BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN *Bull. Int. Math. Virtual Inst.*, Vol. **10**(3)(2020), 413-424 DOI: 10.7251/BIMVI2003413R

Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

α -IDEALS IN 0-DISTRIBUTIVE ALMOST SEMILATTICES

G. Nanaji Rao and Ch. Swapna

ABSTRACT. The concept of α -ideal in 0-distributive almost semilattice (0distributive ASL) is introduced and proved certain properties of α -ideals. Obtained several characterizations for an S-ideal to become α -ideals in 0distributive ASL and derived a set of identities for an S-ideal to become α -ideal in 0-distributive ASL. Finally, we proved that the image of an α -ideal is again an α -ideal under annihilator preserving homomorphism.

1. Introduction

Varlet [11] has introduced the concept of 0-distributive lattices. Generalizing the concept of 0-distributivity in semilattices a theory of 0-distributive semilattices is developed. Using the definition of an ideal (in a semilattice) given by Venkatanarasimhan [12], special types of ideals called α -ideals, in 0-distributive semilattices are defined and several characterizations of α -ideals in 0-distributive semilattices and 0-distributive lattices are furnished, which generalize the results of Cornish [1] and supplement to those of Jayaram [2]. The concept of an α -ideal in almost distributive lattice R was introduced by Rao, G.C. and Sambasiva Rao, M. [10] and they proved that there is a one-to-one correspondence between the set $I_{\alpha}(R)$ of all α -ideals in R and the set of all α -ideals of the lattice $\mathcal{PI}(R)$ of all principal ideals of R. Later, the concept of 0-distributive almost semilattices was introduced by Nanaji Rao and Swapna [3] and proved some basic properties of 0-distributive almost semilattices. Also, derived several characterization for an ASL with 0 to become 0-distributive ASL.

¹⁹⁹¹ Mathematics Subject Classification. 06D99, 06D15.

Key words and phrases. 0-distributive ASL, α -ideal, prime S-ideal, minimal prime S-ideal, maximal filter, annihilator S-ideal, dense S-ideal, semi-ideal, annihilator preserving homomorphism.

⁴¹³

In this paper, we introduced the concept of α -ideal in 0-distributive ASL and proved certain properties of α -ideals. Obtained several characterizations for an S-ideal to become α -ideals in 0-distributive ASL. Next, we proved that for any annihilator S-ideal I and a filter F in a 0-distributive ASL L such that $I \cap F = \emptyset$, there exists a prime α -ideal P in L containing I and disjoint with F. Also, we derived a set of identities for an S-ideal to become α -ideal in 0-distributive ASL. Finally, we proved that the image of an α -ideal is again an α -ideal under annihilator preserving homomorphism.

2. Preliminaries

In this section we collect a few important definitions and results which are already known and which will be used more frequently in the text.

DEFINITION 2.1. ([6]) An ASL with 0 is an algebra $(L, \circ, 0)$ of type (2, 0) satisfies the following conditions:

1. $(x \circ y) \circ z = x \circ (y \circ z)$

2. $(x \circ y) \circ z = (y \circ x) \circ z$

3. $x \circ x = x$

4. $0 \circ x = 0$, for all $x, y, z \in L$.

DEFINITION 2.2. ([5]) Let L be an ASL. A nonempty subset I of L is said to be an S-ideal if it satisfies the following conditions:

1) If $x \in I$ and $a \in L$, then $x \circ a \in I$.

2) If $x, y \in I$, then there exists $d \in I$ such that $d \circ x = x, d \circ y = y$.

DEFINITION 2.3. ([5]) Let L be an ASL and $a \in L$. Then $(a] = \{a \circ x : x \in L\}$ is an S-ideal of L and is called principal S-ideal generated by a.

DEFINITION 2.4. ([8]) A nonempty subset F of an ASL L is said to be a *filter* if F satisfies the following conditions:

(1) $x, y \in F$ implies $x \circ y \in F$

(2) If $x \in F$ and $a \in L$ such that $a \circ x = x$, then $a \in F$

DEFINITION 2.5. ([5]) A proper S-ideal P of an ASL L is said to be a prime S-ideal if for any $x, y \in L, x \circ y \in P$ imply $x \in P$ or $y \in P$.

DEFINITION 2.6. ([8]) A proper filter F of L is said to be a prime filter if for any filters F_1 and F_2 of L, $F_1 \cap F_2 \subseteq F$ imply $F_1 \subseteq F$ or $F_2 \subseteq F$.

DEFINITION 2.7. ([8]) A proper filter F of L is said to be *maximal* if for any filter G of L such that $F \subseteq G \subseteq L$, then either F = G or G = L.

DEFINITION 2.8. ([8]) An element $m \in L$ is said to be unimaximal if $m \circ x = x$ for all $x \in L$.

DEFINITION 2.9. ([3]) Let L be an ASL with 0. Then L is said to be 0distributive ASL if for any $x, y, z \in L$, $x \circ y = 0$ and $x \circ z = 0$ then there exists $d \in L$ such that $d \circ y = y$, $d \circ z = z$ and $d \circ x = 0$. DEFINITION 2.10. ([7]) Let L be an ASL with 0. Then for any nonempty subset A of L, $A^* = \{x \in L : x \circ a = 0 \text{ for all } a \in A\}$ is called the annihilator of A, and is denoted by A^* . Note that if $A = \{a\}$, then we denote $A^* = \{a\}^*$ by $[a]^*$.

THEOREM 2.1 ([7]). Let L be an ASL with 0. Then for any nonempty subsets I, J of L, we have the following:

(1) $I^* = \bigcap_{a \in I} [a]^*$ (2) $(I \cap J)^* = (J \cap I)^*$ (3) $I \subseteq J \implies J^* \subseteq I^*$ (4) $I^* \cap J^* \subseteq (I \cap J)^*$ (5) $I \subseteq I^{**}$ (6) $I^{***} = I^*$ (7) $I^* \subseteq J^* \Leftrightarrow J^{**} \subseteq I^{**}$ (8) $I \cap J = (0] \Leftrightarrow I \subseteq J^* \Leftrightarrow J \subseteq I^*$ (9) $(I \cup J)^* = I^* \cap J^*$

THEOREM 2.2 ([7]). Let L be an ASL with 0. Then for any $x, y \in L$, we have the following.

