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REMARKS ON THE SUM OF POWERS

OF LAPLACIAN EIGENVALUES OF GRAPHS

Igor Ž. Milovanović, Marjan M. Matejić, Emina I. Milovanović

Abstract. LetG = (V,E), V = {v1, v2, . . . , vn}, be a simple connected graph

of order n, size m and vertex degree sequence ∆ = d1 > d2 > · · · > dn > 0,
di = d(vi). The Laplacian matrix of G is L = D−A, where D is the diagonal
matrix of vertex degrees and A the adjacency matrix of G. Eigenvalues of

matrix L, µ1 > µ2 > · · · > µn−1 > µn = 0, form the so-called Laplacian

spectrum of G. With Sα(G) =
∑n−1

i=1 µα
i , where α is an arbitrary real number,

we denote the sum of powers of Laplacian eigenvalues of G. In this paper we
establish a relationship between Sα+β(G) and Sα+β−1(G), where α and β are
arbitrary real numbers and obtain new bounds for Sα(G). By the appropriate

choice of parameters α and β, a number of new/old inequalities that reveal
relationships between various topological indices are obtained.

1. Introduction

Let G = (V,E), V = {v1, v2, . . . , vn}, be a simple connected graph with n
vertices, m edges and vertex degree sequence ∆ = d1 > d2 > · · · > dn > 0, di =
d(vi). Further, let A be the adjacency matrix of G, and D = diag(d1, d2, . . . , dn)
the diagonal matrix of its vertex degrees. Laplacian matrix of G is defined as
L = D − A. Eigenvalues of matrix L, µ1 > µ2 > · · · > µn−1 > µn = 0 form the
so-called Laplacian spectrum of G.

In graph theory, an invariant is a property of graphs that depends only on
their abstract structure, not on the labeling of vertices or edges. Such quantities
are also referred to as topological indices. Here we list some vertex–degree–based
and Laplacian–spectrum–based graph invariants that are of interest for this work.
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In 1972 in paper [7] Gutman and Trinajstić derived approximate formulas for
the total π-electron energy. One of the terms occurring in these formulas was the
sum of squares of vertex degrees of the molecular graph:

M1(G) =

n∑
i=1

d2i ,

which was recognized to be a measure of the extent of branching of the carbon–
atom skeleton of the underlying molecule. Ten years later it was named the first
Zagreb index [1]. It became one of the most popular and most extensively studied
graph-based molecular structure descriptors.

In the same paper [7] in the formulas for total π-electron energy, another quan-
tity, the sum of cubes of vertex degrees

F (G) =

n∑
i=1

d3i ,

was encountered. This quantity is also a measure of branching. However, for
the unknown reasons, it did not attracted any attention until 2015 when it was
reinvented in [6] and named the forgotten topological index.

In [9] Klein and Randić introduced a graph invariant named the Kirchhoff
index as

Kf(G) =
∑
i<j

rij ,

where rij is the resistance between the vertices vi and vj , i.e. rij is equal to the
resistance between equivalent points on an associated electrical network obtained by
replacing each edge of G by a unit (1 ohm) resistor. The Kirchhoff index has a very
nice purely mathematical interpretation. Namely, in [8, 25] it was demonstrated
that the Kirchhoff index of a connected graph satisfies the relation:

Kf(G) = n
n−1∑
i=1

1

µi
.

Another Laplacian-spectrum-based graph invariant was put forward by Liu and
Liu [11]

LEL(G) =
n−1∑
i=1

√
µi

and was named Laplacian-energy-like invariant.
In a similar way one can define reciprocal Laplacian–energy–like, RLEL(G),

as

RLEL(G) =

n−1∑
i=1

1
√
µi

.
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Laplacian–spectrum–based topological index called sum of powers of the Lapla-
cian eigenvalues of graphs is defined as

