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ZAGREB INDEX AND COINDEX OF Kth

GENERALIZED TRANSFORMATION GRAPHS

Raju Jummannaver, Kishori Narayankar and Dickson Selvan

Abstract. Transformation graphs plays important role in the field of chemi-
cal graph theory. In this paper, we consider the kth generalized transformation
graphs Gab

k and their complements and obtain expressions for Zagreb indices

and coindices.

1. Introduction

A graph is a collection of points together with a number of lines connecting
a subset of them. The points and lines of a graph are called vertices and edges
of the graph, respectively. The vertex and edge sets of a graph G are denoted by
V (G) and E(G), or briefly by V and E, respectively. When we regard molecules
as specific chemical structures and replace atoms and bonds with vertices and
edges, respectively, the graph obtained is called a molecular graph. That is, a
molecular graph is a simple graph in such a way that its vertices match the atoms
and its edges with the bonds. Remember that hydrogen atoms are often omitted
and the remainder of the graph is sometimes called as the carbon graph of the
corresponding molecule. A branch of mathematical chemistry that has a major
effect on the development of molecular chemistry and QSAR / QSPR studies is the
chemical graph theory which deals with the above-mentioned relationships between
molecules and corresponding graphs.

Throughout this paper, we considered simple graph G with n vertices and
m edges, denoted as (n,m). Let V (G) and E(G) be its vertex and edge sets,
respectively. If u and v are adjacent vertices of G, then the edge joining them will
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be denoted by uv. The degree of a vertex u in a graph G is the number of edges
attached to it and is denoted by dG(u) or d(u). The complement Ḡ of G is defined
to be the graph which has V (G) as vertex set and two vertices are adjacent in Ḡ if
and only if they are not adjacent in G.

A topological graph index is a numerical measure correlated with chemical
composition for the comparison of chemical composition with different physical
properties, chemical reactivity or biological activity. A large number of topologi-
cal indices for chemical documentation, isomer classification, molecular complexity
analysis, chirality, similarity / dissimilarity, QSAR / QSPR, drug design and data-
base selection, lead optimization, etc. have been described and used in recent
decades.

As an example, the boiling point of a molecule is directly related to the forces
between the atoms. When a solution is heated, the temperature is increased and as
it is increased, the kinetic energy between molecules increases. This implies that the
molecular motion becomes so strong that the molecular bonds break and become
a gas. The moment the liquid turns to gas is labeled as the boiling point. The
boiling point can provide important clues about the physical properties of chemical
structures. Molecules which strongly interact or bond with each other through a
variety of intermolecular forces cannot move easily or rapidly and therefore, do not
achieve the kinetic energy necessary to escape the liquid state. That is why the
alkanes boiling points increase with the size of the molecules.

The first and second Zagreb indices introduced by Gutman and Trinajstić are
two of the most important topological graph indices. They are denoted by M1(G)
and M2(G) and were defined as [8]

M1(G) =
∑

uv∈E(G)

[dG(u) + dG(v)] and M2(G) =
∑

uv∈E(G)

[dG(u)dG(v)].

Chemical applications and mathematical properties of Zagreb indices can be
found in [5, 9, 10, 15, 16, 17, 20].

In 2008, Došlić defined the first and second Zagreb coindices as [6]

M1(G) =
∑

uv/∈E(G)

[dG(u) + dG(v)] and M2(G) =
∑

uv/∈E(G)

[dG(u)dG(v)]

respectively.
More details about Zagreb coindices can be found in [1, 2, 12, 13, 11] and

the relations between Zagreb indices and coindices are reported in [7, 9, 19].

Theorem 1.1 ([9]). For a graph G with n vertices and m edges,

M1(G) = M1(G) + n(n− 1)2 − 4m(n− 1).

Theorem 1.2 ([9]). Let G be a graph with n vertices and m edges. Then

M1(G) +M1(G) = 2m(n− 1).

