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α-IDEALS IN

0-DISTRIBUTIVE ALMOST SEMILATTICES

G. Nanaji Rao and Ch. Swapna

Abstract. The concept of α-ideal in 0-distributive almost semilattice (0-

distributive ASL) is introduced and proved certain properties of α-ideals.
Obtained several characterizations for an S-ideal to become α-ideals in 0-
distributive ASL and derived a set of identities for an S-ideal to become α-ideal

in 0-distributive ASL. Finally, we proved that the image of an α-ideal is again
an α-ideal under annihilator preserving homomorphism.

1. Introduction

Varlet [11] has introduced the concept of 0-distributive lattices. Generalizing
the concept of 0-distributivity in semilattices a theory of 0-distributive semilattices
is developed. Using the definition of an ideal (in a semilattice) given by Venkata-
narasimhan [12], special types of ideals called α-ideals, in 0-distributive semilattices
are defined and several characterizations of α-ideals in 0-distributive semilattices
and 0-distributive lattices are furnished, which generalize the results of Cornish
[1] and supplement to those of Jayaram [2]. The concept of an α-ideal in almost
distributive lattice R was introduced by Rao, G.C. and Sambasiva Rao, M. [10]
and they proved that there is a one-to-one correspondence between the set Iα(R)
of all α-ideals in R and the set of all α-ideals of the lattice PI(R) of all principal
ideals of R. Later, the concept of 0-distributive almost semilattices was introduced
by Nanaji Rao and Swapna [3] and proved some basic properties of 0-distributive
almost semilattices. Also, derived several characterization for an ASL with 0 to
become 0-distributive ASL.
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In this paper, we introduced the concept of α-ideal in 0-distributive ASL and
proved certain properties of α-ideals. Obtained several characterizations for an
S-ideal to become α-ideals in 0-distributive ASL. Next, we proved that for any
annihilator S-ideal I and a filter F in a 0-distributive ASL L such that I ∩ F = ∅,
there exists a prime α-ideal P in L containing I and disjoint with F. Also, we derived
a set of identities for an S-ideal to become α-ideal in 0-distributive ASL. Finally, we
proved that the image of an α-ideal is again an α-ideal under annihilator preserving
homomorphism.

2. Preliminaries

In this section we collect a few important definitions and results which are
already known and which will be used more frequently in the text.

Definition 2.1. ([6]) An ASL with 0 is an algebra (L, ◦, 0) of type (2, 0)
satisfies the following conditions:

1. (x ◦ y) ◦ z = x ◦ (y ◦ z)
2. (x ◦ y) ◦ z = (y ◦ x) ◦ z
3. x ◦ x = x
4. 0 ◦ x = 0, for all x, y, z ∈ L.

Definition 2.2. ([5]) Let L be an ASL. A nonempty subset I of L is said to
be an S-ideal if it satisfies the following conditions:

1) If x ∈ I and a ∈ L, then x ◦ a ∈ I.
2) If x, y ∈ I, then there exists d ∈ I such that d ◦ x = x, d ◦ y = y.

Definition 2.3. ([5]) Let L be an ASL and a ∈ L. Then (a] = {a ◦ x : x ∈ L}
is an S-ideal of L and is called principal S-ideal generated by a.

Definition 2.4. ([8]) A nonempty subset F of an ASL L is said to be a filter
if F satisfies the following conditions:

(1) x, y ∈ F implies x ◦ y ∈ F
(2) If x ∈ F and a ∈ L such that a ◦ x = x, then a ∈ F

Definition 2.5. ([5]) A proper S-ideal P of an ASL L is said to be a prime
S-ideal if for any x, y ∈ L, x ◦ y ∈ P imply x ∈ P or y ∈ P .

Definition 2.6. ([8]) A proper filter F of L is said to be a prime filter if for
any filters F1 and F2 of L, F1 ∩ F2 ⊆ F imply F1 ⊆ F or F2 ⊆ F .

Definition 2.7. ([8]) A proper filter F of L is said to be maximal if for any
filter G of L such that F ⊆ G ⊆ L, then either F = G or G = L.

Definition 2.8. ([8]) An element m ∈ L is said to be unimaximal if m◦x = x
for all x ∈ L.

Definition 2.9. ([3]) Let L be an ASL with 0. Then L is said to be 0-
distributive ASL if for any x, y, z ∈ L, x ◦ y = 0 and x ◦ z = 0 then there exists
d ∈ L such that d ◦ y = y, d ◦ z = z and d ◦ x = 0.
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Definition 2.10. ([7]) Let L be an ASL with 0. Then for any nonempty subset
A of L, A∗ = {x ∈ L : x ◦ a = 0 for all a ∈ A} is called the annihilator of A, and
is denoted by A∗. Note that if A = {a}, then we denote A∗ = {a}∗ by [a]∗.

