\(\alpha\)-IDEALS IN
0-DISTRIBUTIVE ALMOST SEMILATTICES

G. Nanaji Rao and Ch. Swapna

Abstract. The concept of \(\alpha\)-ideal in 0-distributive almost semilattice (0-distributive ASL) is introduced and proved certain properties of \(\alpha\)-ideals. Obtained several charaterizations for an S-ideal to become \(\alpha\)-ideals in 0-distributive ASL and derived a set of identities for an S-ideal to become \(\alpha\)-ideal in 0-distributive ASL. Finally, we proved that the image of an \(\alpha\)-ideal is again an \(\alpha\)-ideal under annihilator preserving homomorphism.

1. Introduction

Varlet [11] has introduced the concept of 0-distributive lattices. Generalizing the concept of 0-distributivity in semilattices a theory of 0-distributive semilattices is developed. Using the definition of an ideal (in a semilattice) given by Venkata-narasimhan [12], special types of ideals called \(\alpha\)-ideals, in 0-distributive semilattices are defined and several characterizations of \(\alpha\)-ideals in 0-distributive semilattices and 0-distributive lattices are furnished, which generalize the results of Cornish [1] and supplement to those of Jayaram [2]. The concept of an \(\alpha\)-ideal in almost distributive lattice \(R\) was introduced by Rao, G.C. and Sambasiva Rao, M. [10] and they proved that there is a one-to-one correspondence between the set \(I_\alpha(R)\) of all \(\alpha\)-ideals in \(R\) and the set of all \(\alpha\)-ideals of the lattice \(PZ(R)\) of all principal ideals of \(R\). Later, the concept of 0-distributive almost semilattices was introduced by Nanaji Rao and Swapna [3] and proved some basic properties of 0-distributive almost semilattices. Also, derived several characterization for an ASL with 0 to become 0-distributive ASL.

1991 Mathematics Subject Classification. 06D99, 06D15.
Key words and phrases. 0-distributive ASL, \(\alpha\)-ideal, prime S-ideal, minimal prime S-ideal, maximal filter, annihilator S-ideal, dense S-ideal, semi-ideal, annihilator preserving homomorphism.
In this paper, we introduced the concept of α-ideal in 0-distributive ASL and proved certain properties of α-ideals. Obtained several characterizations for an S-ideal to become α-ideals in 0-distributive ASL. Next, we proved that for any annihilator S-ideal I and a filter F in a 0-distributive ASL L such that $I \cap F = \emptyset$, there exists a prime α-ideal P in L containing I and disjoint with F. Also, we derived a set of identities for an S-ideal to become α-ideal in 0-distributive ASL. Finally, we proved that the image of an α-ideal is again an α-ideal under annihilator preserving homomorphism.

2. Preliminaries

In this section we collect a few important definitions and results which are already known and which will be used more frequently in the text.

Definition 2.1. ([6]) An ASL with 0 is an algebra $(L, \circ, 0)$ of type $(2, 0)$ satisfies the following conditions:
1. $(x \circ y) \circ z = x \circ (y \circ z)$
2. $(x \circ y) \circ z = (y \circ x) \circ z$
3. $x \circ x = x$
4. $0 \circ x = 0$, for all $x, y, z \in L$.

Definition 2.2. ([5]) Let L be an ASL. A nonempty subset I of L is said to be an S-ideal if it satisfies the following conditions:
1) If $x \in I$ and $a \in L$, then $x \circ a \in I$.
2) If $x, y \in I$, then there exists $d \in I$ such that $d \circ x = x, d \circ y = y$.

Definition 2.3. ([5]) Let L be an ASL and $a \in L$. Then $\{a \circ x : x \in L\}$ is an S-ideal of L and is called principal S-ideal generated by a.

Definition 2.4. ([8]) A nonempty subset F of an ASL L is said to be a filter if F satisfies the following conditions:
1) If $x, y \in F$, then $x \circ y \in F$.
2) If $x \in F$ and $a \in L$ such that $a \circ x = x$, then $a \in F$.

Definition 2.5. ([5]) A proper S-ideal P of an ASL L is said to be a prime S-ideal if for any $x, y \in L$, $x \circ y \in P$ imply $x \in P$ or $y \in P$.

Definition 2.6. ([8]) A proper filter F of L is said to be a prime filter if for any filters F_1 and F_2 of L, $F_1 \cap F_2 \subseteq F$ imply $F_1 \subseteq F$ or $F_2 \subseteq F$.

Definition 2.7. ([8]) A proper filter F of L is said to be maximal if for any filter G of L such that $F \subseteq G \subseteq L$, then either $F = G$ or $G = L$.

Definition 2.8. ([8]) An element $m \in L$ is said to be unimaximal if $m \circ x = x$ for all $x \in L$.

Definition 2.9. ([3]) Let L be an ASL with 0. Then L is said to be 0-distributive ASL if for any $x, y, z \in L$, $x \circ y = 0$ and $x \circ z = 0$ then there exists $d \in L$ such that $d \circ y = y, d \circ z = z$ and $d \circ x = 0$.
Definition 2.10. ([7]) Let L be an ASL with 0. Then for any nonempty subset A of L, \(A^* = \{ x \in L : x \circ a = 0 \mbox{ for all } a \in A \} \) is called the annihilator of A, and is denoted by \(A^* \). Note that if \(A = \{ a \} \), then we denote \(A^* = \{ a \}^* \) by \([a]^* \).