Theorem 1.3 ([9]). For a simple graph G,

M1(G) = M1(G).
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Theorem 1.4 ([9]). Let G be any (n,m) graph. Then

M2(G) = 2m2 −M2(G)− 1

2
M1(G).

Theorem 1.5 ([9]). Let G be a simple graph with n vertices and m edges. Then

M2(G) = M2(G)− (n− 1)M1(G) +m(n− 1)2.

Theorem 1.6 ([9]). For a simple graph G,

M2(G) = m(n− 1)2 − (n− 1)M1(G) +M2(G).

2. kth-generalized transformation graphs Gab
k

The chemical applications of transformation graphs are explained in [3]. In
1973, Sampathkumar and Chikkodimath introduced the new graph valued function,
called as semitotal-point graph T2(G) of a graph G and is defined as follows [18]:

Definition 2.1. The semitotal-point graph T2(G) of a graph G is a graph
whose vertex set is V (T2(G)) = V (G) ∪ E(G) and two vertices are adjacent in
T2(G) if and only if

(i) they are adjacent vertices of G or
(ii) one is a vertex of G and other is an edge of G incident with it.

In 2012, S. R. Jog put forward k− th semitotal-point graph of G and is defined
as follows [14]:

Definition 2.2. The kth semitotal-point graph T k
2 of G is the graph obtained

by adding k vertices to each edge of G and joining them to the end vertices of the
respective edge. Obviously, this is equivalent to adding k triangles to each edge of
G.

Later, Basavanagoud et al. [3] introduced some new graphical transformations
namely generalized transformation graphs Gxy which generalizes the concept of
semitotal -point graph.

Definition 2.3. The generalized transformation graph Gxy is a graph whose
vertex set is V (G) ∪ E(G), and α, β ∈ V (Gxy). The vertices α and β are adjacent
in Gxy if and only if (a) and (b) holds:

(a) α, β ∈ V (G), α, β are adjacent in G if x = + and α, β are not adjacent in
G if x = −.

(b) α ∈ V (G) and β ∈ E(G), α, β are incident in G if y = + and α, β are not
incident in G if y = −.

In view of definitions 2.1-2.3, we define kth-Generalized transformation graphs
Gab

k which generalizes the concept of generalized transformation graph Gxy [3].
Let ei be the edge of G and let E1, E2, ..., Em be the distinct edge set, and

each Ei is correspondent to the edge ei and |Ei| = k, i = 1, 2...m. for some positive
integer k.
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Definition 2.4. The kth-generalized transformation graph Gxy
k is a graph

whose vertex set is V (Gxy
k ) = V (G) ∪ (E′ = ∪k

i=1Ei) and α, β ∈ V (Gxy
k ). The

vertices α and β are adjacent in Gxy
k if and only if (a) or (b) holds:

(a) α, β ∈ V (G) α, β are adjacent in G if x = + and α, β are not adjacent in
G if x = −.

(b) α ∈ V (G) and β ∈ Ei, for some i ∈ m′ (where m′ = 1, 2, ..m), α, ei are
incident in G if y = + and α, ei are not incident in G if y = −.

Since there are four distinct 2-permutations of {+−} we can obtain four-
graphical transformations of G as G++

k , G+−
k , G−+

k and G−−
k . Particularly, if

k = 1 then Gxy = Gxy
1 .

In this paper, we consider the kth− generalized transformation graphs Gxy
k

and obtain expressions for their first and second Zagreb indices and coindices.
Analogous expressions are also obtained for the complements of Gab

k .

3. The Results

We state the following propositions to prove our main results.

Proposition 3.1. Let G be an (n,m)-graph. Then, the degrees of point and
line vertices in Gab

k are

(1) dG++
k

(vi) = d(vi)(k + 1) and dG++
k

(ei) = 2.

(2) dG+−
k

(vi) = d(vi) + k(m− d(vi)) and dG+−
k

(ei) = n− 2.

(3) dG−+
k

(vi) = (n− 1) + d(vi)(k − 1) and dG−+
k

(ei) = 2.

(4) dG−−
k

(vi) = n+ km− 1− (k + 1)d(vi) and dG−−
k

(ei) = n− 2.

Proposition 3.2. Let G be an (n,m)-graph. Then, the order of Gab
k is (n +

km).