Theorem 2.1 ([7]). Let L be an ASL with 0. Then for any nonempty subsets
I, J of L, we have the following:

(1) I∗ =
∩
a∈I

[a]∗

(2) (I ∩ J)∗ = (J ∩ I)∗

(3) I ⊆ J =⇒ J∗ ⊆ I∗

(4) I∗ ∩ J∗ ⊆ (I ∩ J)∗

(5) I ⊆ I∗∗

(6) I∗∗∗ = I∗

(7) I∗ ⊆ J∗ ⇔ J∗∗ ⊆ I∗∗

(8) I ∩ J = (0] ⇔ I ⊆ J∗ ⇔ J ⊆ I∗

(9) (I ∪ J)∗ = I∗ ∩ J∗

Theorem 2.2 ([7]). Let L be an ASL with 0. Then for any x, y ∈ L, we have
the following.

(1) x 6 y ⇒ [y]∗ ⊆ [x]∗

(2) [x]∗ ⊆ [y]∗ ⇒ [y]∗∗ ⊆ [x]∗∗

(3) x ∈ [x]∗∗

(4) (x]∗ = [x]∗

(5) (x] ∩ [x]∗ = {0}
(6) [x ◦ y]∗ = [y ◦ x]∗
(7) [x]∗ ∩ [y]∗ ⊆ [x ◦ y]∗
(8) [x ◦ y]∗∗ = [x]∗∗ ∩ [y]∗∗

(9) [x]∗∗∗ = [x]∗

(10) [x]∗ ⊆ [y]∗ ⇔ [y]∗∗ ⊆ [x]∗∗

Theorem 2.3 ([3]). Let L be an ASL with 0. A proper filter M of L is maximal
if and only if for any a ∈ L−M , there exists b ∈ M such that a ◦ b = 0.

Theorem 2.4 ([3]). Let L be an ASL with 0, in which intersection of any
family of S-ideals is again an S-ideal. Then the following are equivalent:

(1) L is 0-distributive ASL.
(2) A∗ is an S-ideal, for all A(̸= ∅) ⊆ L.
(3) SI(L) is pseudo-complemented semilattice.
(4) SI(L) is 0-distributive semilattice.
(5) PSI(L) is 0-distributive semilattice.

Theorem 2.5 ([4]). Every proper filter in ASL L is contained in a maximal
filter.

Theorem 2.6 ([3]). Let L be 0-distributive ASL. Then every maximal filter of
L is a prime filter.

Definition 2.11. ([7]) An element a in an ASL L with 0 is said to be dense
element if [a]∗ = {0}.
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Lemma 2.1 ([3]). The set D, of all dense elements in an ASL L with unimax-
imal element is a filter.

Definition 2.12. ([4]) An S-ideal I in a 0-distributive ASL L is called dense
if I∗ = {0}.

Lemma 2.2 ([4]). Let L be an ASL. Then a subset P of L is a prime S-ideal if
and only if L− P is a prime filter.

Theorem 2.7 ([4]). Let L be a 0-distributive ASL. Then a subset M of L is a
minimal prime S-ideal if and only if L−M is a maximal filter.

Theorem 2.8 ([4]). Let L be a 0-distributive ASL. Then a prime S-ideal M of
L is minimal if and only if [x]∗ −M ̸= ∅ for any x ∈ M .

Theorem 2.9 ([3]). Let L be a 0-distributive ASL with unimaximal element
in which intersection of any family of S-ideals is again an S-ideal. Then for any
filter F of L and for any annihilator ideal I of L such that F ∩ I = ∅, there exists
a prime filter containing F and disjoint with I.

Corollary 2.1 ([4]). Let L be a 0-distributive ASL. Then a prime S-ideal M
of L is minimal if and only if it contains precisely one of {x}, [x]∗ for every x ∈ L.

Theorem 2.10 ([4]). Let L be a 0-distributive ASL, in which intersection of
any family of S-ideals is again an S-ideal. Then for any S-ideal I of L, I∗ is the
intersection of all minimal prime S-ideals not containing I.

Definition 2.13. ([7]) Let L and L
′
be two ASLs with 0 and 0

′
respectively.

Then a mapping f : L → L
′
is called a homomorphism if it satisfies the following:

(1) f(a ◦ b) = f(a) ◦ f(b) for all a, b ∈ L

(2) f(0) = 0
′
.

Definition 2.14. ([7]) Let L,L
′
be an ASLs with 0 and 0

′
respectively and

let f : L → L
′
be a homomorphism. Then f is called annihilator preserving if

f(A⋆) = (f(A))⋆, for any {0} ⊂ A ⊂ L.