Theorem 2.1 ([7]). Let L be an ASL with 0. Then for any nonempty subsets I, J of L, we have the following:

1. \(I^* = \bigcap_{a \in I} [a]^* \)
2. \((I \cap J)^* = (J \cap I)^* \)
3. \(I \subseteq J \implies J^* \subseteq I^* \)
4. \(I^* \cap J^* \subseteq (I \cap J)^* \)
5. \(I \subseteq I^{**} \)
6. \(I^{***} = I^* \)
7. \(I^* \subseteq J^* \iff J^{**} \subseteq I^{**} \)
8. \(I \cap J = \{ 0 \} \iff I \subseteq J^* \iff J \subseteq I^* \)
9. \((I \cup J)^* = I^* \cap J^* \)

Theorem 2.2 ([7]). Let L be an ASL with 0. Then for any \(x, y \in L \), we have the following.

1. \(x \leq y \implies [y]^* \subseteq [x]^* \)
2. \([x]^* \subseteq [y]^* \implies [y]^{**} \subseteq [x]^{**} \)
3. \(x \in [x]^{**} \)
4. \([x]^* = [x]^* \)
5. \([x] \cap [x]^* = \{ 0 \} \)
6. \(x \circ [y]^* = [y \circ x]^* \)
7. \([x]^* \cap [y]^* \subseteq [x \circ y]^* \)
8. \(x \circ [y]^{**} = [x]^{**} \cap [y]^{**} \)
9. \([x]^{***} = [x]^* \)
10. \([x]^* \subseteq [y]^* \iff [y]^{**} \subseteq [x]^{**} \)

Theorem 2.3 ([3]). Let L be an ASL with 0. A proper filter M of L is maximal if and only if for any \(a \in L - M \), there exists \(b \in M \) such that \(a \circ b = 0 \).

Theorem 2.4 ([3]). Let L be an ASL with 0, in which intersection of any family of S-ideals is again an S-ideal. Then the following are equivalent:

1. \(L \) is 0-distributive ASL.
2. \(A^* \) is an S-ideal, for all \(A(\neq \emptyset) \subseteq L \).
3. SI(L) is pseudo-complemented semilattice.
4. SI(L) is 0-distributive semilattice.
5. PSI(L) is 0-distributive semilattice.

Theorem 2.5 ([4]). Every proper filter in ASL L is contained in a maximal filter.

Theorem 2.6 ([3]). Let L be 0-distributive ASL. Then every maximal filter of L is a prime filter.

Definition 2.11. ([7]) An element \(a \) in an ASL L with 0 is said to be dense element if \([a]^* = \{ 0 \} \).
Lemma 2.1 ([3]). The set D, of all dense elements in an ASL L with unimaximal element is a filter.

Definition 2.12. ([4]) An S-ideal I in a 0-distributive ASL L is called dense if $I^* = \{0\}$.

Lemma 2.2 ([4]). Let L be an ASL. Then a subset P of L is a prime S-ideal if and only if $L - P$ is a prime filter.

Theorem 2.7 ([4]). Let L be a 0-distributive ASL. Then a subset M of L is a minimal prime S-ideal if and only if $L - M$ is a maximal filter.

Theorem 2.8 ([4]). Let L be a 0-distributive ASL. Then a prime S-ideal M of L is minimal if and only if $[x] \cap M \neq \emptyset$ for any $x \in M$.

Theorem 2.9 ([3]). Let L be a 0-distributive ASL with unimaximal element in which intersection of any family of S-ideals is again an S-ideal. Then for any filter F of L and for any annihilator ideal I of L such that $F \cap I = \emptyset$, there exists a prime filter containing F and disjoint with I.

Corollary 2.1 ([4]). Let L be a 0-distributive ASL. Then a prime S-ideal M of L is minimal if and only if it contains precisely one of $\{x\}, [x]^*$ for every $x \in L$.

Definition 2.13. ([7]) Let L and L' be two ASLs with 0 and 0' respectively. Then a mapping $f : L \rightarrow L'$ is called a homomorphism if it satisfies the following:

1. $f(a \circ b) = f(a) \circ f(b)$ for all $a, b \in L$
2. $f(0) = 0'$.

Definition 2.14. ([7]) Let L, L' be an ASLs with 0 and 0' respectively and let $f : L \rightarrow L'$ be a homomorphism. Then f is called annihilator preserving if $f(A^*) = (f(A))^*$, for any $(0) \subset A \subset L$.

3. α-ideals in 0-distributive Almost Semilattices

In this section, we introduce the concept of an α-ideal in 0-distributive ASL and prove that every minimal prime S-ideal in 0-distributive ASL is an α-ideal. Also, prove that for any filter F in a 0-distributive ASL L, the set

$$O(F) = \{x \in L : x \circ y = 0 \text{ for some } y \in F\}$$

is an α-ideal. If F is a maximal filter in a 0-distributive ASL then we prove that $O(F)$ is a minimal prime S-ideal and hence is an α-ideal. Next, we prove that every annihilator S-ideal in a 0-distributive ASL is an α-ideal and prove that for any annihilator S-ideal I and a filter F in a 0-distributive ASL L such that $I \cap F = \emptyset$, there exists a prime α-ideal in L containing I and disjoint with F. Also, we introduce the concept of semi-ideal in an ASL with 0 and prove that if I is a dense S-ideal in L such that the semi-ideal $I' = \{x \in L : x \in [a]^*, \text{ for some } a \in I\}$ is an S-ideal.
then I contains a dense element. Also, we derive a set of identities for an S-ideal to become an \(\alpha \)-ideal in 0-distributive ASL. We give a necessary and sufficient condition for an S-ideal to become an \(\alpha \)-ideal in 0-distributive ASL. Finally, we prove that the image of an \(\alpha \)-ideal under annihilator preserving homomorphism. First we begin this section with the following definition.

