREM 4.4. The ladder L_n is 3-total quotient cordial for all n.

PROOF. Let $V(L_n) = \{u_i, v_i : 1 \le i \le n\}$ and $E(L_n) = \{u_i u_{i+1}, v_i v_{i+1} : 1 \le i \le n-1\} \cup \{u_i v_i : 1 \le i \le n\}$. Clearly $|V(L_n)| + |E(L_n)| = 5n - 2$.

Case 1. $n \equiv 0 \pmod{3}$.

Let n = 3r, $r \in \mathbb{N}$. Assign the labels 3, 1 and 2 respectively to the vertices u_1 , u_2 and u_3 . Next we assign the labels 3, 1 and 2 to the next three vertices u_4 , u_5 and u_6 respectively. Proceeding like until we reach the last vertex u_{3r} . Clearly the last vertex u_{3r} receives the label 2 in this labeling pattern. Next we consider the vertices v_i $(1 \leq i \leq 3r)$. Assign the labels 1, 2 and 3 respectively to the vertices v_4 , v_5 and v_6 respectively. Proceeding like until we reach the last vertex v_{3r} . Clearly the last vertex v_{3r} receives the labels 1, 2 and 3 to the next three vertices v_4 , v_5 and v_6 respectively. Proceeding like until we reach the last vertex v_{3r} . Clearly the last vertex v_{3r} receives the label 3 in this labeling scheme. It is easy to verify that $t_{qf}(1) = t_{qf}(2) = 5r$ and $t_{qf}(3) = 5r - 1$.

Case 2. $n \equiv 1 \pmod{3}$.

Let n = 3r + 1, $r \in \mathbb{N}$. As in case 1, assign the same labeling technique to the vertices u_i $(1 \leq i \leq 3r)$ and v_i $(1 \leq i \leq 3r)$. Finally we assign the labels 2, 1 to the vertices u_{3r+1} and v_{3r+1} respectively. Clearly $t_{qf}(1) = t_{qf}(2) = t_{qf}(3) = 5r + 1$. **Case 3.** $n \equiv 2 \pmod{3}$.

Let n = 3r+2, $r \in \mathbb{N}$. As in case 2, assign the same labeling pattern to the vertices u_i $(1 \leq i \leq 3r+1)$ and v_i $(1 \leq i \leq 3r+1)$. Finally we assign the labels 3, 2 to the vertices u_{3r+2} and v_{3r+2} respectively. Here $t_{qf}(1) = t_{qf}(3) = 5r+3$ and $t_{qf}(2) = 5r+2$.

Case 4.
$$n = 2$$
.

A 3-total quotient cordial labeling of L_2 is given in Figure 3.

Figure 3

THEOREM 4.5. The graph $P_n \odot K_2$ is 3-total quotient cordial for all n.

PROOF. Let $V(P_n \odot K_2) = \{u_i, v_i, w_i : 1 \le i \le n\}$ and $E(P_n \odot K_2) = \{u_i v_i, u_i w_i, v_i w_i : 1 \le i \le n\} \cup \{u_i u_{i+1} : 1 \le i \le n-1\}$. Obviously $|V(P_n \odot K_2)| + |E(P_n \odot K_2)| = 7n - 1$. **Case 1.** $n \equiv 0 \pmod{3}$. Let n = 3r, $r \in \mathbb{N}$. Assign the labels 3, 1 and 2 respectively to the vertices u_1 , u_2 and u_3 . Next we assign the labels 3, 1 and 2 to the next three vertices u_4 , u_5 and u_6 respectively. Proceeding like until we reach the last vertex u_{3r} . Clearly the last vertex u_{3r} receives the label 2 in this labeling pattern. Next we consider the vertices v_i ($1 \leq i \leq 3r$). Assign the labels 1, 3 and 1 respectively to the vertices v_1 , v_2 and v_3 . Next we assign the labels 1, 3 and 1 to the next three vertices v_4 , v_5 and v_6 respectively. Proceeding like until we reach the last vertex v_{3r} . Clearly the last vertex v_{3r} receives the label 1 in this labeling scheme. Now we move to the vertices w_i ($1 \leq i \leq 3r$). Assign the labels 3, 2 and 2 respectively to the vertices w_1 , w_2 and w_3 . Next we assign the labels 3, 2 and 2 to the next three vertices w_4 , w_5 and w_6 respectively. Proceeding like until we reach the last vertex w_{3r} . Clearly the last vertex w_{3r} receives the label 2 in this labeling the next three vertices w_4 , w_5 and w_6 respectively. Proceeding like until we reach the last vertex w_{3r} . Clearly the last vertex w_{3r} receives the label 2 in this labeling technique. It is easy to verify that $t_{qf}(1) = 7r - 1$ and $t_{qf}(2) = t_{qf}(3) = 7r$.

Case 2.
$$n \equiv 1 \pmod{3}$$
.