3. α-ideals in 0-distributive Almost Semilattices

In this section, we introduce the concept of an α-ideal in 0-distributive ASL
and prove that every minimal prime S-ideal in 0-distributive ASL is an α-ideal.
Also, prove that for any filter F in a 0-distributive ASL L, the set

O(F ) = {x ∈ L : x ◦ y = 0 for some y ∈ F}
is an α-ideal. If F is a maximal filter in a 0-distributive ASL then we prove that
O(F ) is a minimal prime S-ideal and hence is an α-ideal. Next, we prove that
every annihilator S-ideal in a 0-distributive ASL is an α-ideal and prove that for
any annihilator S-ideal I and a filter F in a 0-distributive ASL L such that I∩F = ∅,
there exists a prime α-ideal in L containing I and disjoint with F. Also, we introduce
the concept of semi-ideal in an ASL with 0 and prove that if I is a dense S-ideal in
L such that the semi-ideal I

′
= {x ∈ L : x ∈ [a]∗∗, for some a ∈ I} is an S-ideal
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then I contains a dense element. Also, we derive a set of identities for an S-ideal
to become an α-ideal in 0-distributive ASL. We give a necessary and sufficient
condition for an S-ideal to become an α-ideal in 0-distributive ASL. Finally, we
prove that the image of an α-ideal is again an α-ideal under annihilator preserving
homomorphism. First we begin this section with the following definition.

Definition 3.1. Let L be a 0-distributive ASL. Then an S-ideal I in L is called
an α-ideal if [x]∗∗ ⊆ I for each x ∈ I.

Example 3.1. Let L = { 0, a, b, c} and define a binary operation ◦ on L as
follows:

◦ 0 a b c
0 0 0 0 0
a 0 a 0 a
b 0 0 b b
c 0 a b c

Then clearly (L, ◦) is an 0-distributive ASL. Now, put I = {0, a}. Then clearly I
is an S-ideal and also [x]∗∗ ⊆ I for each x ∈ I. Therefore I is an α-ideal.

It can be easily observe that intersection of any two α-ideals in a 0-distributive
ASL is again an α-ideal and hence the set Iα(L) of all α-ideals in a 0-distributive
ASL is a subsemilattice of the semilattice SI(L). In the following we prove that
every minimal prime S-ideal is an α-ideal.

Theorem 3.1. Let L be a 0-distributive ASL in which intersection of any family
of S-ideals is again an S-ideal. Then every minimal prime S-ideal in L is an α-ideal
and for any prime S-ideal P in L, the set

O(P ) = {x ∈ L : x ◦ y = 0 for some y /∈ P}

is an α-ideal.

Proof. Suppose M is a minimal prime S-ideal in L and x ∈ M . Now, we shall
prove that [x]∗∗ ⊆ M . Since M is minimal, [x]∗ −M ̸= ∅. Therefore there exists
y ∈ [x]∗ and y /∈ M . Let z ∈ [x]∗∗. Then y ◦ z ∈ [x]∗ ∩ [x]∗∗ = {0}. Therefore
y ◦ z = 0. Since M is prime and y /∈ M, z ∈ M . Thus [x]∗∗ ⊆ M . Therefore M is
an α-ideal. Next, we shall prove that O(P ) = {x ∈ L : x◦y = 0 for some y /∈ P} is
an α-ideal. Since P is prime, and hence is proper. Therefore, we can choose y ∈ L
such that y /∈ P and also 0◦y = 0. Hence 0 ∈ O(P ). Therefore O(P ) is a nonempty
subset of L. Let x ∈ O(P ) and t ∈ L. Then x ◦ y = 0 for some y /∈ P and t ∈ L.
Consider (x ◦ t) ◦ y = (t ◦ x) ◦ y = t ◦ (x ◦ y) = t ◦ 0 = 0. Therefore x ◦ t ∈ O(P ).
Let x, y ∈ O(P ). Then x ◦ a = 0 for some a /∈ P and y ◦ b = 0 for some b /∈ P .
Therefore, we get x ◦ (a ◦ b) = 0 and y ◦ (a ◦ b) = 0. Since L is 0-distributive, there
exists d ∈ L such that d ◦ x = x, d ◦ y = y and d ◦ (a ◦ b) = 0. It follows that
d ◦ (a ◦ b) = 0 and a ◦ b /∈ P , since P is prime. Hence d ∈ O(P ). Let x ∈ O(P ).
Then x ◦ y = 0 for some y /∈ P . Therefore y ∈ [x]∗. Let z ∈ [x]∗∗. Then y ◦ z = 0.
Since y /∈ P, z ∈ O(P ). Therefore [x]∗∗ ⊆ O(P ). Thus O(P ) is an α-ideal. �
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Corollary 3.1. Let L be a 0-distributive ASL. Then each prime S-ideal in L
contains an α-ideal.

Proof. Suppose P is a prime S-ideal of L and x ∈ O(P ). Then there exists
y /∈ P such that x ◦ y = 0. Now, x ◦ y = 0 ∈ P , we get x ∈ P since P is a prime
S-ideal. Thus O(P ) ⊆ P . �

Next, we introduce the following notation. For, any filter F in a 0-distributive
ASL L, O(F ) = {x ∈ L : x ◦ y = 0 for some y ∈ F}. In the following we prove
that for any filter F in L, O(F ) is a α-ideal.

Theorem 3.2. Let L be a 0-distributive ASL. Then for any filter F in L, O(F )
is an α-ideal in L.