Definition 3.1. Let \(L \) be a 0-distributive ASL. Then an S-ideal \(I \) in \(L \) is called an \(\alpha \)-ideal if \([x]^* \subseteq I \) for each \(x \in I \).

Example 3.1. Let \(L = \{0, a, b, c\} \) and define a binary operation \(\circ \) on \(L \) as follows:

\[
\begin{array}{ccc|ccc}
\circ & 0 & a & b & c \\
0 & 0 & 0 & 0 & 0 \\
a & 0 & a & 0 & a \\
b & 0 & 0 & b & b \\
c & 0 & a & b & c \\
\end{array}
\]

Then clearly \((L, \circ)\) is an 0-distributive ASL. Now, put \(I = \{0, a\} \). Then clearly \(I \) is an S-ideal and also \([x]^* \subseteq I \) for each \(x \in I \). Therefore \(I \) is an \(\alpha \)-ideal.

It can be easily observe that intersection of any two \(\alpha \)-ideals in a 0-distributive ASL is again an \(\alpha \)-ideal and hence the set \(I_\alpha(L) \) of all \(\alpha \)-ideals in a 0-distributive ASL is a subsemilattice of the semilattice \(SI(L) \). In the following we prove that every minimal prime S-ideal is an \(\alpha \)-ideal.

Theorem 3.1. Let \(L \) be a 0-distributive ASL in which intersection of any family of S-ideals is again an S-ideal. Then every minimal prime S-ideal in \(L \) is an \(\alpha \)-ideal and for any prime S-ideal \(P \) in \(L \), the set

\[O(P) = \{ x \in L : x \circ y = 0 \text{ for some } y \notin P \} \]

is an \(\alpha \)-ideal.

Proof. Suppose \(M \) is a minimal prime S-ideal in \(L \) and \(x \in M \). Now, we shall prove that \([x]^* \subseteq M \). Since \(M \) is minimal, \([x]^* - M \neq \emptyset \). Therefore there exists \(y \in [x]^* \) and \(y \notin M \). Let \(z \in [x]^* \). Then \(y \circ z \in [x]^* \cap [x]^* = \{0\} \). Therefore \(y \circ z = 0 \). Since \(M \) is prime and \(y \notin M \), \(z \in M \). Thus \([x]^* \subseteq M \). Therefore \(M \) is an \(\alpha \)-ideal. Next, we shall prove that \(O(P) = \{ x \in L : x \circ y = 0 \text{ for some } y \notin P \} \) is an \(\alpha \)-ideal. Since \(P \) is prime, and hence is proper. Therefore, we can choose \(y \in L \) such that \(y \notin P \) and also \(0 \circ y = 0 \). Hence 0 \in \(O(P) \). Therefore \(O(P) \) is a nonempty subset of \(L \). Let \(x \in O(P) \) and \(t \in L \). Then \(x \circ t = 0 \text{ for some } y \notin P \) and \(t \in L \). Consider \((x \circ t) \circ y = (t \circ x) \circ y = t \circ (x \circ y) = t \circ 0 = 0 \). Therefore \(x \circ t \in O(P) \). Let \(x, y \in O(P) \). Then \(x \circ a = 0 \text{ for some } a \notin P \) and \(y \circ b = 0 \text{ for some } b \notin P \). Therefore, we get \(x \circ (a \circ b) = 0 \) and \(y \circ (a \circ b) = 0 \). Since \(L \) is 0-distributive, there exists \(d \in L \) such that \(d \circ x = x \), \(d \circ y = y \) and \(d \circ (a \circ b) = 0 \). It follows that \(d \circ (a \circ b) = 0 \) and \(a \circ b \notin P \), since \(P \) is prime. Hence \(d \in O(P) \). Let \(x \in O(P) \). Then \(x \circ y = 0 \text{ for some } y \notin P \). Therefore \(y \in [x]^* \). Let \(z \in [x]^* \). Then \(y \circ z = 0 \). Since \(y \notin P \), \(z \in O(P) \). Therefore \([x]^* \subseteq O(P) \). Thus \(O(P) \) is an \(\alpha \)-ideal. \(\square \)
Let L be a 0-distributive ASL. Then each prime S-ideal in L contains an α-ideal.

Proof. Suppose P is a prime S-ideal of L and $x \in O(P)$. Then there exists $y \notin P$ such that $x \circ y = 0$. Now, $x \circ y = 0 \in P$, we get $x \in P$ since P is a prime S-ideal. Thus $O(P) \subseteq P$. □

Next, we introduce the following notation. For any filter F in a 0-distributive ASL L, $O(F) = \{x \in L : x \circ y = 0 \text{ for some } y \in F\}$. In the following we prove that for any filter F in L, $O(F)$ is a α-ideal.

Theorem 3.2. Let L be a 0-distributive ASL. Then for any filter F in L, $O(F)$ is an α-ideal in L.