(1) The size of G++
k is m(1 + 2k).

(2) The size of G+−
k is mk(n− 2) +m.

(3) The size of G−+
k is n

2 (n− 1)−m(1− 2k).

(4) The size of G−−
k is n

2 (n− 1)−m+mk(n− 2).

Theorem 3.1. Let G be an (n,m)-graph. Then

M1(G
++
k ) = (k + 1)2M1(G) + 4mk.

Proof. Since G++
k has (n+ km) vertices.

M1(G
++
k ) =

∑
u∈V (G++

k )

dG++
k

(u)2

=
∑

u∈V (G++
k )∩V (G)

dG++
k

(u)2 +
∑

u∈V (G++
k )∩E′(G)

dG++
k

(u)2

By Proposition 3.1 we have,

=
∑

u∈V (G++
k )∩V (G)

[d(u)(k + 1)]
2
+

∑
u∈V (G++

k )∩E′(G)

22
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M1(G
++
k ) = (k + 1)2M1(G) + 4mk.

�
Corollary 3.1. Let G be an (n,m)-graph. Then

M1(G
++
k ) = 2m(n+mk − 1 + 2kn+ 2mk2 − 4k)− (k + 1)2M1(G).

Proof. From Theorem 1.2

M1(G
++
k ) = 2m2k + 4m2k2 + 2mn− 2m+ 4mkn− 8mk − (k + 1)2M1(G)

= 2m(n+mk − 1 + 2kn+ 2mk2 − 4k)− (k + 1)2M1(G).

�
Corollary 3.2. Let G be an (n,m)-graph. Then

M1(G
++
k ) = (k+1)2M1(G)+4mk+(n+km−1)[(n+km)(n+km−1)−4m(1+2k)].

Proof. From Theorem 1.1,

M1(G
++
k ) = M1(G

++k) + n1(n1 − 1)2 − 4m1(n1 − 1)

Where n1 and m1 are the number of vertices and edges of G++
k . By Theorem 3.1

and 3.2 we get the result. �
Corollary 3.3. Let G be an (n,m)-graph. Then

M1(G
++
k ) = 2m(n+ km− 1 + 2kn+ 2mk2 − 4k)− (k + 1)2M1(G).

Proof follows from Theorem 1.3 and Corollary 3.1.

Theorem 3.2. Let G be an (n,m)-graph. Then

M1(G
+−
k ) = mk(nmk + 4m− 4mk) + (k − 1)2M1(G) + (n− 2)2m(k).

Proof. Since G+−
k has (n+ km) vertices.

M1(G
+−
k ) =

∑
u∈V (G+−

k )

dG+−
k

(u)2

=
∑

u∈V (G+−
k )∩V (G)

dG+−
k

(u)2 +
∑

u∈V (G+−
k )∩E′(G)

dG+−
k

(u)2

By Proposition 3.1, we have

=
∑

u∈V (G++
k )∩V (G)

[d(u) + k(m− d(u))]
2

+
∑

u∈V (G++
k )∩E′(G)

(n− 2)2

=
[
(2mk − 2mk2)

∑
d(u)− (2k − k2 − 1)∑

d(u)2 + nm2k2
]
+
[∑

(n− 2)2
]

M1(G
+−
k ) = mk(nmk + 4m− 4mk) + (k − 1)2M1(G) + (n− 2)2m(k).
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�
Corollary 3.4. Let G be an (n,m)-graph. Then

M1(G
+−
k ) = mk(m2k2 + 2mk+ 4n− 3)− 4m(n− 1) + n(n− 1)2 + (k− 1)2M1(G).

Proof. From Theorem 1.1, 3.2 and Proposition 3.2 we get the required result.
�

Corollary 3.5. Let G be an (n,m)-graph. Then

M1(G
+−
k ) = m2k2n− 2m2k +mkn2 − 2mkn+ 2mn− 2m− (k − 1)2M1(G).