Proof. Suppose F is a filter in L. Now, we shall prove that O(F ) is an α-
ideal in L. Since 0 ∈ O(F ), O(F ) ̸= ∅. Let x ∈ O(F ) and t ∈ L. Then x ◦ y =
0 for some y ∈ F . Consider (x◦ t)◦y = (t◦x)◦y = t◦(x◦y) = t◦0 = 0. Therefore
x ◦ t ∈ O(F ). Let x, y ∈ O(F ). Then x ◦ a = 0, y ◦ b = 0 for some a, b ∈ F .
Therefore, we get x ◦ (a ◦ b) = 0 and y ◦ (a ◦ b) = 0. Since L is 0-distributive,
there exists d ∈ L such that d ◦ x = x, d ◦ y = y and d ◦ (a ◦ b) = 0. It follows
that d ◦ (a ◦ b) = 0 and a ◦ b ∈ F . Hence d ∈ O(F ). Let x ∈ O(F ). Then
x ◦ y = 0 for some y ∈ F . Therefore y ∈ [x]∗. Let z ∈ [x]∗∗. Then y ◦ z = 0.
Therefore z ∈ O(F ) since y ∈ F . Thus O(F ) is an α-ideal in L. �

Next, we prove that if F is a maximal filter in 0-distributive ASL, then O(F ) =
L− F is a minimal prime S-ideal and hence O(F ) is an α-ideal.

Theorem 3.3. Let L be a 0-distributive ASL and F be a maximal filter in L.
Then O(F ) minimal prime S-ideal in L.

Proof. Suppose F is a maximal filter in L. Then we have L−F is a minimal
prime S-ideal in L. Now, we shall prove that O(F ) is a minimal prime S-ideal in
L. That is enough to prove that O(F ) = L − F . Let x ∈ O(F ). Then x ◦ y =
0 for some y ∈ F . Suppose x ∈ F . Then x ◦ y ∈ F . It follows that 0 ∈ F .
Hence F = L, a contradiction to F is a maximal filter. Therefore x /∈ F . Hence
x ∈ L − F . Thus O(F ) ⊆ L − F . Conversely, suppose x ∈ L − F . Then x /∈ F .
It follows that F $ F ∨ [x). Since F is maximal, F ∨ [x) = L. Now, we have
0 ∈ L = F ∨ [x). Therefore 0 ◦ (a ◦ b) = a ◦ b for some a ∈ F, b ∈ [x). This
implies a ◦ b = 0, a ∈ F and b ∈ [x). Now, b ∈ [x) and hence b ◦ x = x. Therefore
a◦x = a◦(b◦x) = (a◦b)◦x = 0◦x = 0. Hence x ∈ O(F ). Therefore L−F ⊆ O(F ).
Thus O(F ) = L− F . �

Theorem 3.4. Let L be a 0-distributive ASL. Then every annihilator S-ideal
I in L is an α-ideal in L.

Proof. Suppose I is an annihilator S-ideal in L and x ∈ I. Then I = I∗∗.
Now, let x ∈ I. Then x ∈ I∗∗. It follows that x ◦ y = 0 for all y ∈ I∗. Therefore
y ∈ [x]∗ for all y ∈ I∗. Hence I∗ ⊆ [x]∗. This implies I∗∗ ⊇ [x]∗∗. Therefore
I ⊇ [x]∗∗. Thus I is an α-ideal in L. �
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But, the converse of the theorem 3.4, is not true. For, example a proper
dense α-ideal is not an annihilator S-ideal. In the following we prove that for an
annihilator S-ideal I disjoint with a filter F in 0-distributive ASL L, there exists a
prime α-ideal in L containing I and disjoint with F.

Theorem 3.5. Let L be a finite 0-distributive ASL, in which intersection of
any family of S-ideals is again an S-ideal. Then for any annihilator S-ideal I and
a filter F in L such that I ∩ F = ∅, there exists a prime α-ideal P in L containing
I and disjoint with F.

Proof. Suppose I is an annihilator S-ideal and F is a filter of L such that
I ∩ F = ∅. Since I is an annihilator S-ideal, I = A∗ for some nonempty subset
A of L. Since L is finite, we can write A = {a1, a2, ...., an}(n is finite). Clearly,

A∗ =
n∩

i=1

[ai]
∗. Now, suppose [ai]

∗ ∩ F ̸= ∅ for all i = 1, ..., n. Then we can

choose xi ∈ [ai]
∗ ∩ F for each i, 1 6 i 6 n. It follows that (⃝n

i=1xi) ◦ ai =
{0} for each i, 1 6 i 6 n. This implies ⃝n

i=1xi ∈ [ai]
∗ for all i = 1, ...., n.