Sα(G) =

n−1∑
i=1

µα
i , S0(G) = n− 1,

where α is an arbitrary real number [2,11,12,14,19–21,23,24]. It can be easily
verified that the following identities are valid:

nS−1(G) = Kf(G),

S−1/2(G) = RLEL(G),

S1/2(G) = LEL(G),

S1(G) =
n−1∑
i=1

µi = tr(D −A) =
n∑

i=1

di = 2m,

S2(G) =
n−1∑
i=1

µ2
i = tr(D −A)2 =

n∑
i=1

d2i +
n∑

i=1

di = M1(G) + 2m,

S3(G) =
n−1∑
i=1

µ3
i = tr(D −A)3 = F (G) + 3M1(G)− 6C3(G),

where C3(G) is the number of triangles in G.
In [23] some properties for Sα(G), where α ̸= 0, 1, were established. In [12]

new bounds for Sα(G) in terms of the vertex degrees of G, and a relation between
Sα(G) and the first general Zagreb index were obtained. Upper and lower bounds
on Sα(G) in terms of n, m, maximum degree, clique number and a number of
spanning trees were obtained in [2].

In this paper we establish relationship between Sα+β(G) and Sα+β−1(G), where
α and β are arbitrary real numbers and obtain new bounds for Sα(G). Also, by the
appropriate choice of parameters α and β, a number of new/old inequalities that
reveal relationships between aforementioned topological indices are obtained.

2. Preliminaries

In this section we recall some discrete analytical inequalities for real number
sequences that will be used in the paper.

Let p = (pi), i = 1, 2, . . . , n, be nonnegative real number sequence and a = (ai),
i = 1, 2, . . . , n, be positive real number sequence. Then for any real r, such that
r > 1 or r 6 0, holds

(2.1)

(
n∑

i=1

pi

)r−1 n∑
i=1

pia
r
i >

(
n∑

i=1

piai

)r

.

If 0 6 r 6 1, then the sense of (2.1) reverses. Equality holds if and only if either
r = 0, or r = 1, or p1 = p2 = · · · = pn and a1 = a2 = · · · = an, or for some t,
1 6 t 6 n − 1, holds p1 = p2 = · · · = pt = 0 and pt+1 = pt+2 = · · · = pn and
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at+1 = at+2 = · · · = an. This inequality is referred to as Jensen’s inequality in the
literature (see e.g. [17]).

Let p = (pi) and x = (xi), i = 1, 2, . . . , n, be two positive real number se-
quences. In [18] it was proved that for any r > 0 the following is valid

(2.2)
n∑

i=1

xr+1
i

ari
> (
∑n

i=1 xi)
r+1

(
∑n

i=1 ai)
r .

Equality occurs if and only if r = 0 or x1

a1
= x2

a2
= · · · = xn

an
.

3. Main results

In the following theorem we establish relations between Sα+β(G) and Sα+β−1(G),
where α and β are arbitrary real numbers.

Theorem 3.1. Let G be a simple connected graph, G � Kn, with n > 3
vertices, β be an arbitrary real number and k real number such that µn−1 > k > 0.
Then for any real number α, α > 1 or α 6 0, holds

kSα+β−1(G) +
(Sβ+1(G)− kSβ(G))α

(Sβ(G)− kSβ−1(G))α−1
6 Sα+β(G)

6 nSα+β−1(G)− (nSβ(G)− Sβ+1(G))α

(nSβ−1(G)− Sβ(G))α−1
.(3.1)

If 0 6 α 6 1, then the opposite inequalities hold. Equality at the left side of (3.1)
holds if and only if either α = 0, or α = 1, or for some t, 1 6 t 6 n − 2, holds
µ1 = µ2 = · · · = µt > µt+1 = µt+2 = · · · = µn−1 = k. Equality at the right side of
(3.1) is attained if and only if either α = 0, or α = 1, or for some t, 1 6 t 6 n− 2,
holds n = µ1 = µ2 = · · · = µt > µt+1 = µt+2 = · · · = µn−1.

Proof. For real numbers α and β we have that

(3.2) Sα+β(G)− kSα+β−1(G) =

n−1∑
i=1

(µi − k)µα+β−1
i

and

(3.3) nSα+β−1(G)− Sα+β(G) =
n−1∑
i=1

(n− µi)µ
α+β−1
i .

From the conditions given in the statement of Theorem 3.1 we get that expres-
sion µi−k in (3.2) is always nonnegative. In [10] it is proven that µ1 6 n, therefore
n− µi is nonnegative.