Proof. From Theorem 1.3 and 1.2 we have,

M1(G
+−
k ) =2m(n− 1)−M1(G

+−
k )

=2(mk(n− 2) +m)(n+ km− 1)− [mk(nmk + 4m− 4mk)

+ (k − 1)2M1(G) + (n− 2)2mk]

M1(G
+−
k ) =m2k2n− 2m2k +mkn2 − 2mkn+ 2mn− 2m− (k − 1)2M1(G).

�
Corollary 3.6. Let G be an (n,m)-graph. Then

M1(G
+−
k ) = m2k2n− 2m2k +mkn2 − 2mkn+ 2mn− 2m− (k − 1)2M1(G).

Proof. Applying Theorem 1.3 and Corollary 3.5 we get the result. �
Theorem 3.3. Let G be an (n,m)-graph. Then

M1(G
−+
k ) = 4m(nk − n− k + 1) + (k − 1)2M1(G) + n(n− 1)2 + 4mk.

Proof. Since G−+
k has (n+ km) vertices.

M1(G
−+
k ) =

∑
u∈V (G−+

k )

dG−+
k

(u)2

=
∑

u∈V (G−+
k )∩V (G)

dG−+
k

(u)2 +
∑

u∈V (G−+
k )∩E(G)

dG−+k(u)2.

By Proposition 3.1, we have,

=
∑

u∈V (G−+
k )∩V (G)

[
(n− 1) + dG−+

k
(u)(k − 1)

]2
+

∑
u∈V (G++

k )∩E′(G)

22

=

[
2(nk − n− k + 1)

∑
d(u) + (k2 − 2k + 1)

∑
d(u)2

+
∑

n2 − 2n+ 1

]
+
∑

(4)

= 4m(nk − n− k + 1) + (k − 1)2M1(G) + n(n− 1)2 + 4mk
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M1(G
−+k) = 4m(nk − n− k + 1) + (k − 1)2M1(G) + n(n− 1)2 + 4mk.

�

Corollary 3.7. Let G be an (n,m)-graph. Then

M1(G
−+
k ) = m2k2(mk + 3n− 10) +mk(4m− 6n+ 9 + n2) + (k − 1)2M1(G).

Proof. From Theorem 1.1 implies M1(G
−+
k )+(n1−1)2−4m1(n1−1). Where

n1 and m1 are number of vertices and edges of G−+
k . Now the results follows from

Theorem 3.3 and Proposition 3.2. �

The next two Corollaries are deduced in a fully analogous manner.

Corollary 3.8. Let G be an (n,m)-graph. Then

M1(G
−+
k ) = 2

((
n

2

)
+ (2k − 1)m

)
(n+ km− 1)− n(n− 1)2

−4m(k − (k − 1)(n− 1))− (k − 1)2M1(G).

Corollary 3.9. Let G be an (n,m)-graph. Then

M1(G
−+
k ) = n2mk − nmk + 2nm− 2m2k + 4m2k2 − 2m− 4mk

−(k − 1)2
[
4m(nk − n− k + 1) + (k − 1)2M1(G) + n(n− 1)2 + 4mk

]
.

Theorem 3.4. Let G be an (n,m)-graph. Then

M1(G
−−
k ) = n(n+km−1)2−4m(k+1)(n+km−1)+(k+1)2M1(G)+km(n−2)2.

Proof.

M1(G
−−
k ) =

∑
u∈V (G−−

k )

dG−−
k

(u)2

=
∑

u∈V (G−−
k )∩V (G)

dG−−
k

(u)2 +
∑

u∈V (G−−
k )∩E′(G)

dG−−
k

(u)2

By Proposition 3.1, we have,

=
∑

u∈V (G−+
k )∩V (G)

[(n+mk − 1− (k + 1)d(u))]
2
+

∑
u∈V (G++

k )∩E′(G)

(n− 2)2

=
∑

u∈V (G−+
k )∩V (G)

[2mnk +m2k2 − 2mk + (n− 1)2 + d(u)

(−2nk − 2mk2 − 2mk + 2k − 2n+ 2) + (k + 1)2d(u)2]

+
∑

u∈V (G++
k )∩E(G)

(n− 2)2

= n(n+ km− 1)2 − 4m(k + 1)(n+ km− 1) + (k + 1)2M1(G) + km(n− 2)2.