 $\begin{array}{l} (1) \ x \leqslant y \Rightarrow [y]^* \subseteq [x]^* \\ (2) \ [x]^* \subseteq [y]^* \Rightarrow [y]^{**} \subseteq [x]^{**} \\ (3) \ x \in [x]^{**} \\ (4) \ (x]^* = [x]^* \\ (5) \ (x] \cap [x]^* = \{0\} \\ (6) \ [x \circ y]^* = [y \circ x]^* \\ (7) \ [x]^* \cap [y]^* \subseteq [x \circ y]^* \\ (8) \ [x \circ y]^{**} = [x]^{**} \cap [y]^{**} \\ (9) \ [x]^{***} = [x]^* \\ (10) \ [x]^* \subseteq [y]^* \Leftrightarrow [y]^{**} \subseteq [x]^{**} \end{array}$

THEOREM 2.3 ([3]). Let L be an ASL with 0. A proper filter M of L is maximal if and only if for any $a \in L - M$, there exists $b \in M$ such that $a \circ b = 0$.

THEOREM 2.4 ([3]). Let L be an ASL with 0, in which intersection of any family of S-ideals is again an S-ideal. Then the following are equivalent:

(1) L is 0-distributive ASL.

(2) A^* is an S-ideal, for all $A \neq \emptyset \subseteq L$.

(3) SI(L) is pseudo-complemented semilattice.

(4) SI(L) is 0-distributive semilattice.

(5) PSI(L) is 0-distributive semilattice.

THEOREM 2.5 ([4]). Every proper filter in ASL L is contained in a maximal filter.

THEOREM 2.6 ([3]). Let L be 0-distributive ASL. Then every maximal filter of L is a prime filter.

DEFINITION 2.11. ([7]) An element a in an ASL L with 0 is said to be dense element if $[a]^* = \{0\}$.

LEMMA 2.1 ([3]). The set D, of all dense elements in an ASL L with unimaximal element is a filter.

DEFINITION 2.12. ([4]) An S-ideal I in a 0-distributive ASL L is called *dense* if $I^* = \{0\}$.

LEMMA 2.2 ([4]). Let L be an ASL. Then a subset P of L is a prime S-ideal if and only if L - P is a prime filter.

THEOREM 2.7 ([4]). Let L be a 0-distributive ASL. Then a subset M of L is a minimal prime S-ideal if and only if L - M is a maximal filter.

THEOREM 2.8 ([4]). Let L be a 0-distributive ASL. Then a prime S-ideal M of L is minimal if and only if $[x]^* - M \neq \emptyset$ for any $x \in M$.

THEOREM 2.9 ([3]). Let L be a 0-distributive ASL with unimaximal element in which intersection of any family of S-ideals is again an S-ideal. Then for any filter F of L and for any annihilator ideal I of L such that $F \cap I = \emptyset$, there exists a prime filter containing F and disjoint with I.

COROLLARY 2.1 ([4]). Let L be a 0-distributive ASL. Then a prime S-ideal M of L is minimal if and only if it contains precisely one of $\{x\}, [x]^*$ for every $x \in L$.

THEOREM 2.10 ([4]). Let L be a 0-distributive ASL, in which intersection of any family of S-ideals is again an S-ideal. Then for any S-ideal I of L, I^* is the intersection of all minimal prime S-ideals not containing I.

DEFINITION 2.13. ([7]) Let L and L' be two ASLs with 0 and 0' respectively. Then a mapping $f: L \to L'$ is called a homomorphism if it satisfies the following:

(1) $f(a \circ b) = f(a) \circ f(b)$ for all $a, b \in L$

(2) f(0) = 0'.

DEFINITION 2.14. ([7]) Let L, L' be an ASLs with 0 and 0' respectively and let $f: L \to L'$ be a homomorphism. Then f is called *annihilator preserving* if $f(A^*) = (f(A))^*$, for any $\{0\} \subset A \subset L$.

3. α -ideals in 0-distributive Almost Semilattices

In this section, we introduce the concept of an α -ideal in 0-distributive ASL and prove that every minimal prime S-ideal in 0-distributive ASL is an α -ideal. Also, prove that for any filter F in a 0-distributive ASL L, the set

$$O(F) = \{ x \in L : x \circ y = 0 \text{ for some } y \in F \}$$

is an α -ideal. If F is a maximal filter in a 0-distributive ASL then we prove that O(F) is a minimal prime S-ideal and hence is an α -ideal. Next, we prove that every annihilator S-ideal in a 0-distributive ASL is an α -ideal and prove that for any annihilator S-ideal I and a filter F in a 0-distributive ASL L such that $I \cap F = \emptyset$, there exists a prime α -ideal in L containing I and disjoint with F. Also, we introduce the concept of semi-ideal in an ASL with 0 and prove that if I is a dense S-ideal in L such that the semi-ideal $I' = \{x \in L : x \in [a]^{**}, for some a \in I\}$ is an S-ideal

416

then I contains a dense element. Also, we derive a set of identities for an S-ideal to become an α -ideal in 0-distributive ASL. We give a necessary and sufficient condition for an S-ideal to become an α -ideal in 0-distributive ASL. Finally, we prove that the image of an α -ideal is again an α -ideal under annihilator preserving homomorphism. First we begin this section with the following definition.

DEFINITION 3.1. Let L be a 0-distributive ASL. Then an S-ideal I in L is called an α -ideal if $[x]^{**} \subseteq I$ for each $x \in I$.