Let n = 3r + 1, $r \in \mathbb{N}$. As in case 1, assign the same labeling technique to the vertices u_i $(1 \leq i \leq 3r)$, v_i $(1 \leq i \leq 3r)$ and w_i $(1 \leq i \leq 3r)$. Finally we assign the labels 1, 3, 2 to the vertices u_{3r+1} , v_{3r+1} and w_{3r+1} respectively. Clearly $t_{qf}(1) = t_{qf}(2) = t_{qf}(3) = 7r + 2$.

Case 3. $n \equiv 2 \pmod{3}$.

Let $n = 3r + 2, r \in \mathbb{N}$. Assign the same labeling pattern to the vertices u_i $(1 \leq i \leq 3r + 1), v_i$ $(1 \leq i \leq 3r + 1)$ and w_i $(1 \leq i \leq 3r + 1)$ by case 2. Finally we assign the labels 1, 3, 2 to the vertices u_{3r+2}, v_{3r+2} and w_{3r+2} respectively. Clearly $t_{qf}(1) = 7r + 5$ and $t_{qf}(2) = t_{qf}(3) = 7r + 4$.

Case 4. n = 2.

A 3-total quotient cordial labeling of $P_n \odot K_2$ is given in Figure 4.

FIGURE 4

COROLLARY 4.1. The graph $C_n \odot K_2$ is 3-total quotient cordial for all n.

PROOF. Let $V(P_n \odot K_2) = \{u_i, v_i, w_i : 1 \le i \le n\}$ and $E(P_n \odot K_2) = \{u_1u_n, v_1v_n\} \cup \{u_iv_i, u_iw_i, v_iw_i : 1 \le i \le n\} \cup \{u_iu_{i+1} : 1 \le i \le n-1\}$. Clearly $|V(C_n \odot K_2)| + |E(C_n \odot K_2)| = 7n$.

Case 1. $n \equiv 0 \pmod{3}$.

Let $n = 3r, r \in \mathbb{N}$. The vertex labelled in case 1 of Theorem 4.5 is also a 3-total quotient cordial of $C_n \odot K_2$. Here $t_{qf}(1) = t_{qf}(2) = t_{qf}(3) = 7r$.

Case 2. $n \equiv 1 \pmod{3}$.

488

Let n = 3r + 1, $r \in \mathbb{N}$. Assign the same labeling technique in case 2 of Theorem 4.5 is also a 3-total quotient cordial of $C_n \odot K_2$. It is easy to verify that $t_{qf}(1) = t_{qf}(2) = 7r + 2$ and $t_{qf}(3) = 7r + 3$. Case 3. $n \equiv 3 \pmod{3}$.

Let n = 3r + 2, $r \in \mathbb{N}$. Assign the same labeling pattern in case 3 of Theorem 4.5 is also a 3-total quotient cordial of $C_n \odot K_2$. Clearly $t_{qf}(1) = 7r + 4$ and $t_{qf}(2) = t_{qf}(3) = 7r + 5$.

EXAMPLE 4.1. A 3-total quotient cordial labeling of $C_5 \odot K_2$ is given in Figure 5.

FIGURE 5

References

- I. Cahit. Cordial graphs: A weaker version of graceful and harmonious graphs. Ars Combinatoria 23 (1987), 201–207.
- [2] J. A. Gallian. A dynamic survey of graph labeling. The Electronic Journal of Combinatorics 19 (2019), 000–000.
- [3] F. Harary. Graph theory. Addision wesley, New Delhi, 1969.
- [4] R. Ponraj, M. Sivakumar and R. Singh. k-quotient cordial labeling of graphs. Palestine Journal of Mathematics 8(1) (2019), 361–366.
- [5] R. Ponraj, J. Maruthamani and R. Kala. k-total quotient cordial labeling of graphs. Journal of Applied and Pure Mathematics, 1(3-4)(2019), 157–165.

Received by editors 09.07.2019; Revised version 19.03.2020; Available online 30.03.2020.

R. PONRAJ. DEPARTMENT OF MATHEMATICS, SRI PARAMAKALYANI COLLEGE, ALWARKURICHI-627412, TAMILNADU, INDIA

 $E\text{-}mail\ address:\ \texttt{ponrajmathsQgmail.com}$

J. MARUTHAMANI. RESEARCH SCHOLAR, REGISTER NUMBER: 18124012091054, DEPARTMENT OF MATHEMATICS, MANONMANIAM SUNDARNAR UNIVERSITY, ABISHEKAPATTI, TIRUNELVELI-627 012, TAMILNADU, INDIA

E-mail address: mmani2011@gmail.com

R. Kala. Department of Mathematics, Manonmaniam sundarnar university, Abishekapatti, Tirunelveli-627 012, Tamilnadu, India

E-mail address: karthipyi91@yahoo.co.in

490