This implies ⃝n
i=1xi ∈

n∩
i=1

[ai]
∗, also ⃝n

i=1xi ∈ F . Therefore ⃝n
i=1xi ∈

n∩
i=1

[ai]
∗ ∩

F = A∗ ∩ F . Hence A∗ ∩ F ̸= ∅. Therefore I ∩ F ̸= ∅, a contradiction to
our assumption. Thus we can choose i0, 1 6 i0 6 n, [ai0 ]

∗ ∩ F = ∅. Now, put
F = {G : G is a filter of L, F ⊆ G and G ∩ [ai0 ]

∗ = ∅}. Then clearly F ̸=
∅, sinceF ∈ F . Clearly, F is a poset w.r.to set inclusion and also F satisfies the
hypothesis of Zorn’s lemma. Therefore by Zorn’s lemma, F has a maximal element
(say) H. Then clearly H is a proper filter, F ⊆ H and H ∩ [ai0 ]

∗ = ∅. Suppose
ai /∈ H. Then the filter H ∨ [ai) contains H properly. Now, if (H ∨ [ai))∩ [ai]

∗ = ∅
then H ∨ [ai) ∈ F , a contradiction to the maximality of H in F . Therefore
(H∨[ai))∩[ai]∗ ̸= ∅. Choose t ∈ L such that t ∈ H∨[ai) and t ∈ [ai]

∗. This implies
t◦(a◦b) = a◦b, for some a ∈ H, b ∈ [ai) and t◦ai = 0. Now, we have t◦(a◦b) = a◦b
and hence (t ◦ (a ◦ b)) ◦ ai = (a ◦ b) ◦ ai. It follows that (a ◦ b) ◦ ai = 0. Therefore
a◦ai = 0. Hence a ∈ [ai]

∗ and also a ∈ H. Therefore H∩ [ai]
∗ ̸= ∅, a contradiction

to H ∈ F . Thus ai ∈ H. Now, we shall prove that H is a maximal filter. Let
z ∈ L such that z /∈ M . Since H is maximal element in F , (H ∨ [z)) ∩ [ai]

∗ ̸= ∅.
Therefore we can choose c ∈ L such that c ∈ H ∨ [z) and c ∈ [ai]

∗. This implies
c ◦ (x ◦ y) = x ◦ y, for some x ∈ H, y ∈ [z) and c ◦ ai = 0. Now, we have
c◦(x◦y) = x◦y. This implies (c◦(x◦y))◦ai = (x◦y)◦ai. It follows that (x◦y)◦ai = 0.
This implies (x ◦ ai) ◦ y = 0. Hence we get ((x ◦ ai) ◦ y) ◦ z = 0. It follows that
(x ◦ ai) ◦ (y ◦ z) = 0. Therefore (x ◦ ai) ◦ z = 0, since y ∈ [z) and hence y ◦ z = z.
Thus x ◦ ai ∈ H such that (x ◦ ai) ◦ z = 0. Therefore H is a maximal filter. Hence
L − H is a minimal prime S-ideal. Therefore by theorem 3.1, L − H is a prime

α-ideal. Since [ai] ∩H = ∅, [ai]
∗ ⊆ L−H. This implies

n∩
i=1

[ai]
∗ ⊆ L−H. Hence

A∗ ⊆ L−H. Therefore I ⊆ L−H. Also, since F ⊆ H, F ∩ (L−H) = ∅. �
Next, we introduce the concept of semi-ideal in an ASL L and prove that

if I is an S-ideal in a 0-distributive ASL L then the set I
′
= {x ∈ L : x ∈

[a]∗∗, for some a ∈ I} is a semi-ideal.
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Definition 3.2. Let L be a ASL with 0. Then a nonempty subset I of L is
said to be semi-ideal if x 6 y and y ∈ I then x ∈ I.

Lemma 3.1. Let L be an ASL with 0 and I be an S-ideal of L. Then the set
I

′
= {x ∈ L : x ∈ [a]∗∗, for some a ∈ I} is a semi-ideal of L.

Proof. Let y ∈ I
′
and y ∈ L such that x 6 y. Then y ∈ [a]∗∗ for some a ∈ I.

Therefore y ◦ z = 0 for all z ∈ [a]∗. Since x 6 y, x ◦ z 6 y ◦ z. Therefore

x ◦ z = 0 and z ∈ [a]∗. Hence x ∈ I
′
. Thus I

′
is a semi-ideal of L. �

Recall that the set D of all dense element in an ASL with 0 with unimaximal
element is a filter. In the following we prove that if I is a dense S-ideal in 0-
distributive ASL and if I

′
is an S-ideal then I contains a dense element.

Theorem 3.6. Let L be a finite 0-distributive ASL with unimaximal element,
in which intersection of any family of S-ideals is again an S-ideal such that every
α-ideal in L is an annihilator S-ideal. Let I be a dense S-ideal in L. Then I contains
a dense element if the semi-ideal I

′
= {x ∈ L : x ∈ [a]∗∗, for some a ∈ I} is an

S-ideal in L.

Proof. Suppose I is a dense S-ideal in L and suppose I
′
is an S-ideal in L.

Now, we shall prove that I contains a dense element.
Claim I : Every minimal prime S-ideal in L is non-dense.
Suppose M is a minimal prime S-ideal in L. Then by theorem 3.1, M is an

α-ideal and hence is an annihilator S-ideal. Thus M = M∗∗. Suppose M is dense.
ThenM∗ = {0}. Now, M = M∗∗ = {M∗}∗ = {0}∗ = L, a contradiction. Therefore
M is non-dense.