�
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Corollary 3.10. Let G be an (n,m)-graph. Then

M1(G
−−
k ) = n(n+ km− 1)2 − 4m(k + 1)(n+ km− 1) + (k + 1)2M1(G)

+km(n− 2)2 + (km+ n− 1)[(km+ n)(km+ n− 1)

−2n(n− 1) + 4m− 4mk(n− 2)].

Proof. Theorem 1.1 results in

M1(G
−−
k ) = M1(G

−−
k ) + n1(n1 − 1)2 − 4m1(n1 − 1)

where n1 and m1 are numbers of vertices and edges of G−−
k . Bearing in mind

Theorem 3.4 and Proposition 3.2 the result follows. �

The next two Corollaries are deduced in a fully analogous manner.

Corollary 3.11. Let G be an (n,m)-graph. Then

M1(G
−−
k ) = 2m2k + nm2k2 + 2nm− 2m+ 3nmk − 4mk − (k + 1)2M1(G).

Corollary 3.12. Let G be an (n,m)-graph. Then

M1(G
−−
k ) = 2m2k + nm2k2 + 2nm− 2m+ 3nmk − 4mk − (k + 1)2M1(G).

Theorem 3.5. Let G be an (n,m)-graph. Then

M2(G
++
k ) = M2(T2)(G) = (k + 1)2M2(G) + 2k(k + 1)M1(G).

Proof. Partition the edge set E(G++k) into two sets E1 and E2.
E1 = {uv ∈ E(G)} and E2 = {ue|u is incident to edge e},
|E1| = m and |E2| = 2mk.
Therefore,

M2(G
++
k ) =

∑
uv∈E(G++k)

[dG++k(u)dG++k(v)]

=
∑

uv∈E1

(dG++k(u)dG++k(v)) +
∑

uv∈E2

(dG++
k

(u)dG++
k

(v))

=
∑

uv∈E(G)

(dG(u)(k + 1)dG(v)(k + 1)) +
∑

ue∈E2

(dG(u)(k + 1)(2)

=(k + 1)2
∑

uv∈E(G)

[dG(u)dG(v)] + 2k(k + 1)
∑

u∈V (G)

dG(u)
2

=(k + 1)2M2(G) + 2k(k + 1)M1(G).

�

Corollary 3.13. Let G be an (n,m)-graph. Then

M2(G
++
k ) = 2m[m(1 + 2k)2 + 1]− (k + 1)2M2(G)− (k + 1)M1(G)

(
4 + (k + 1)

2

)
.
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Proof. We know that,

M2(G
++
k ) = 2m2 −M2(G

++
k )− 1

2
M1(G

++
k )

= 2(m(1 + 2k))2 − [(k + 1)2M2(G) + 2k(k + 1)M1(G)]

−1

2
[(k + 1)2M1(G) + 4m]

= 2m[m(1 + 2k)2 + 1]− (k + 1)2M2(G)

−(k + 1)M1(G)

(
4 + (k + 1)

2

)
.

�

Corollary 3.14. Let G be an (n,m)-graph. Then

M2(G
++
k ) = 2m[m(1 + 2k)2 + 1]− (k + 1)2M2(G)− (k + 1)M1(G)(

4 + (k + 1)

2

)
+ (n+ km− 1)

[
(k + 1)2M1(G) + 4mk

+(n+ km− 1)[(n+ km) (n+ km− 1)− 4m(1 + 2k)]]

+

((
n+ km

2

)
−m(1 + 2k)

)
(n+ km− 1)2.

Corollary 3.15. Let G be an (n,m)-graph. Then

M2(G
++
k ) = m(1 + 2k)(n+ km− 1)2 − (n+ km− 1)2[(k + 1)2M1(G) + 4mk]

+[(k + 1)2M2(G) + 2k(k + 1)M1(G)].