Proof. Suppose F is a filter in L. Now, we shall prove that $O(F)$ is an α-ideal in L. Since $0 \in O(F)$, $O(F) \neq \emptyset$. Let $x \in O(F)$ and $t \in L$. Then $x \circ y = 0$ for some $y \in F$. Consider $(x \circ t) \circ y = (t \circ x) \circ y = t \circ (x \circ y) = t \circ 0 = 0$. Therefore $x \circ t \in O(F)$. Let $x, y \in O(F)$. Then $x \circ a = 0$, $y \circ b = 0$ for some $a, b \in F$. Therefore, we get $x \circ (a \circ b) = 0$ and $y \circ (a \circ b) = 0$. Since L is 0-distributive, there exists $d \in L$ such that $d \circ x = x$, $d \circ y = y$ and $d \circ (a \circ b) = 0$. It follows that $d \circ (a \circ b) = 0$ and $a \circ b \in F$. Hence $d \in O(F)$. Let $x \in O(F)$. Then $x \circ y = 0$ for some $y \in F$. Therefore $y \in [x]^*$. Let $z \in [x]^**$. Then $y \circ z = 0$. Therefore $z \in O(F)$ since $y \in F$. Thus $O(F)$ is an α-ideal in L. □

Next, we prove that if F is a maximal filter in 0-distributive ASL, then $O(F) = L - F$ is a minimal prime S-ideal and hence $O(F)$ is an α-ideal.

Theorem 3.3. Let L be a 0-distributive ASL and F be a maximal filter in L. Then $O(F)$ minimal prime S-ideal in L.

Proof. Suppose F is a maximal filter in L. Then we have $L - F$ is a minimal prime S-ideal in L. Now, we shall prove that $O(F)$ is a minimal prime S-ideal in L. That is enough to prove that $O(F) = L - F$. Let $x \in O(F)$. Then $x \circ y = 0$ for some $y \in F$. Suppose $x \in F$. Then $x \circ y \in F$. It follows that $0 \in F$. Hence $F = L$, a contradiction to F is a maximal filter. Therefore $x \notin F$. Hence $x \in L - F$. Thus $O(F) \subseteq L - F$. Conversely, suppose $x \in L - F$. Then $x \notin F$. It follows that $F \nsubseteq F \cup [x]$. Since F is maximal, $F \cup [x] = L$. Now, we have $0 \in L = F \cup [x]$. Therefore $0 \circ (a \circ b) = a \circ b$ for some $a \in F$, $b \in [x]$. This implies $a \circ b = 0$, $a \in F$ and $b \in [x]$. Now, $b \in [x]$ and hence $b \circ x = x$. Therefore $a \circ x = a \circ (b \circ x) = (a \circ b) \circ x = 0 \circ x = 0$. Hence $x \in O(F)$. Therefore $L - F \subseteq O(F)$. Thus $O(F) = L - F$. □

Theorem 3.4. Let L be a 0-distributive ASL. Then every annihilator S-ideal I in L is an α-ideal in L.

Proof. Suppose I is an annihilator S-ideal in L and $x \in I$. Then $I = I^*$. Now, let $x \in I$. Then $x \in I^*$. It follows that $x \circ y = 0$ for all $y \in I^*$. Therefore $y \in [x]^*$ for all $y \in I^*$. Hence $I^* \subseteq [x]^*$. This implies $I^{**} \supseteq [x]^{**}$. Therefore $I \supseteq [x]^{**}$. Thus I is an α-ideal in L. □
Let L be a finite 0-distributive ASL, in which intersection of any family of S-ideals is again an S-ideal. Then for any annihilator S-ideal I and a filter F in L such that $I \cap F = \emptyset$, there exists a prime α-ideal P in L containing I and disjoint with F.

Theorem 3.5. Let L be a finite 0-distributive ASL, in which intersection of any family of S-ideals is again an S-ideal. Then for any annihilator S-ideal I and a filter F in L such that $I \cap F = \emptyset$, there exists a prime α-ideal P in L containing I and disjoint with F.