EXAMPLE 3.1. Let L = { 0, a, b, c} and define a binary operation \circ on L as follows:

0	0	a	b	с
0	0	0	0	0
а	0	а	0	а
b	0	0	b	b
с	0	a	b	с

Then clearly (L, \circ) is an 0-distributive ASL. Now, put $I = \{0, a\}$. Then clearly I is an S-ideal and also $[x]^{**} \subseteq I$ for each $x \in I$. Therefore I is an α -ideal.

It can be easily observe that intersection of any two α -ideals in a 0-distributive ASL is again an α -ideal and hence the set $I_{\alpha}(L)$ of all α -ideals in a 0-distributive ASL is a subsemilattice of the semilattice SI(L). In the following we prove that every minimal prime S-ideal is an α -ideal.

THEOREM 3.1. Let L be a 0-distributive ASL in which intersection of any family of S-ideals is again an S-ideal. Then every minimal prime S-ideal in L is an α -ideal and for any prime S-ideal P in L, the set

$$O(P) = \{ x \in L : x \circ y = 0 \text{ for some } y \notin P \}$$

is an α -ideal.

PROOF. Suppose M is a minimal prime S-ideal in L and $x \in M$. Now, we shall prove that $[x]^{**} \subseteq M$. Since M is minimal, $[x]^* - M \neq \emptyset$. Therefore there exists $y \in [x]^*$ and $y \notin M$. Let $z \in [x]^{**}$. Then $y \circ z \in [x]^* \cap [x]^{**} = \{0\}$. Therefore $y \circ z = 0$. Since M is prime and $y \notin M, z \in M$. Thus $[x]^{**} \subseteq M$. Therefore M is an α -ideal. Next, we shall prove that $O(P) = \{x \in L : x \circ y = 0 \text{ for some } y \notin P\}$ is an α -ideal. Since P is prime, and hence is proper. Therefore, we can choose $y \in L$ such that $y \notin P$ and also $0 \circ y = 0$. Hence $0 \in O(P)$. Therefore O(P) is a nonempty subset of L. Let $x \in O(P)$ and $t \in L$. Then $x \circ y = 0$ for some $y \notin P$ and $t \in L$. Consider $(x \circ t) \circ y = (t \circ x) \circ y = t \circ (x \circ y) = t \circ 0 = 0$. Therefore $x \circ t \in O(P)$. Let $x, y \in O(P)$. Then $x \circ a = 0$ for some $a \notin P$ and $y \circ b = 0$ for some $b \notin P$. Therefore, we get $x \circ (a \circ b) = 0$ and $y \circ (a \circ b) = 0$. Since L is 0-distributive, there exists $d \in L$ such that $d \circ x = x$, $d \circ y = y$ and $d \circ (a \circ b) = 0$. It follows that $d \circ (a \circ b) = 0$ and $a \circ b \notin P$, since P is prime. Hence $d \in O(P)$. Let $x \in O(P)$. Then $x \circ y = 0$ for some $y \notin P$. Therefore $y \in [x]^*$. Let $z \in [x]^{**}$. Then $y \circ z = 0$. Since $y \notin P$, $z \in O(P)$. Therefore $[x]^{**} \subseteq O(P)$. Thus O(P) is an α -ideal. \Box

COROLLARY 3.1. Let L be a 0-distributive ASL. Then each prime S-ideal in L contains an α -ideal.

PROOF. Suppose P is a prime S-ideal of L and $x \in O(P)$. Then there exists $y \notin P$ such that $x \circ y = 0$. Now, $x \circ y = 0 \in P$, we get $x \in P$ since P is a prime S-ideal. Thus $O(P) \subseteq P$.

Next, we introduce the following notation. For, any filter F in a 0-distributive ASL L, $O(F) = \{x \in L : x \circ y = 0 \text{ for some } y \in F\}$. In the following we prove that for any filter F in L, O(F) is a α -ideal.

THEOREM 3.2. Let L be a 0-distributive ASL. Then for any filter F in L, O(F) is an α -ideal in L.

PROOF. Suppose F is a filter in L. Now, we shall prove that O(F) is an α -ideal in L. Since $0 \in O(F)$, $O(F) \neq \emptyset$. Let $x \in O(F)$ and $t \in L$. Then $x \circ y = 0$ for some $y \in F$. Consider $(x \circ t) \circ y = (t \circ x) \circ y = t \circ (x \circ y) = t \circ 0 = 0$. Therefore $x \circ t \in O(F)$. Let $x, y \in O(F)$. Then $x \circ a = 0$, $y \circ b = 0$ for some $a, b \in F$. Therefore, we get $x \circ (a \circ b) = 0$ and $y \circ (a \circ b) = 0$. Since L is 0-distributive, there exists $d \in L$ such that $d \circ x = x$, $d \circ y = y$ and $d \circ (a \circ b) = 0$. It follows that $d \circ (a \circ b) = 0$ and $a \circ b \in F$. Hence $d \in O(F)$. Let $x \in O(F)$. Then $x \circ y = 0$ for some $y \in F$. Therefore $y \in [x]^*$. Let $z \in [x]^{**}$. Then $y \circ z = 0$. Therefore $z \in O(F)$ since $y \in F$. Thus O(F) is an α -ideal in L.

Next, we prove that if F is a maximal filter in 0-distributive ASL, then O(F) = L - F is a minimal prime S-ideal and hence O(F) is an α -ideal.

THEOREM 3.3. Let L be a 0-distributive ASL and F be a maximal filter in L. Then O(F) minimal prime S-ideal in L.