For r = α, pi = (µi − k)µβ−1
i , ai = µi, i = 1, 2, . . . , n − 1, where α is a real

number such that α > 1 or α 6 0, and β is an arbitrary real number, the inequality
(2.1) becomes

(3.4)

(
n−1∑
i=1

(µi − k)µβ−1
i

)α−1 n−1∑
i=1

(µi − k)µα+β−1
i >

(
n−1∑
i=1

(µi − k)µβ
i

)α

.
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When G ∼= Kn, n = k, in (3.4) equality is attained, therefore without loss of
generality we can assume that G � Kn. From (3.4) follows

n−1∑
i=1

(µi − k)µα+β−1
i >

(∑n−1
i=1 (µi − k)µβ

i

)α
(∑n−1

i=1 (µi − k)µβ−1
i

)α−1 ,

that is

(3.5)
n−1∑
i=1

(µi − k)µα+β−1
i > (Sβ+1(G)− kSβ(G))α

(Sβ(G)− kSβ−1(G))α−1
.

From (3.5) and (3.2) we get left side of inequality (3.1).

For r = α, pi = (n− µi)µ
β−1
i , ai = µi, i = 1, 2, . . . , n− 1, α > 1 or α 6 0, and

an arbitrary real number β, the inequality (2.1) transforms into

(3.6)

(
n−1∑
i=1

(n− µi)µ
β−1
i

)α−1 n−1∑
i=1

(n− µi)µ
α+β−1
i >

(
n−1∑
i=1

(n− µi)µ
β
i

)α

.

If G ∼= Kn, then in (3.6) the equality holds, therefore without loss of generality
we can assume that G � Kn. From (3.6) we obtain

n−1∑
i=1

(n− µi)µ
α+β−1
i >

(∑n−1
i=1 (n− µi)µ

β
i

)α
(∑n−1

i=1 (n− µi)µ
β−1
i

)α−1 ,

i.e.

(3.7)
n−1∑
i=1

(n− µi)µ
α+β−1
i > (nSβ(G)− Sβ+1(G))α

(nSβ−1(G)− Sβ(G))α−1
.

From (3.7) and (3.3) we arrive at right side of inequality (3.1).
By a similar procedure we prove that opposite inequalities hold in (3.1) when

0 6 α 6 1.
Since G � Kn, the equality in (3.4), and therefore at the left side of inequality

(3.1), holds if and only if α = 0, or α = 1, or for some t, 1 6 t 6 n − 2, holds
µ1 = µ2 = · · · = µt > µt+1 = µt+2 = · · · = µn−1 = k. Similarly, the equality in
(3.6), i.e. at the right side of inequality (3.1) is attained if and only if either α = 0,
or α = 1, or for some t, 1 6 t 6 n − 2, holds n = µ1 = µ2 = · · · = µt > µt+1 =
µt+2 = · · · = µn−1. �

Theorem 3.2. Let G be a simple connected graph, G � Kn, with n > 3 vertices
and β is an arbitrary real number. Then for any real α, α > 1 or α 6 0, holds

(3.8) Sα+β(G) > 1

n− k

(
n(Sβ+1(G)− kSβ(G))α

(Sβ(G)− kSβ−1(G))α−1
+

k(nSβ(G)− Sβ+1(G))α

(nSβ−1(G)− Sβ(G))α−1

)
.

If 0 6 α 6 1, then the opposite inequality holds. Equality holds if and only if either

α = 0, or α = 1, or for some t, 1 6 t 6 n− 2, holds

n = µ1 = µ2 = · · · = µt > µt+1 = µt+2 = · · · = µn−1 = k.
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Proof. Let α be an arbitrary real number such that α > 1 or α 6 0, and
G � Kn. According to (3.2) and (3.3) we have that

Sα+β(G)− kSα+β−1(G) > (Sβ+1(G)− kSβ(G))α

(Sβ(G)− kSβ−1(G))α−1

and

nSα+β−1(G)− Sα+β(G) > (nSβ(G)− Sβ+1(G))α

(nSβ−1(G)− Sβ(G))α−1
.

From the above inequalities we have

(n− k)Sα+β(G) > n(Sβ+1(G)− kSβ(G))α

(Sβ(G)− kSβ−1(G))α−1
+

k(nSβ(G)− Sβ+1(G))α

(nSβ−1(G)− Sβ(G))α−1
.