Proof. Suppose I is an annihilator S-ideal and F is a filter of L such that $I \cap F = \emptyset$. Since I is an annihilator S-ideal, $I = A^*$ for some nonempty subset A of L. Since A is finite, we can write $A = \{a_1, a_2, \ldots, a_n\}$ (n is finite). Clearly, $A^* = \bigcap_{i=1}^n [a_i]^*$. Now, suppose $[a_i]^* \cap F \neq \emptyset$ for all $i = 1, \ldots, n$. Then we can choose $x_i \in [a_i]^* \cap F$ for each i, $1 \leq i \leq n$. It follows that $(\bigcap_{i=1}^n x_i) \circ a_i = \{0\}$ for each i, $1 \leq i \leq n$. This implies $\bigcap_{i=1}^n x_i \in [a_i]^*$ for all $i = 1, \ldots, n$. This implies $\bigcap_{i=1}^n x_i \in F = A^* \cap F$. Hence $A^* \cap F \neq \emptyset$. Therefore $I \cap F \neq \emptyset$, a contradiction to our assumption. Thus we can choose $i_0, 1 \leq i_0 \leq n$, $[a_{i_0}]^* \cap F = \emptyset$. Now, put $\mathcal{F} = \{G : G$ is a filter of $L, F \subseteq G$ and $F \cap [a_i]^* = \emptyset\}$. Then clearly $\mathcal{F} \neq \emptyset$, since $F \in \mathcal{F}$. Clearly, \mathcal{F} is a poset w.r.t. set inclusion and also \mathcal{F} satisfies the hypothesis of Zorn’s lemma. Therefore by Zorn’s lemma, \mathcal{F} has a maximal element (say) H. Then clearly H is a proper filter, $F \subseteq H$ and $H \cap [a_i]^* = \emptyset$. Suppose $a_i \not\in H$. Then the filter $H \cup \{a_i\}$ contains H properly. Now, if $(H \cup \{a_i\}) \cap [a_i]^* = \emptyset$ then $H \cup \{a_i\} \in \mathcal{F}$, a contradiction to the maximality of H in \mathcal{F}. Therefore $(H \cup \{a_i\}) \cap [a_i]^* \neq \emptyset$. Choose $t \in L$ such that $t \in H \cup \{a_i\}$ and $t \not\in [a_i]^*$. This implies $t \circ (a \circ b) = a \circ b$, for some $a \in H$, $b \in [a_i]$ and $a \circ b = 0$. Now, we have $t \circ (a \circ b) = a \circ b$ and hence $(t \circ (a \circ b)) \circ a_1 = (a \circ b) \circ a_1$. It follows that $(a \circ b) \circ a_i = 0$. Therefore $a \circ a_i = 0$. Hence $a \in [a_i]^*$ and also $a \in H$. Therefore $H \cap [a_i]^* \neq \emptyset$, a contradiction to $H \in \mathcal{F}$. Thus $a_i \in H$. Now, we shall prove that H is a maximal filter. Let $z \in L$ such that $z \not\in M$. Since H is maximal element in \mathcal{F}, $(H \cup \{z\}) \cap [a_i]^* \neq \emptyset$. Therefore we can choose $c \in L$ such that $c \in H \cup \{z\}$ and $c \in [a_i]^*$. This implies $c \circ (x \circ y) = x \circ y$, for some $x \in H$, $y \in \{z\}$ and $c \circ a_i = 0$. Now, we have $c \circ (x \circ y) = x \circ y$. This implies $c \circ (x \circ y) = (x \circ y) \circ a_i$. It follows that $(x \circ y) \circ a_i = 0$. This implies $(x \circ a_i) \circ y = 0$. Hence we get $((x \circ a_i) \circ y) \circ z = 0$. It follows that $(x \circ a_i) \circ y \circ z = 0$. Therefore $(x \circ a_i) \circ z = 0$, since $y \in \{z\}$ and hence $y \circ z = z$. Thus $x \circ a_i \in H$ such that $(x \circ a_i) \circ z = 0$. Therefore H is a maximal filter. Hence $L - H$ is a minimal prime S-ideal. Therefore by theorem 3.1, $L - H$ is a prime α-ideal. Since $[a_i] \cap H = \emptyset$, $[a_i]^* \subseteq L - H$. This implies $\bigcap_{i=1}^n [a_i]^* \subseteq L - H$. Hence $A^* \subseteq L - H$. Therefore $I \subseteq L - H$. Also, since $F \subseteq H$, $F \cap (L - H) = \emptyset$. □

Next, we introduce the concept of semi-ideal in an ASL L and prove that if I is an S-ideal in a 0-distributive ASL L then the set $I' = \{x \in L : x \in [a]^{**}$, for some $a \in I\}$ is a semi-ideal.
Definition 3.2. Let L be a ASL with 0. Then a nonempty subset I of L is said to be semi-ideal if $x \leq y$ and $y \in I$ then $x \in I$.

Lemma 3.1. Let L be an ASL with 0 and I be an S-ideal of L. Then the set $I' = \{x \in L : x \in [a]^{**}, \text{ for some } a \in I\}$ is a semi-ideal of L.

Proof. Let $y \in I'$ and $y \in L$ such that $x \leq y$. Then $y \in [a]^{**}$ for some $a \in I$. Therefore $y \circ z = 0$ for all $z \in [a]^*$. Since $x \leq y$, $x \circ z \leq y \circ z$. Therefore $x \circ z = 0$ and $z \in [a]^*$. Hence $x \in I'$. Thus I' is a semi-ideal of L.

Recall that the set D of all dense element in an ASL with 0 with unimaximal element is a filter. In the following we prove that if I is a dense S-ideal in 0-distributive ASL and if I' is an S-ideal then I contains a dense element.

Theorem 3.6. Let L be a finite 0-distributive ASL with unimaximal element, in which intersection of any family of S-ideals is again an S-ideal such that every α-ideal in L is an annihilator S-ideal. Let I be a dense S-ideal in L. Then I contains a dense element if the semi-ideal $I' = \{x \in L : x \in [a]^{**}, \text{ for some } a \in I\}$ is an S-ideal in L.

Proof. Suppose I is a dense S-ideal in L and suppose I' is an S-ideal in L. Now, we shall prove that I contains a dense element.

Claim I: Every minimal prime S-ideal in L is non-dense.

Suppose M is a minimal prime S-ideal in L. Then by theorem 3.1, M is an α-ideal and hence is an annihilator S-ideal. Thus $M = M^{**}$. Suppose M is dense. Then $M^* = \{0\}$. Now, $M = M^{**} = \{M^*\}^* = \{0\}^* = L$, a contradiction. Therefore M is non-dense.

Claim II: $I \cap D = \emptyset$ implies $I' \cap D = \emptyset$.

Suppose $I \cap D = \emptyset$ and suppose $I' \cap D \neq \emptyset$. Then there exists $d \in L$ such that $d \in I'$ and $d \in D$. Therefore there exists $a \in I$ such that $d \in [a]^{**}$ and $d \in D$. Since $[a]^* = [a]^* \subseteq [d]^* = \{0\}$, $[a]^* = \{0\}$. It follows that $a \in D$. Hence $I \cap D \neq \emptyset$, a contradiction to $I \cap D = \emptyset$. Thus $I' \cap D = \emptyset$.