Claim II : I ∩D = ∅ implies I
′ ∩D = ∅.

Suppose I ∩D = ∅ and suppose I
′ ∩D ̸= ∅. Then there exists d ∈ L such that

d ∈ I
′
and d ∈ D. Therefore there exists a ∈ I such that d ∈ [a]∗∗ and d ∈ D. Since

[a]∗ = [a]∗∗∗ ⊆ [d]∗ = {0}, [a]∗ = {0}. It follows that a ∈ D. Hence I ∩D ̸= ∅, a
contradiction to I ∩D = ∅. Thus I ′ ∩D = ∅.

Claim III : I
′
is an α-ideal in L.

Suppose x ∈ I
′
. Now, we shall prove that [x]∗∗ ⊆ I

′
. Since x ∈ I

′
, there exists

a ∈ I such that x ∈ [a]∗∗. It follows that [x]∗∗ ⊆ [a]∗∗. Hence [x]∗∗ ⊆ [a]∗∗ ⊆
I

′
, a ∈ I. Therefore [x]∗∗ ⊆ I

′
. Thus I

′
is an α-ideal.

Claim IV : I
′ ∩D = ∅ implies I ⊆ M for some minimal prime S-ideal M in L.

Suppose I
′∩D ̸= ∅. Then by claim III, I

′
is an α-ideal and hence by hypothesis,

I
′
is an annihilator S-ideal.Therefore there exists a maximal filter F containing D

and disjoint with I
′
. It follows thatM = L−F is a minimal prime S-ideal containing

I
′
. Since I ⊆ I

′
, I ⊆ M .

Claim V : I contains a dense element
Suppose I ∩D = ∅. Then by claim II, I

′ ∩D = ∅. Therefore claim IV, I ⊆ M .
This implies M∗ ⊆ I∗ = (0]. Hence M∗ = (0], a contradiction to claim I. Thus
I ∩D ̸= ∅. Therefore I contains a dense element. �
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Recall that set of all minimal prime S-ideals in 0-distributive ASL denoted by
M. Now, we introduce the following notation.

h(x) = {M ∈ M : x ∈ M}(x ∈ L)

In the following, we derive a set of identities for an S-ideal to become α-ideal.
First, we prove the following.

Lemma 3.2. Let L be a 0-distributive ASL and let a(̸= 0) ∈ L. Then there
exists a minimal prime S-ideal not containing a.

Proof. Suppose a ∈ L and a ̸= 0. Now, put F = [a). Then clearly, F is
a proper filter of L and hence F is contained in a maximal prime filter (say) K.
Therefore by theorem 2.7, L−K is a minimal prime S-ideal of L and a /∈ L−K. �

Lemma 3.3. Let L be a 0-distributive ASL. Then for any x ∈ L, [x]∗ = ∩{M ∈
M : x /∈ M}.

Proof. Suppose t ∈ [x]∗. Then t ◦ x = 0. Suppose M ∈ M such that
x /∈ M . Since t ◦ x = 0 ∈ M, t ∈ M . Thus t ∈ ∩{M ∈ M : x /∈ M}. Hence
[x]∗ ⊆ ∩{M ∈ M : x /∈ M}. Conversely, suppose t /∈ [x]∗. Then t ◦ x ̸= 0.
Therefore there exists a minimal prime S-ideal (say) M in L such that t ◦ x /∈ M .
This implies t /∈ M and x /∈ M . It follows that t /∈ ∩{M ∈ M : x /∈ M}. Therefore
∩{M ∈ M : x /∈ M} ⊆ [x]∗. Thus [x]∗ = ∩{M ∈ M : x /∈ M}. �

Lemma 3.4. Let L be a 0-distributive ASL. Then for any x, y ∈ L, [x]∗ ⊆ [y]∗

if and only if h(x) ⊆ h(y).

Proof. Suppose [x]∗ ⊆ [y]∗ and P ∈ h(x). Then x ∈ P . Hence by corollary
2.1, [x]∗ ̸⊂ P . Therefore [y]∗ ̸⊂ P . Hence y ∈ P . Therefore P ∈ h(y). Thus
h(x) ⊆ h(y). Conversely, suppose h(x) ⊆ h(y). Let t /∈ [y]∗. Then t ◦ y ̸= 0. Hence
by lemma 3.2, there exists a minimal prime S-ideal P of L such that t ◦ y /∈ P .
Therefore t /∈ P and y /∈ P . It follows that t /∈ P and P /∈ h(y). Hence t /∈
P and P /∈ h(x). This implies that t /∈ P and x /∈ P . Therefore t ◦ x /∈ P since P
is a prime S-ideal. It follows that t ◦ x ̸= 0. Hence t /∈ [x]∗. Thus [x]∗ ⊆ [y]∗. �

Now, we prove the following.