PROOF. Suppose F is a maximal filter in L. Then we have L - F is a minimal prime S-ideal in L. Now, we shall prove that O(F) is a minimal prime S-ideal in L. That is enough to prove that O(F) = L - F. Let $x \in O(F)$. Then $x \circ y = 0$ for some $y \in F$. Suppose $x \in F$. Then $x \circ y \in F$. It follows that $0 \in F$. Hence F = L, a contradiction to F is a maximal filter. Therefore $x \notin F$. Hence $x \in L - F$. Thus $O(F) \subseteq L - F$. Conversely, suppose $x \in L - F$. Then $x \notin F$. It follows that $F \subsetneq F \lor [x]$. Since F is maximal, $F \lor [x] = L$. Now, we have $0 \in L = F \lor [x]$. Therefore $0 \circ (a \circ b) = a \circ b$ for some $a \in F$, $b \in [x]$. This implies $a \circ b = 0$, $a \in F$ and $b \in [x]$. Now, $b \in [x]$ and hence $b \circ x = x$. Therefore $a \circ x = a \circ (b \circ x) = (a \circ b) \circ x = 0 \circ x = 0$. Hence $x \in O(F)$. Therefore $L - F \subseteq O(F)$. Thus O(F) = L - F.

THEOREM 3.4. Let L be a 0-distributive ASL. Then every annihilator S-ideal I in L is an α -ideal in L.

PROOF. Suppose I is an annihilator S-ideal in L and $x \in I$. Then $I = I^{**}$. Now, let $x \in I$. Then $x \in I^{**}$. It follows that $x \circ y = 0$ for all $y \in I^*$. Therefore $y \in [x]^*$ for all $y \in I^*$. Hence $I^* \subseteq [x]^*$. This implies $I^{**} \supseteq [x]^{**}$. Therefore $I \supseteq [x]^{**}$. Thus I is an α -ideal in L. But, the converse of the theorem 3.4, is not true. For, example a proper dense α -ideal is not an annihilator S-ideal. In the following we prove that for an annihilator S-ideal I disjoint with a filter F in 0-distributive ASL L, there exists a prime α -ideal in L containing I and disjoint with F.

THEOREM 3.5. Let L be a finite 0-distributive ASL, in which intersection of any family of S-ideals is again an S-ideal. Then for any annihilator S-ideal I and a filter F in L such that $I \cap F = \emptyset$, there exists a prime α -ideal P in L containing I and disjoint with F.

PROOF. Suppose I is an annihilator S-ideal and F is a filter of L such that $I \cap F = \emptyset$. Since I is an annihilator S-ideal, $I = A^*$ for some nonempty subset A of L. Since L is finite, we can write $A = \{a_1, a_2, ..., a_n\}$ (*n is finite*). Clearly, $A^* = \bigcap_{i=1}^n [a_i]^*. \text{ Now, suppose } [a_i]^* \cap F \neq \emptyset \text{ for all } i = 1, ..., n. \text{ Then we can choose } x_i \in [a_i]^* \cap F \text{ for each } i, 1 \leq i \leq n. \text{ It follows that } (\bigcirc_{i=1}^n x_i) \circ a_i = (\bigcirc_{i=1}^n x_i) \in [a_i]^* \cap F \text{ for each } i, 1 \leq i \leq n. \text{ It follows that } (\bigcirc_{i=1}^n x_i) \circ a_i = (\bigcirc_{i=1}^n x_i) \in [a_i]^* \cap F \text{ for each } i, 1 \leq i \leq n. \text{ It follows that } (\bigcirc_{i=1}^n x_i) \circ a_i = (\bigcirc_{i=1}^n x_i) \in [a_i]^* \cap F \text{ for each } i, 1 \leq i \leq n. \text{ It follows that } (\bigcirc_{i=1}^n x_i) \circ a_i = (\bigcirc_{i=1}^n x_i) \in [a_i]^* \cap F \text{ for each } i, 1 \leq i \leq n. \text{ follows that } (\bigcirc_{i=1}^n x_i) \circ a_i = (\bigcirc_{i=1}^n x_i) \in [a_i]^* \cap F \text{ for each } i, 1 \leq n \leq n. \text{ follows that } (\bigcirc_{i=1}^n x_i) \circ a_i = (\bigcirc_{i=1}^n x_i) \in [a_i]^* \cap F \text{ for each } i, 1 \leq n \leq n. \text{ follows that } (\bigcirc_{i=1}^n x_i) \circ a_i = (\bigcirc_{i=1}^n x_i) \in [a_i]^* \cap F \text{ for each } i, 1 \leq n \leq n. \text{ follows that } (\bigcirc_{i=1}^n x_i) \circ a_i = (\bigcirc_{i=1}^n x_i) \cap F \text{ for each } i, 1 \leq n \leq n \leq n. \text{ follows that } (\bigcirc_{i=1}^n x_i) \cap F \text{ follows that } (\bigcirc_{i=1}^n x_i) \cap F \text{ follows that } (\bigcirc_{i=1}^n x_i) \cap F \text{ follows that } (\bigcap_{i=1}^n x_i) \cap F \text{ follows that }$ $\{0\}$ for each $i, 1 \leq i \leq n$. This implies $\bigcap_{i=1}^{n} x_i \in [a_i]^*$ for all i = 1, ..., n. This implies $\bigcap_{i=1}^{n} x_i \in \bigcap_{i=1}^{n} [a_i]^*$, also $\bigcap_{i=1}^{n} x_i \in F$. Therefore $\bigcap_{i=1}^{n} x_i \in \bigcap_{i=1}^{n} [a_i]^* \cap F = A^* \cap F$. Hence $A^* \cap F \neq \emptyset$. Therefore $I \cap F \neq \emptyset$, a contradiction to our assumption. Thus we can choose $i_0, 1 \leq i_0 \leq n$, $[a_{i_0}]^* \cap F = \emptyset$. Now, put $\mathscr{F} = \{G : G \text{ is a filter of } L, F \subseteq G \text{ and } G \cap [a_{i_0}]^* = \emptyset\}$. Then clearly $\mathscr{F} \neq \emptyset$. \emptyset , since $F \in \mathscr{F}$. Clearly, \mathscr{F} is a poset w.r.to set inclusion and also \mathscr{F} satisfies the hypothesis of Zorn's lemma. Therefore by Zorn's lemma, \mathscr{F} has a maximal element (say) H. Then clearly H is a proper filter, $F \subseteq H$ and $H \cap [a_{i_0}]^* = \emptyset$. Suppose $a_i \notin H$. Then the filter $H \vee [a_i)$ contains H properly. Now, if $(H \vee [a_i)) \cap [a_i]^* = \emptyset$ then $H \vee [a_i) \in \mathscr{F}$, a contradiction to the maximality of H in \mathscr{F} . Therefore $(H \vee [a_i)) \cap [a_i]^* \neq \emptyset$. Choose $t \in L$ such that $t \in H \vee [a_i)$ and $t \in [a_i]^*$. This implies $t \circ (a \circ b) = a \circ b$, for some $a \in H$, $b \in [a_i)$ and $t \circ a_i = 0$. Now, we have $t \circ (a \circ b) = a \circ b$ and hence $(t \circ (a \circ b)) \circ a_i = (a \circ b) \circ a_i$. It follows that $(a \circ b) \circ a_i = 0$. Therefore $a \circ a_i = 0$. Hence $a \in [a_i]^*$ and also $a \in H$. Therefore $H \cap [a_i]^* \neq \emptyset$, a contradiction to $H \in \mathscr{F}$. Thus $a_i \in H$. Now, we shall prove that H is a maximal filter. Let $z \in L$ such that $z \notin M$. Since H is maximal element in $\mathscr{F}, (H \vee [z)) \cap [a_i]^* \neq \emptyset$. Therefore we can choose $c \in L$ such that $c \in H \vee [z]$ and $c \in [a_i]^*$. This implies $c \circ (x \circ y) = x \circ y$, for some $x \in H$, $y \in [z)$ and $c \circ a_i = 0$. Now, we have $c \circ (x \circ y) = x \circ y$. This implies $(c \circ (x \circ y)) \circ a_i = (x \circ y) \circ a_i$. It follows that $(x \circ y) \circ a_i = 0$. This implies $(x \circ a_i) \circ y = 0$. Hence we get $((x \circ a_i) \circ y) \circ z = 0$. It follows that $(x \circ a_i) \circ (y \circ z) = 0$. Therefore $(x \circ a_i) \circ z = 0$, since $y \in [z)$ and hence $y \circ z = z$. Thus $x \circ a_i \in H$ such that $(x \circ a_i) \circ z = 0$. Therefore H is a maximal filter. Hence L-H is a minimal prime S-ideal. Therefore by theorem 3.1, L-H is a prime α -ideal. Since $[a_i] \cap H = \emptyset$, $[a_i]^* \subseteq L - H$. This implies $\bigcap_{i=1}^n [a_i]^* \subseteq L - H$. Hence $A^* \subseteq L - H$. Therefore $I \subseteq L - H$. Also, since $F \subseteq H$, $F \cap (L - H) = \emptyset$. \Box