Claim III: I' is an α-ideal in L.

Suppose $x \in I'$. Now, we shall prove that $[x]^{**} \subseteq I'$. Since $x \in I'$, there exists $a \in I$ such that $x \in [a]^{**}$. It follows that $[x]^{**} \subseteq [a]^{**} \subseteq I'$, $a \in I$. Therefore $[x]^{**} \subseteq I'$. Thus I' is an α-ideal.

Claim IV: $I' \cap D = \emptyset$ implies $I \subseteq M$ for some minimal prime S-ideal M in L.

Suppose $I' \cap D \neq \emptyset$. Then by claim III, I' is an α-ideal and hence by hypothesis, I' is an annihilator S-ideal. Therefore there exists a maximal filter F containing D and disjoint with I'. It follows that $M = L - F$ is a minimal prime S-ideal containing I'. Since $I \subseteq I'$, $I \subseteq M$.

Claim V: I contains a dense element.

Suppose $I \cap D = \emptyset$. Then by claim II, $I' \cap D = \emptyset$. Therefore claim IV, $I \subseteq M$. This implies $M^* \subseteq I^* = \{0\}$. Hence $M^* = \{0\}$, a contradiction to claim I. Thus $I \cap D \neq \emptyset$. Therefore I contains a dense element.
Recall that set of all minimal prime S-ideals in 0-distributive ASL denoted by \mathfrak{M}. Now, we introduce the following notation.

$$h(x) = \{M \in \mathfrak{M} : x \in M\} (x \in L)$$

In the following, we derive a set of identities for an S-ideal to become α-ideal. First, we prove the following.

Lemma 3.2. Let L be a 0-distributive ASL and let $a(\neq 0) \in L$. Then there exists a minimal prime S-ideal not containing a.

Proof. Suppose $a \in L$ and $a \neq 0$. Now, put $F = \{a\}$. Then clearly, F is a proper filter of L and hence F is contained in a maximal prime filter (say) K. Therefore by theorem 2.7, $L - K$ is a minimal prime S-ideal of L and $a \notin L - K$. \hfill \square

Lemma 3.3. Let L be a 0-distributive ASL. Then for any $x \in L$, $[x]^* = \cap \{M \in \mathfrak{M} : x \notin M\}$.

Proof. Suppose $t \in [x]^*$. Then $t \circ x = 0$. Suppose $M \in \mathfrak{M}$ such that $x \notin M$. Since $t \circ x = 0 \in M$, $t \in M$. Thus $t \in \cap \{M \in \mathfrak{M} : x \notin M\}$. Hence $[x]^* \subseteq \cap \{M \in \mathfrak{M} : x \notin M\}$. Conversely, suppose $t \notin [x]^*$. Then $t \circ x \neq 0$. Therefore there exists a minimal prime S-ideal (say) M in L such that $t \circ x \notin M$. This implies $t \notin M$ and $x \notin M$. It follows that $t \notin \cap \{M \in \mathfrak{M} : x \notin M\}$. Therefore $\cap \{M \in \mathfrak{M} : x \notin M\} \subseteq [x]^*$. Thus $[x]^* = \cap \{M \in \mathfrak{M} : x \notin M\}$. \hfill \square

Lemma 3.4. Let L be a 0-distributive ASL. Then for any $x, y \in L$, $[x]^* \subseteq [y]^*$ if and only if $h(x) \subseteq h(y)$.

Proof. Suppose $[x]^* \subseteq [y]^*$ and $P \in h(x)$. Then $x \in P$. Hence by corollary 2.1, $[x]^* \notin P$. Therefore $[y]^* \notin P$. Hence $y \in P$. Therefore $P \in h(y)$. Thus $h(x) \subseteq h(y)$. Conversely, suppose $h(x) \subseteq h(y)$. Let $t \notin [y]^*$. Then $t \circ y \neq 0$. Hence by lemma 3.2, there exists a minimal prime S-ideal P of L such that $t \circ y \notin P$. Therefore $t \notin P$ and $y \notin P$. It follows that $t \notin P$ and $P \notin h(y)$. Hence $t \notin P$ and $P \notin h(x)$. This implies that $t \notin P$ and $x \notin P$. Therefore $t \circ x \notin P$ since P is a prime S-ideal. It follows that $t \circ x \neq 0$. Hence $t \notin [x]^*$. Thus $[x]^* \subseteq [y]^*$. \hfill \square

Now, we prove the following.

Theorem 3.7. Let L be a 0-distributive ASL, in which intersection of any family of S-ideals is again an S-ideal. Then for any S-ideal I of L, following are equivalent:

1. I is an α-ideal.
2. $I = \bigcup_{x \in I} [x]^*.$
3. For any $x, y \in L$, $[x]^* = [y]^*$ and $x \in I \implies y \in I.$
4. For any $x, y \in L$, $h(x) = h(y)$, $x \in I \implies y \in I.$

Proof. (1) \Rightarrow (2): Suppose I is an α-ideal. Then $[x]^* \subseteq I$ for each $x \in I$.

Now, we shall prove that $I = \bigcup_{x \in I} [x]^*$. Since I is an α-ideal, $[x]^* \subseteq I$ for each $x \in I$, $\bigcup_{x \in I} [x]^* \subseteq I$.

Conversely, suppose \(t \in I \). Then \([t]\) \(\subseteq I \). But, we have \(t \in [t]\) \(\subseteq \bigcup_{x \in I} [x] \). Thus \(I = \bigcup_{x \in I} [x] \).

Converse is clear.