Since G � Kn, i.e. n− k ̸= 0, according to the above we obtain (3.8).
In a similar way we prove that opposite inequality holds in (3.8) when 0 6 α 6

1. �

For the appropriately chosen values of parameters α and β, according to The-
orems 3.1 and 3.2, a number of particular inequalities for Sα(G) as well as some
other graph invariants can be obtained. In the following corollaries we list only
some of them.

Corollary 3.1. Let G be a simple connected graph, G � Kn, with n > 3
vertices, m edges and k is real number such that µn−1 > k > 0. Then for any real
number α, α > 1 or α 6 0, holds

kSα−1(G) +
(2m− k(n− 1))α

(n− 1− k
nKf(G))α−1

6 Sα(G) 6 nSα−1(G)− (n(n− 1)− 2m)α

(Kf(G)− n+ 1)α−1
.

If 0 6 α 6 1, then the opposite inequalities hold.
For α > 2 or α 6 1 holds

kSα−1(G) +
(M1(G)− 2m(k − 1))α−1

(2m− k(n− 1))α−2
6 Sα(G) 6

6 nSα−1(G)− (2m(n− 1)−M1(G))α−1

(n(n− 1)− 2m)α−2
.

If 1 6 α 6 2, then the opposite inequalities hold.
For α > 3 or α 6 2 holds

kSα−1(G) +
(S3(G)− k(M1(G) + 2m))α−2

(M1(G)− 2m(k − 1))α−3
6 Sα(G) 6

6 nSα−1(G)− (n(2m+M1(G)− S3(G))α−2

(2m(n− 1)−M1(G))α−3

If 2 6 α 6 3, then the opposite inequalities hold.
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Corollary 3.2. Let G be a simple connected graph, G � Kn, with n > 3
vertices, m edges and k is real number such that µn−1 > k > 0. Then for any real
α, α > 1 or α 6 0, holds

Sα(G) > 1

n− k

(
k(n(n− 1)− 2m)α

(Kf(G)− n+ 1)α−1
+

n(2m− k(n− 1))α

(n− 1− k
nKf(G))α−1

)
.

If 0 6 α 6 1, then the opposite inequality holds.

For α > 2 or α 6 1, holds

Sα(G) > 1

n− k

(
k(2m(n− 1)−M1(G))α−1

(n(n− 1)− 2m)α−2
+

n(M1(G)− 2m(k − 1))α−1

(2m− k(n− 1))α−2

)
.

If 1 6 α 6 2, then the opposite inequality holds.

For α > 3 or α 6 2 holds

Sα(G) > 1

n− k

(
n(S3(G)− k(M1(G) + 2m))α−2

(M1(G)− 2m(k − 1))α−3
+

k(n(M1(G) + 2m)− S3(G))α−2

(2m(n− 1)−M1(G))α−3

)
.

If 2 6 α 6 3, then the opposite inequality is valid.

Corollary 3.3. Let G be a simple connected graph, G � Kn, with n > 3
vertices and m edges and let p be a real number such that µn−1 > p > 0. Then

M1(G) > 1

n− p

(
p(n(n− 1)− 2m)2

Kf(G)− n+ 1
+

n2(2m− p(n− 1))2

n(n− 1)− pKf(G)

)
− 2m,

M1(G) > 2m(p− 1) +
n(2m− p(n− 1))2

n(n− 1)− pKf(G)
,

M1(G) 6 2m(n− 1)− (n(n− 1)− 2m)2

Kf(G)− n+ 1
,

LEL(G) > nRLEL(G)− (n(n− 1)− 2m)1/2(Kf(G)− n+ 1)1/2 ,

LEL(G) > 1

n− p

(
p(n(n− 1)− 2m)3/2

(2m(n− 1)−M1(G))1/2
+

n(2m− p(n− 1))3/2

(M1(G)− 2m(p− 1))1/2

)
,

LEL(G) 6 pRLEL(G) + (2m− p(n− 1))1/2
(
n− 1− p

n
Kf(G)

)1/2
.