Next, we introduce the concept of semi-ideal in an ASL L and prove that if I is an S-ideal in a 0-distributive ASL L then the set $I' = \{x \in L : x \in [a]^{**}, for some a \in I\}$ is a semi-ideal.

DEFINITION 3.2. Let L be a ASL with 0. Then a nonempty subset I of L is said to be semi-ideal if $x \leq y$ and $y \in I$ then $x \in I$.

LEMMA 3.1. Let L be an ASL with 0 and I be an S-ideal of L. Then the set $I' = \{x \in L : x \in [a]^{**}, \text{ for some } a \in I\}$ is a semi-ideal of L.

PROOF. Let $y \in I'$ and $y \in L$ such that $x \leq y$. Then $y \in [a]^{**}$ for some $a \in I$. Therefore $y \circ z = 0$ for all $z \in [a]^*$. Since $x \leq y$, $x \circ z \leq y \circ z$. Therefore $x \circ z = 0$ and $z \in [a]^*$. Hence $x \in I'$. Thus I' is a semi-ideal of L.

Recall that the set D of all dense element in an ASL with 0 with unimaximal element is a filter. In the following we prove that if I is a dense S-ideal in 0-distributive ASL and if I' is an S-ideal then I contains a dense element.

THEOREM 3.6. Let L be a finite 0-distributive ASL with unimaximal element, in which intersection of any family of S-ideals is again an S-ideal such that every α -ideal in L is an annihilator S-ideal. Let I be a dense S-ideal in L. Then I contains a dense element if the semi-ideal $I' = \{x \in L : x \in [a]^{**}, \text{ for some } a \in I\}$ is an S-ideal in L.

PROOF. Suppose I is a dense S-ideal in L and suppose I' is an S-ideal in L. Now, we shall prove that I contains a dense element.

Claim I : Every minimal prime S-ideal in L is non-dense.

Suppose M is a minimal prime S-ideal in L. Then by theorem 3.1, M is an α -ideal and hence is an annihilator S-ideal. Thus $M = M^{**}$. Suppose M is dense. Then $M^* = \{0\}$. Now, $M = M^{**} = \{M^*\}^* = \{0\}^* = L$, a contradiction. Therefore M is non-dense.

Claim II : $I \cap D = \emptyset$ implies $I' \cap D = \emptyset$.

Suppose $I \cap D = \emptyset$ and suppose $I' \cap D \neq \emptyset$. Then there exists $d \in L$ such that $d \in I'$ and $d \in D$. Therefore there exists $a \in I$ such that $d \in [a]^{**}$ and $d \in D$. Since $[a]^* = [a]^{***} \subseteq [d]^* = \{0\}, \ [a]^* = \{0\}$. It follows that $a \in D$. Hence $I \cap D \neq \emptyset$, a contradiction to $I \cap D = \emptyset$. Thus $I' \cap D = \emptyset$.

Claim III : I' is an α -ideal in L.