\((2) \Rightarrow (3) : \) Suppose \(y \notin I \). Then \(y \notin \bigcup_{x \in I} [x] \). This implies \(y \notin [x] \) for some \(x \in I \). It follows that \(y \circ z \neq 0 \) for some \(z \in [x] \). Since \([x] = [y] \), \(z \in [y] \). Hence \(y \circ z = 0 \), a contradiction. Therefore \(y \in I \).

\((3) \Rightarrow (2) : \) Assume \((3) \). Clearly, \(I \subseteq \bigcup_{x \in I} [x] \).

Conversely, suppose \(y \in \bigcup_{x \in I} [x] \). Then \(y \in [x] \) for some \(x \in I \). This implies \(y \circ z = 0 \) for all \(z \in [x] \). Therefore \([x] \subseteq [y] \). Suppose \(t \in [x \circ y] \). Then \(t \circ (x \circ y) = 0 \). It follows that \(t \circ y \in [x] \). This implies \(t \circ y \in [y] \). Hence \((t \circ y) \circ y = 0 \). Therefore \(t \circ y = 0 \). Hence \(t \in [y] \). Therefore \([x \circ y] \subseteq [y] \). On the other hand, since \(x \circ y \subseteq y \), \([y] \subseteq [x \circ y] \). Therefore \([x \circ y] = [y] \) and \(x \circ y \in I \).

Thus by assumption, \(y \in I \). Therefore \(\bigcup_{x \in I} [x] \) \(\subseteq I \). Hence \(I = \bigcup_{x \in I} [x] \).

Proof of \((3) \Leftrightarrow (4) \) follows by Lemma 3.4.

Recall that \(I^c = \{\{a \} : a \in I \} \) is an ideal in \(PSI(L) \). Next, we derive a necessary and sufficient condition for an \(S \)-ideal to become an \(\alpha \)-ideal in 0-distributive ASL.

First, we prove the following.

Lemma 3.5. Let \(L \) be a 0-distributive ASL. Then \(\{\{a\} \} \) is an ideal in \(PSI(L) \).

Proof. Since \((a) \cap \{0\} = (a \circ 0) = \{0\}, \{0\} \in \{\{a\} \} \). Therefore \(\{\{a\} \} \) is a nonempty subset of \(PSI(L) \). Now, let \(x \in \{\{a\} \} \) and \(\{t\} \in PSI(L) \) such that \(\{t\} \subseteq \{x\} \). Then \(\{a\} \cap \{x\} = \{0\} \). Now, since \(\{t\} \subseteq \{x\}, \{t\} \cap \{a\} \subseteq \{x\} \cap \{a\} \). It follows that \(\{t\} \cap \{a\} = \{0\} \). Hence \(\{t\} \in \{\{a\} \} \). Let \(\{x\}, \{y\} \in \{\{a\} \} \). Then \(\{a\} \cap \{x\} = \{0\} \) and \(\{a\} \cap \{y\} = \{0\} \). It follows that \(a \circ x = 0, a \circ y = 0 \). Since \(L \) is 0-distributive, there exists \(d \in L \) such that \(d \circ x = x, d \circ y = y \) and \(d \circ a = 0 \). It follows that \(\{d\} \cap \{x\} = \{d \circ x\} = \{x\} \) and \(\{d\} \cap \{y\} = \{d \circ y\} = \{y\} \). Therefore \(\{x\} \subseteq \{d\} \), \(\{y\} \subseteq \{d\} \) and \(d \in \{\{a\} \} \) since \(d \circ a = 0 \). Thus \(\{\{a\} \} \) is an ideal in \(PSI(L) \).

Lemma 3.6. Let \(L \) be an ASL with 0. Then for any \(a, b \in L \), we have the following.

1. \(x \in [a] \Leftrightarrow x \in \{\{a\} \} \)
2. \([a] = [b] \Leftrightarrow \{\{a\} \} = \{\{b\} \} \)

Proof. (1) We have \(x \in [a] \Leftrightarrow x \circ a = 0 \Leftrightarrow \{x\} \cap \{a\} = \{0\} \Leftrightarrow \{x\} \in \{\{a\} \} \).

Therefore \([a] = \{\{a\} \} \).

(2) Suppose \([a] = [b] \). Then \(x \in \{\{a\} \} \Leftrightarrow x \in \{\{b\} \} \)
(3) \(x \circ a = 0 \)
(4) \(x \in [a] \)
(5) \(x \in [b] \)
(6) \(x \circ b = 0 \)
\(L \) be a 0-distributive ASL and let \(I \) be an S-ideal of \(L \). Then
\[
\begin{align*}
\& \iff (x \circ b) = (0) \\
\& \iff (x) \cap (b) = (0) \\
\& \iff (x) \subseteq \{(a)\}^*.
\end{align*}
\]
Therefore \(\{(a)\}^* = \{(b)\}^* \). Conversely, suppose \(\{(a)\}^* = \{(b)\}^* \). Then
\[
\begin{align*}
\& x \in [a]^* \iff (x) \subseteq \{(a)\}^* \\
\& \iff (x) \subseteq \{(b)\}^* \\
\& \iff (x) \cap (b) = (0) \\
\& \iff (x \circ b) = (0) \\
\& \iff x \circ b = 0 \\
\& \iff x \in [b]^*
\end{align*}
\]
Therefore \([a]^* = [b]^*\).

Theorem 3.8. Let \(L \) be a 0-distributive ASL and let \(I \) be an S-ideal of \(L \). Then \(I \) is an \(\alpha \)-ideal in \(L \) if and only if \(I \) is an \(\alpha \)-ideal in \(PSI(L) \).