Based on Theorem 3.1 we can successively obtain a number of bounds for Sα(G)
for α > 4. This is illustrated in the next corollary for the case α = 4.
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Corollary 3.4. Let G be a simple connected graph, G � Kn, with n > 3
vertices and m edges and let p be a real number such that µn−1 > p > 0. Then

S4(G) > pS3(G) +
(2m− p(n− 1))4(
n− 1− p

nKf(G)
)3 ,

S4(G) > pS3(G) +
(M1(G)− 2m(p− 1))3

(2m− p(n− 1))2
,

S4(G) > pS3(G) +
(S3(G)− p(M1(G) + 2m))2

M1(G)− 2m(p− 1)
,

S4(G) 6 nS3(G)− (n(M1(G) + 2m)− S3(G))2

2m(n− 1)−M1(G)
,

S4(G) 6 nS3(G)− (n(n− 1)− 2m)4

(Kf(G)− n+ 1)3
,

S4(G) 6 nS3(G)− (2m(n− 1)−M1(G))3

(n(n− 1)− 2m)2
.

In the next theorem we establish a relation between Sα(G), Sβ(G) and S2α−β(G),
where α and β are arbitrary real numbers.

Theorem 3.3. Let G be a simple connected graph with n > 3 vertices and m
edges. Then, for any real α and β, holds

(3.9)
(
Sβ(G)− µβ

1

)(
S2α−β(G)− µ2α−β

1

)
> (Sα(G)− µα

1 )
2
.

Equality holds if and only if either α = β, or G ∼= Kn, or G ∼= K1,n−1, or

G ∼= Kn
2 ,n2

where n is even.

Proof. For any real α and β holds

n−1∑
i=2

µ2α−β
i =

n−1∑
i=2

(µα
i )

2

µβ
i

.

On the other hand, for r = 1, the inequality (2.2) can be considered in a form

n−1∑
i=2

x2
i

ai
>

(∑n−1
i=2 xi

)2
∑n−1

i=2 ai
.

For xi = µα
i , ai = µβ

i , i = 2, 3, . . . , n−1, where α and β are arbitrary real numbers,
the above inequality becomes

n−1∑
i=2

(µα
i )

2

µβ
i

>

(∑n−1
i=2 µα

i

)2
∑n−1

i=2 µβ
i

,
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that is

(3.10) S2α−β(G)− µ2α−β
1 > (Sα(G)− µα

1 )
2

Sβ(G)− µβ
1

,

wherefrom (3.9) immediately follows.

Equality in (3.10) holds if and only if µα−β
2 = µα−β

3 = · · · = µα−β
n−1 , that is if

and only if α = β or µ2 = µ3 = · · · = µn−1, which implies that equality in (3.9)
holds if and only if either α = β, or G ∼= Kn, or G ∼= K1,n−1, or G ∼= Kn

2 ,n2
where

n is even (see [4]). �

By the appropriate choice of parameters α and β, from (3.9) a number of
old/new inequalities that reveal relationship between various graph invariants can
be obtained. We illustrate that in the next corollary of Theorem 3.3.

Corollary 3.5. Let G be a simple connected graph with n > 2 vertices and
m edges. Then(

Kf(G)− 1
)(
M1(G) + 2m− (1 + ∆)2) > n(LEL(G)−

√
n)2 ,(3.11)

(Kf(G)− 1)(F (G) + 3M1(G)− 6C3(G)− (1 + ∆)3) > n(2m− n)2 ,

(2m−∆− 1)(Kf(G)− 1) > n(n− 2)2 .

Equalities occur if and only if G ∼= Kn or G ∼= K1,n−1.

Proof. The first inequality is obtained by substituting in (3.9) α with 1
2 and

β with −1, the second for α = 1 and β = −1, and the third for α = 0 and β = 1.
Also, we used inequalities µ1 > 1 + ∆, proved in [13], and µ1 6 n, proved in [10].

The inequality (3.11) was proved in [15]. �

The proof of the next result is fully analogous to that of Theorem 3.3, and
hence omitted.

Theorem 3.4. Let G be a simple connected graph of order n and size m. Then
for any real α and β

Sβ(G)S2α−β(G) > Sα(G)2 .

Equality holds if and only if α = β or G ∼= Kn.

Corollary 3.6. Let G be a simple connected graph of order n and size m.
Then

Kf(G) > n(LEL(G))2

M1(G) + 2m
,(3.12)

Kf(G) > 4nm2

F (G) + 3M1(G)− 6C3(G)
,

Kf(G) > n(n− 1)2

2m
,(3.13)

with equalities if and only if G ∼= Kn.

The inequality (3.12) was proved in [15], and (3.13) in [22] (see also [16]).
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