Suppose $x \in I'$. Now, we shall prove that $[x]^{**} \subseteq I'$. Since $x \in I'$, there exists $a \in I$ such that $x \in [a]^{**}$. It follows that $[x]^{**} \subseteq [a]^{**}$. Hence $[x]^{**} \subseteq [a]^{**} \subseteq I'$, $a \in I$. Therefore $[x]^{**} \subseteq I'$. Thus I' is an α -ideal.

Claim IV : $I' \cap D = \emptyset$ implies $I \subseteq M$ for some minimal prime S-ideal M in L. Suppose $I' \cap D \neq \emptyset$. Then by claim III, I' is an α -ideal and hence by hypothesis, I' is an annihilator S-ideal. Therefore there exists a maximal filter F containing Dand disjoint with I'. It follows that M = L - F is a minimal prime S-ideal containing I'. Since $I \subseteq I'$, $I \subseteq M$.

Claim V : I contains a dense element

Suppose $I \cap D = \emptyset$. Then by claim II, $I' \cap D = \emptyset$. Therefore claim IV, $I \subseteq M$. This implies $M^* \subseteq I^* = (0]$. Hence $M^* = (0]$, a contradiction to claim I. Thus $I \cap D \neq \emptyset$. Therefore I contains a dense element.

420

Recall that set of all minimal prime S-ideals in 0-distributive ASL denoted by \mathfrak{M} . Now, we introduce the following notation.

$$h(x) = \{M \in \mathfrak{M} : x \in M\} (x \in L)$$

In the following, we derive a set of identities for an S-ideal to become α -ideal. First, we prove the following.

LEMMA 3.2. Let L be a 0-distributive ASL and let $a \neq 0 \in L$. Then there exists a minimal prime S-ideal not containing a.

PROOF. Suppose $a \in L$ and $a \neq 0$. Now, put F = [a]. Then clearly, F is a proper filter of L and hence F is contained in a maximal prime filter (say) K. Therefore by theorem 2.7, L-K is a minimal prime S-ideal of L and $a \notin L-K$. \Box

LEMMA 3.3. Let L be a 0-distributive ASL. Then for any $x \in L$, $[x]^* = \cap \{M \in \mathfrak{M} : x \notin M\}$.

PROOF. Suppose $t \in [x]^*$. Then $t \circ x = 0$. Suppose $M \in \mathfrak{M}$ such that $x \notin M$. Since $t \circ x = 0 \in M$, $t \in M$. Thus $t \in \cap \{M \in \mathfrak{M} : x \notin M\}$. Hence $[x]^* \subseteq \cap \{M \in \mathfrak{M} : x \notin M\}$. Conversely, suppose $t \notin [x]^*$. Then $t \circ x \neq 0$. Therefore there exists a minimal prime S-ideal (say) M in L such that $t \circ x \notin M$. This implies $t \notin M$ and $x \notin M$. It follows that $t \notin \cap \{M \in \mathfrak{M} : x \notin M\}$. Therefore $\cap \{M \in \mathfrak{M} : x \notin M\} \subseteq [x]^*$. Thus $[x]^* = \cap \{M \in \mathfrak{M} : x \notin M\}$.

LEMMA 3.4. Let L be a 0-distributive ASL. Then for any $x, y \in L$, $[x]^* \subseteq [y]^*$ if and only if $h(x) \subseteq h(y)$.

PROOF. Suppose $[x]^* \subseteq [y]^*$ and $P \in h(x)$. Then $x \in P$. Hence by corollary 2.1, $[x]^* \notin P$. Therefore $[y]^* \notin P$. Hence $y \in P$. Therefore $P \in h(y)$. Thus $h(x) \subseteq h(y)$. Conversely, suppose $h(x) \subseteq h(y)$. Let $t \notin [y]^*$. Then $t \circ y \neq 0$. Hence by lemma 3.2, there exists a minimal prime S-ideal P of L such that $t \circ y \notin P$. Therefore $t \notin P$ and $y \notin P$. It follows that $t \notin P$ and $P \notin h(y)$. Hence $t \notin$ P and $P \notin h(x)$. This implies that $t \notin P$ and $x \notin P$. Therefore $t \circ x \notin P$ since Pis a prime S-ideal. It follows that $t \circ x \neq 0$. Hence $t \notin [x]^*$. Thus $[x]^* \subseteq [y]^*$. \Box

Now, we prove the following.

THEOREM 3.7. Let L be a 0-distributive ASL, in which intersection of any family of S-ideals is again an S-ideal. Then for any S-ideal I of L, following are equivalent:

(1) I is an α -ideal.

- $(2) I = \bigcup_{x \in I} [x]^{**}.$
- (3) For any $x, y \in L$, $[x]^* = [y]^*$ and $x \in I \implies y \in I$.
- (4) For any $x, y \in L$, h(x) = h(y), $x \in I \implies y \in I$.

PROOF. (1) \Rightarrow (2) : Suppose I is an α -ideal. Then $[x]^{**} \subseteq I$ for each $x \in I$. Now, we shall prove that $I = \bigcup_{x \in I} [x]^{**}$. Since I is an α -ideal, $[x]^{**} \subseteq I$ for each $x \in I$, $\bigcup_{x \in I} [x]^{**} \subseteq I$.

Conversely, suppose $t \in I$. Then $[t]^{**} \subseteq I$. But, we have $t \in [t]^{**} \subseteq \bigcup_{x \in I} [x]^{**}$. This implies $t \in \bigcup_{x \in I} [x]^{**}$. Hence $I \subseteq \bigcup_{x \in I} [x]^{**}$. Thus $I = \bigcup_{x \in I} [x]^{**}$. Converse is clear.