Theorem 3.7. Let L be a 0-distributive ASL, in which intersection of any
family of S-ideals is again an S-ideal. Then for any S-ideal I of L, following are
equivalent:

(1) I is an α-ideal.
(2) I =

∪
x∈I

[x]∗∗.

(3) For any x, y ∈ L, [x]∗ = [y]∗ and x ∈ I =⇒ y ∈ I.
(4) For any x, y ∈ L, h(x) = h(y), x ∈ I =⇒ y ∈ I.

Proof. (1) ⇒ (2) : Suppose I is an α-ideal. Then [x]∗∗ ⊆ I for each x ∈ I.
Now, we shall prove that I =

∪
x∈I

[x]∗∗. Since I is an α-ideal, [x]∗∗ ⊆ I for each x ∈

I,
∪
x∈I

[x]∗∗ ⊆ I.
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Conversely, suppose t ∈ I. Then [t]∗∗ ⊆ I. But, we have t ∈ [t]∗∗ ⊆
∪
x∈I

[x]∗∗.

This implies t ∈
∪
x∈I

[x]∗∗. Hence I ⊆
∪
x∈I

[x]∗∗. Thus I =
∪
x∈I

[x]∗∗.

Converse is clear.
(2) ⇒ (3) : Suppose y /∈ I. Then y /∈

∪
x∈I

[x]∗∗. This implies y /∈ [x]∗∗ for some

x ∈ I. It follows that y ◦ z ̸= 0 for some z ∈ [x]∗. Since [x]∗ = [y]∗, z ∈ [y]∗.
Hence y ◦ z = 0, a contradiction. Therefore y ∈ I.

(3) ⇒ (2) : Assume (3). Clearly, I ⊆
∪
x∈I

[x]∗∗.

Conversely, suppose y ∈
∪
x∈I

[x]∗∗. Then y ∈ [x]∗∗ for some x ∈ I. This

implies y ◦ z = 0 for all z ∈ [x]∗. Therefore [x]∗ ⊆ [y]∗. Suppose t ∈ [x ◦ y]∗.
Then t ◦ (x ◦ y) = 0. It follows that t ◦ y ∈ [x]∗. This implies t ◦ y ∈ [y]∗. Hence
(t ◦ y) ◦ y = 0. Therefore t ◦ y = 0. Hence t ∈ [y]∗. Therefore [x ◦ y]∗ ⊆ [y]∗. On the
other hand, since x ◦ y 6 y, [y]∗ ⊆ [x ◦ y]∗. Therefore [x ◦ y]∗ = [y]∗ and x ◦ y ∈ I.
Thus by assumption, y ∈ I. Therefore

∪
x∈I

[x]∗∗ ⊆ I. Hence I =
∪
x∈I

[x]∗∗.

Proof of (3) ⇔ (4) follows by Lemma 3.4. �

Recall that Ie = {(a] : a ∈ I} is an ideal in PSI(L). Next, we derive a necessary
and sufficient condition for an S-ideal to become an α-ideal in 0-distributive ASL.
First, we prove the following.

Lemma 3.5. Let L be a 0-distributive ASL. Then {(a]}∗ is an ideal in PSI(L).

Proof. Since (a] ∩ (0] = (a ◦ 0] = (0], (0] ∈ {(a]}∗. Therefore {(a]}∗ is a
nonempty subset of PSI(L). Now, let (x] ∈ {(a]}∗ and (t] ∈ PSI(L) such that (t] ⊆
(x]. Then (a] ∩ (x] = (0]. Now, since (t] ⊆ (x], (t] ∩ (a] ⊆ (x] ∩ (a]. It fol-
lows that (t] ∩ (a] = (0]. Hence (t] ∈ {(a]}∗. Let (x], (y] ∈ {(a]}∗. Then
(a] ∩ (x] = (0] and (a] ∩ (y] = (0]. It follows that a ◦ x = 0, a ◦ y = 0. Since
L is 0-distributive, there exists d ∈ L such that d ◦ x = x, d ◦ y = y and d ◦ a = 0.
It follows that (d] ∩ (x] = (d ◦ x] = (x] and (d] ∩ (y] = (d ◦ y] = (y]. Therefore
(x] ⊆ (d], (y] ⊆ (d] and d ∈ {(a]}∗ since d ◦ a = 0. Thus {(a]}∗ is an ideal in
PSI(L). �

Lemma 3.6. Let L be an ASL with 0. Then for any a, b ∈ L, we have the
following.

(1) x ∈ [a]∗ ⇔ (x] ∈ {(a]}∗
(2) [a]∗ = [b]∗ ⇔ {(a]}∗ = {(b]}∗

Proof. (1) We have x ∈ [a]∗ ⇔ x ◦ a = 0 ⇔ (x] ∩ (a] = (0] ⇔ (x] ∈ {(a]}∗.
Therefore [a]∗ = {(a]}∗.