Proof. Suppose \(I \) is an \(\alpha \)-ideal in \(L \). Now, we shall prove that \(I^\circ := \{(a) : a \in I\} \) is an \(\alpha \)-ideal in \(PSI(L) \). Clearly, \(I^\circ \) is an ideal in \(PSI(L) \) ([5], lemma 4.1). Let \((a), (b) \in PSI(L) \) such that \(\{(a)\}^* = \{(b)\}^* \) and \((a) \in I^\circ \). It follows that \(a \in I \). Now since \(\{(a)\}^* = \{(b)\}^* \), by lemma 3.6, \([a]^* = [b]^* \). Again, since \(I \) is an \(\alpha \)-ideal of \(L \), \(b \in I \). Hence \((b) \in I^\circ \). Therefore \(I^\circ \) is an \(\alpha \)-ideal in \(PSI(L) \) since by theorem 3.7. Conversely, suppose \(I^\circ \) is an \(\alpha \)-ideal in \(PSI(L) \). Let \(a, b \in L \) such that \([a]^* = [b]^* \) and \(a \in I \). Then \(\{(a)\}^* = \{(b)\}^* \) and \((a) \in I^\circ \). Since \(I^\circ \) is an \(\alpha \)-ideal in \(PSI(L) \), \((b) \in I \). Hence \(b \in I \). Therefore \(I \) is an \(\alpha \)-ideal in \(L \).

Recall that an ASL homomorphism \(f : L \to L' \) is said to be annihilator preserving homomorphism if for any subset \(A \) of \(L \), \(\{0\} \subseteq A \subseteq L \), \(f(A^*) = (f(A))^* \). In the following we prove that the image of an \(\alpha \)-ideal is again an \(\alpha \)-ideal under annihilator preserving homomorphism. For this first we need the following lemma.

Lemma 3.7. Let \(L \) and \(L' \) be two ASLs with \(0 \) and \(0' \) respectively and let \(f : L \to L' \) be a homomorphism. Then \(f([a]) \subseteq (f(a)) \) (\(a \in L \)). Moreover, if \(f \) is onto, then \(f([a]) = (f(a)) \).

Proof. Let \(f(x) \in f([a]) \). Then \(x \in [a] \) and hence \(x = a \circ x \). It follows that \(f(x) = f(a \circ x) = f(a) \circ f(x) \). Therefore \(f(x) \in (f(a)) \). Thus \(f([a]) \subseteq (f(a)) \). Now, suppose \(f \) is onto. Let \(t \in (f(a)) \). Since \(f \) is onto, there exists \(x \in L \) such that \(f(x) = t \). It follows that \(f(x) = f(a) \circ f(x) = f(a \circ x) \in f([a]) \). Therefore \(t = f(a) \in f([a]) \). Hence \(f([a]) \subseteq f([a]) \). Thus \(f([a]) = (f(a)) \).

Theorem 3.9. Let \(L, L' \) be 0-distributive ASLs and let \(f : L \to L' \) be an annihilator preserving epimorphism. If \(J \) is an \(\alpha \)-ideal in \(L \), then \(f(J) \) is an \(\alpha \)-ideal in \(L' \).

Proof. Suppose \(J \) is an \(\alpha \)-ideal of \(L \). Now, we shall prove that \(f(J) \) is an \(\alpha \)-ideal in \(L' \). First, we shall prove that \(f(J) \) is an S-ideal in \(L' \). We have \(f(J) = \{f(x) : x \in J\} \). Since \(0' = f(0) \in f(J), 0' \in f(J) \). Therefore \(f(J) \) is a nonempty subset of \(L' \). Let \(f(a) \in f(J) \) and \(t \in L' \). Since \(f \) is onto, there exists \(s \in L \) such
that $f(s) = t$. Again, since $aos \in J$, $f(aos) \in f(J)$. This implies $f(a) \circ f(s) \in f(J)$. It follows that $f(a) \circ t \in f(J)$. Let $f(a), f(b) \in f(J)$. Then $a, b \in J$. Since J is an S-ideal in L, there exists $d \in J$ such that $d \circ a = a$ and $d \circ b = b$. This implies $f(d) \circ f(a) = f(a)$, $f(d) \circ f(b) = f(b)$ and $f(d) \in f(J)$. Therefore $f(J)$ is an S-ideal in L'. Let $x \in f(J)$. Then $x = f(a)$, for some $a \in J$. Since J is an α-ideal and $a \in J$, $[a]^{**} \subseteq J$. This implies $f([a]^{**}) \subseteq f(J)$. Therefore $[f(a)]^{**} \subseteq f(J)$ and hence $(f(a))^{**} \subseteq f(J)$. Hence we get $[x]^{**} = [f(a)]^{**} \subseteq f(J)$. Therefore $f(J)$ is an α-ideal in L.

\square

References

Received by editors 06.11.2019; Revised version 11.02.2020; Available online 17.02.2020.

G. N. RAO: DEPARTMENT OF MATHEMATICS, ANDHRA UNIVERSITY, VISAKHAPATNAM-530003, INDIA.

E-mail address: nanisus@yahoo.com, drgnanajirao.math@auvsp.edu.in,

CH. SWAPNA: DEPARTMENT OF MATHEMATICS, ANDHRA UNIVERSITY, VISAKHAPATNAM-530003, INDIA.

E-mail address: swapna_chettupilli@yahoo.com