 $(2) \Rightarrow (3)$: Suppose $y \notin I$. Then $y \notin \bigcup_{x \in I} [x]^{**}$. This implies $y \notin [x]^{**}$ for some $x \in I$. It follows that $y \circ z \neq 0$ for some $z \in [x]^*$. Since $[x]^* = [y]^*$, $z \in [y]^*$. Hence $y \circ z = 0$, a contradiction. Therefore $y \in I$.

(3) \Rightarrow (2) : Assume (3). Clearly, $I \subseteq \bigcup_{x \in I} [x]^{**}$. Conversely, suppose $y \in \bigcup_{x \in I} [x]^{**}$. Then $y \in [x]^{**}$ for some $x \in I$. This implies $y \circ z = 0$ for all $z \in [x]^*$. Therefore $[x]^* \subseteq [y]^*$. Suppose $t \in [x \circ y]^*$. Then $t \circ (x \circ y) = 0$. It follows that $t \circ y \in [x]^*$. This implies $t \circ y \in [y]^*$. Hence $(t \circ y) \circ y = 0$. Therefore $t \circ y = 0$. Hence $t \in [y]^*$. Therefore $[x \circ y]^* \subseteq [y]^*$. On the other hand, since $x \circ y \leq y$, $[y]^* \subseteq [x \circ y]^*$. Therefore $[x \circ y]^* = [y]^*$ and $x \circ y \in I$. Thus by assumption, $y \in I$. Therefore $\bigcup_{x \in I} [x]^{**} \subseteq I$. Hence $I = \bigcup_{x \in I} [x]^{**}$.

Proof of $(3) \Leftrightarrow (4)$ follows by Lemma 3.4.

Recall that $I^e = \{(a] : a \in I\}$ is an ideal in PSI(L). Next, we derive a necessary and sufficient condition for an S-ideal to become an α -ideal in 0-distributive ASL. First, we prove the following.

LEMMA 3.5. Let L be a 0-distributive ASL. Then $\{(a)\}^*$ is an ideal in PSI(L).

PROOF. Since $(a] \cap (0] = (a \circ 0] = (0], (0] \in \{(a]\}^*$. Therefore $\{(a]\}^*$ is a nonempty subset of PSI(L). Now, let $(x] \in \{(a)\}^*$ and $(t] \in PSI(L)$ such that $(t] \subseteq$ (x]. Then $(a] \cap (x] = (0]$. Now, since $(t] \subseteq (x], (t] \cap (a] \subseteq (x] \cap (a]$. It follows that $(t] \cap (a] = (0]$. Hence $(t] \in \{(a]\}^*$. Let $(x], (y] \in \{(a]\}^*$. Then $(a] \cap (x] = (0]$ and $(a] \cap (y] = (0]$. It follows that $a \circ x = 0$, $a \circ y = 0$. Since L is 0-distributive, there exists $d \in L$ such that $d \circ x = x$, $d \circ y = y$ and $d \circ a = 0$. It follows that $(d] \cap (x] = (d \circ x] = (x]$ and $(d] \cap (y] = (d \circ y] = (y]$. Therefore $(x] \subseteq (d], (y] \subseteq (d] \text{ and } d \in \{(a]\}^* \text{ since } d \circ a = 0.$ Thus $\{(a)\}^*$ is an ideal in PSI(L).

LEMMA 3.6. Let L be an ASL with 0. Then for any $a, b \in L$, we have the following.

(1) $x \in [a]^* \Leftrightarrow (x] \in \{(a]\}^*$ (2) $[a]^* = [b]^* \Leftrightarrow \{(a]\}^* = \{(b]\}^*$

PROOF. (1) We have $x \in [a]^* \Leftrightarrow x \circ a = 0 \Leftrightarrow (x] \cap (a] = (0] \Leftrightarrow (x] \in \{(a]\}^*$. Therefore $[a]^* = \{(a]\}^*$.

(2) Suppose $[a]^* = [b]^*$. Then $(x] \in \{(a]\}^* \Leftrightarrow (x] \cap (a] = (0]$ $\Leftrightarrow x \circ a = 0$ $\Leftrightarrow x \in [a]^*$ $\Leftrightarrow x \in [b]^*$ $\Leftrightarrow x \circ b = 0$

 $\begin{aligned} \Leftrightarrow (x \circ b] &= (0] \\ \Leftrightarrow (x] \cap (b] &= (0] \\ \Leftrightarrow (x] \in \{(a]\}^*. \end{aligned}$ Therefore $\{(a]\}^* = \{(b]\}^*.$ Conversely, suppose $\{(a]\}^* = \{(b]\}^*.$ Then $x \in [a]^* \Leftrightarrow (x] \in \{(a]\}^* \\ \Leftrightarrow (x] \in \{(b]\}^* \\ \Leftrightarrow (x] \cap (b] &= (0] \\ \Leftrightarrow (x \circ b] &= (0] \\ \Leftrightarrow x \circ b &= 0 \\ \Leftrightarrow x \in [b]^* \end{aligned}$ Therefore $[a]^* = [b]^*.$

THEOREM 3.8. Let L be a 0-distributive ASL and let I be an S-ideal of L. Then I is an α -ideal in L if and only if I is an α -ideal in PSI(L).

PROOF. Suppose I is an α -ideal in L. Now, we shall prove that $I^e := \{(a] : a \in I\}$ is an α -ideal in PSI(L). Clearly, I^e is an ideal in PSI(L) ([5], lemma 4.1). Let $(a], (b] \in PSI(L)$ such that $\{(a]\}^* = \{(b]\}^*$ and $(a] \in I^e$. It follows that $a \in I$. Now since $\{(a]\}^* = \{(b]\}^*$, by lemma 3.6, $[a]^* = [b]^*$. Again, since I is an α -ideal of L, $b \in I$. Hence $(b] \in I^e$. Therefore I^e is an α -ideal in PSI(L) since by theorem 3.7. Conversely, suppose I^e is an α -ideal in PSI(L). Let $a, b \in L$ such that $[a]^* = [b]^*$ and $a \in I$. Then $\{[a]\}^* = \{[b]\}^*$ and $(a] \in I^e$. Since I^e is an α -ideal in PSI(L), $(b] \in I^e$. Hence $b \in I$. Therefore I is an α -ideal in L.