(2) Suppose [a]∗ = [b]∗. Then
(x] ∈ {(a]}∗ ⇔ (x] ∩ (a] = (0]
⇔ x ◦ a = 0
⇔ x ∈ [a]∗

⇔ x ∈ [b]∗

⇔ x ◦ b = 0
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⇔ (x ◦ b] = (0]
⇔ (x] ∩ (b] = (0]
⇔ (x] ∈ {(a]}∗.
Therefore {(a]}∗ = {(b]}∗.
Conversely, suppose {(a]}∗ = {(b]}∗. Then
x ∈ [a]∗ ⇔ (x] ∈ {(a]}∗
⇔ (x] ∈ {(b]}∗
⇔ (x] ∩ (b] = (0]
⇔ (x ◦ b] = (0]
⇔ x ◦ b = 0
⇔ x ∈ [b]∗

Therefore [a]∗ = [b]∗. �
Theorem 3.8. Let L be a 0-distributive ASL and let I be an S-ideal of L. Then

I is an α-ideal in L if and only if I is an α-ideal in PSI(L).

Proof. Suppose I is an α-ideal in L. Now, we shall prove that Ie := {(a] :
a ∈ I} is an α-ideal in PSI(L). Clearly, Ie is an ideal in PSI(L) ([5], lemma
4.1). Let (a], (b] ∈ PSI(L) such that {(a]}∗ = {(b]}∗ and (a] ∈ Ie. It follows that
a ∈ I. Now since {(a]}∗ = {(b]}∗, by lemma 3.6, [a]∗ = [b]∗. Again, since I is an
α-ideal of L, b ∈ I. Hence (b] ∈ Ie. Therefore Ie is an α-ideal in PSI(L) since by
theorem 3.7. Conversely, suppose Ie is an α-ideal in PSI(L). Let a, b ∈ L such
that [a]∗ = [b]∗ and a ∈ I. Then {[a]}∗ = {[b]}∗ and (a] ∈ Ie. Since Ie is an α-ideal
in PSI(L), (b] ∈ Ie. Hence b ∈ I. Therefore I is an α-ideal in L. �

Recall that an ASL homomorphism f : L → L
′
is said to be annihilator pre-

serving homomorphism if for any subset A of L, {0} ⊆ A ⊆ L, f(A∗) = (f(A))∗.
In the following we prove that the image of an α-ideal is again an α-ideal under
annihilator preserving homomorphism. For this first we need the following lemma.

Lemma 3.7. Let L and L
′
be two ASLs with 0 and 0

′
respectively and let

f : L → L
′
be a homomorphism. Then f((a]) ⊆ (f(a)] (a ∈ L). Moreover, if f is

onto, then f((a]) = (f(a)].

Proof. Let f(x) ∈ f((a]). Then x ∈ (a] and hence x = a ◦ x. It follows that
f(x) = f(a ◦ x) = f(a) ◦ f(x). Therefore f(x) ∈ (f(a)]. Thus f((a]) ⊆ (f(a)].
Now, suppose f is onto. Let t ∈ (f(a)]. Since f is onto, there exists x ∈ L such
that f(x) = t. It follows that f(x) = f(a) ◦ f(x) = f(a ◦ x) ∈ f((a]). Therefore
t = f(x) ∈ f((a]). Hence (f(a)] ⊆ f((a]). Thus f((a]) = (f(a)]. �

Theorem 3.9. Let L,L
′
be 0-distributive ASLs and let f : L → L

′
be an

annihilator preserving epimorphism. If J is an α-ideal in L, then f(J) is an α-

ideal in L
′
.

Proof. Suppose J is an α-ideal of L. Now, we shall prove that f(J) is an

α-ideal in L
′
. First, we shall prove that f(J) is an S-ideal in L

′
. We have f(J) =

{f(x) : x ∈ J}. Since 0
′
= f(0) ∈ f(J), 0

′ ∈ f(J). Therefore f(J) is a nonempty

subset of L
′
. Let f(a) ∈ f(J) and t ∈ L

′
. Since f is onto, there exists s ∈ L such
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that f(s) = t. Again, since a◦s ∈ J, f(a◦s) ∈ f(J). This implies f(a)◦f(s) ∈ f(J).
It follows that f(a) ◦ t ∈ f(J). Let f(a), f(b) ∈ f(J). Then a, b ∈ J . Since J is
an S-ideal in L, there exists d ∈ J such that d ◦ a = a and d ◦ b = b. This implies
f(d)◦f(a) = f(a), f(d)◦f(b) = f(b) and f(d) ∈ f(J). Therefore f(J) is an S-ideal

in L
′
. Let x ∈ f(J). Then x = f(a), for some a ∈ J . Since J is an α-ideal and

a ∈ J, [a]∗∗ ⊆ J . This implies f((a]∗∗) ⊆ f(J). Therefore (f(a])∗∗ ⊆ f(J) and
hence (f(a)]∗∗ ⊆ f(J). Hence we get [x]∗∗ = [f(a)]∗∗ ⊆ f(J). Therefore f(J) is an

α-ideal in L
′
. �
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