Recall that an ASL homomorphism $f: L \to L'$ is said to be annihilator preserving homomorphism if for any subset A of L, $\{0\} \subseteq A \subseteq L$, $f(A^*) = (f(A))^*$. In the following we prove that the image of an α -ideal is again an α -ideal under annihilator preserving homomorphism. For this first we need the following lemma.

LEMMA 3.7. Let L and L' be two ASLs with 0 and 0' respectively and let $f: L \to L'$ be a homomorphism. Then $f((a]) \subseteq (f(a)]$ $(a \in L)$. Moreover, if f is onto, then f((a]) = (f(a)].

PROOF. Let $f(x) \in f((a])$. Then $x \in (a]$ and hence $x = a \circ x$. It follows that $f(x) = f(a \circ x) = f(a) \circ f(x)$. Therefore $f(x) \in (f(a)]$. Thus $f((a]) \subseteq (f(a)]$. Now, suppose f is onto. Let $t \in (f(a)]$. Since f is onto, there exists $x \in L$ such that f(x) = t. It follows that $f(x) = f(a) \circ f(x) = f(a \circ x) \in f((a])$. Therefore $t = f(x) \in f((a])$. Hence $(f(a)] \subseteq f((a))$. Thus f((a)) = (f(a)].

THEOREM 3.9. Let L, L' be 0-distributive ASLs and let $f : L \to L'$ be an annihilator preserving epimorphism. If J is an α -ideal in L, then f(J) is an α -ideal in L'.

PROOF. Suppose J is an α -ideal of L. Now, we shall prove that f(J) is an α -ideal in L'. First, we shall prove that f(J) is an S-ideal in L'. We have $f(J) = \{f(x) : x \in J\}$. Since $0' = f(0) \in f(J)$, $0' \in f(J)$. Therefore f(J) is a nonempty subset of L'. Let $f(a) \in f(J)$ and $t \in L'$. Since f is onto, there exists $s \in L$ such

that f(s) = t. Again, since $a \circ s \in J$, $f(a \circ s) \in f(J)$. This implies $f(a) \circ f(s) \in f(J)$. It follows that $f(a) \circ t \in f(J)$. Let $f(a), f(b) \in f(J)$. Then $a, b \in J$. Since J is an S-ideal in L, there exists $d \in J$ such that $d \circ a = a$ and $d \circ b = b$. This implies $f(d) \circ f(a) = f(a), f(d) \circ f(b) = f(b)$ and $f(d) \in f(J)$. Therefore f(J) is an S-ideal in L'. Let $x \in f(J)$. Then $x = f(a), for some \ a \in J$. Since J is an α -ideal and $a \in J, \ [a]^{**} \subseteq J$. This implies $f((a]^{**}) \subseteq f(J)$. Therefore $(f(a))^{**} \subseteq f(J)$ and hence $(f(a))^{**} \subseteq f(J)$. Hence we get $[x]^{**} = [f(a)]^{**} \subseteq f(J)$. Therefore f(J) is an α -ideal in L'.

References

- [1] Cornish, W. H. Annulets and α -ideals in Distributive Lattices. J. Aust. Math. Soc., 15(1)(1975), 70–77.
- [2] Jayaram, C. Quasicomplemented Semilattices. Acta. Math. Acad. Sci. Hungar., 39(1-3)(1982), 39-47.
- [3] Nanaji Rao, G. and Swapna, Ch. 0-Distributive Almost Semilattices. Journal of Emerging Technologies and Innovative Research, 6(2019), 525–536.
- [4] Nanaji Rao, G. and Swapna, Ch. Minimal Prime S-ideals in 0-distributive Almost Semilattices. Bull. Int. Math. Virtual Inst., 10(2)(2019), 249–261.
- [5] Nanaji Rao, G., Swapna, Ch. and Terefe Getchew Beyene. S-ideals in Almost Semilattices. J. Int. Math. Virtual Inst., 9(2)(2019), 225 –239.
- [6] Nanaji Rao G. and Terefe G. B. Almost Semilattice. International Journal of Mathematical Archive, 7(3)(2016), 52–67.
- [7] Nanaji Rao G. and Terefe G. B. Annihilator Ideals in Almost Semilattices. Bull. Int. Math. Virtual Inst., 7(2)(2017), 339–352.
- [8] Nanaji Rao G. and Terefe G. B. Relative Annihilators and Filters in Almost Semilattices. Southeast Asian Bull. Math., 43(2019), 553–576.
- [9] Pawar, Y. S. and Thakare, N. K. Minimal Prime Ideals in 0-distributive Semilattices. *Period. Math. Hungar.*, 13(3)(1982), 237-246.
- [10] Rao, G. C. and Sambasiva Rao, M. α-ideals in Almost Distributive Lattices. Int. J. Contemp. Math. Sciences, 4(10)(2009), 457–466.
- [11] Varlet, J. C. A Generalization of the Notion of Pseudo-complementedness. Bull. Soc. Roy. Sci. Liege, 37 (1968), 149–158.
- [12] Venkatanarasimhan, P. V. Pseudo-complements in posets. Proc. Amer. Math. Soc., 28(1)(1971), 9–17.

Received by editors 06.11.2019; Revised version 11.02.2020; Available online 17.02.2020.

G. NANAJI RAO: DEPARTMENT OF MATHEMATICS, ANDHRA UNIVERSITY, VISAKHAPATNAM-530003, INDIA.

E-mail address: nani6us@yahoo.com, drgnanajirao.math@auvsp.edu.in,

Ch. Swapna: Department of Mathematics, Andhra University, Visakhapatnam-530003, India,

E-mail address: swapna_chettupilli@yahoo.com