Theorem 3.6. Let G be an (n,m)-graph. Then

M2(G
+−
k ) =mk(1− k)M1(G) + (k − 1)2M2(G) + k2m3 + k(n− 2)[

m2(kn− 4k + 2) + (k − 1)M1((G)
]
.

Proof. Since G+−k has (n+ km) vertices and mk(n− 2) +m edges

M2(G
+−
k ) =

∑
uv∈E(G+−

k )

dG+−
k

(u)dG+−
k

(v)

=
∑

uv∈E(G)

dG+−
k

(u)dG+−
k

(v) +
∑

ue∈E(G+−
k )−E(G)

dG+−
k

(u)dG+−
k

(e)

By Proposition 3.1, we have,

M2(G
+−
k ) =

∑
uv∈E(G)

[d(u) + k(m− d(u))] [d(v) + k(m− d(v))]

+
∑

u∈V (G)

k(m− dG(u))(d(u) + k(m− d(u)))(n− 2)

=
∑

uv∈E(G)

d(u)d(v) + km
∑

uv∈E(G)

d(u)− k
∑

uv∈E(G)

d(u)d(v)
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+ km
∑

uv∈E(G)

d(v)− k
∑

uv∈E(G)

d(u)d(v)

+ k2
∑

uv∈E(G)

(m2 − (d(u) + d(v))m+ d(u)d(v))

=mk(1− k)M1(G) + (k − 1)2M2(G) + k2m3

+ k(n− 2)
[
m2(kn− 4k + 2) + (k − 1)M1((G)

]
.

�

Corollary 3.16. Let G be an (n,m)-graph. Then

M2(G
+−
k ) =2m2(nk − 2k + 1)2 − [mk(1− k)M1(G) + (k − 1)2M2(G) + k2m3

+ k(n− 2)[m2(kn− 4k + 2) + (k − 1)M1((G)]]

− 1

2

[
mk(nmk + 4m− 4mk) + (k − 1)2M1(G) + (n− 2)2m(k)

]
.

Corollary 3.17. Let G be an (n,m)-graph. Then

M2(G
+−
k ) =

[
2m2(nk − 2k + 1)2 − [mk(1− k)M1(G) + (k − 1)2M2(G) + k2m3

+k(n− 2)[m2(kn− 4k + 2) + (k − 1)M1((G)]]

−1

2

[
mk(nmk + 4m− 4mk) + (k − 1)2M1(G) + (n− 2)2m(k)

]]
+(n+ km− 1)

[
mk(m2k2 + 2mk + 4n− 3)− 4m(n− 1)

+n(n− 1)2 + (k − 1)2M1(G)

]
+

((
n+ km

2

)
− (mnk − 2mk +m)

)
(n+ km− 1)2.

Corollary 3.18. Let G be an (n,m)-graph. Then

M2(G
+−
k ) = (mnk − 2mk +m)(n+ km− 1)2 − (n+ km− 1)

[
mk(nmk

+4m− 4mk) + (k − 1)2M1(G) + (n− 2)2m(k)

]
+[

mk(1− k)M1(G) + (k − 1)2M2(G) + k2m3

+k(n− 2)
[
m2(kn− 4k + 2) + (k − 1)M1(G)

]]
.

Theorem 3.7. Let G be an (n,m)-graph. Then

M2(G
−+
k ) =

[
n(n− 1)

2
−m

]
(n− 1)2 + (n− 1)(k − 1)M1(G) + (k − 1)2M2(G)

+ 2k(2(n− 1)m+ (k − 1)M1(G)).
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Proof. Since G−+
k has (n+ km) vertices and n

2 (n− 1)−m(1− 2k) edges

M2(G
−+
k ) =

∑
uv∈E(G−+

k )

dG+−
k

(u)dG−+
k

(v)

=
∑

uv∈E(G−+
k )∩E(G)

dG−+
k

(u)dG−+
k

(v) +
∑

uv∈E(G−+
k )−E(G)

dG−+
k

(u)dG+−
k

(v)

By Proposition 3.1, we have,

M2(G
+−
k ) =

∑
uv∈E(G)

[n− 1 + d(vi)(k − 1)] [n− 1 + d(ui)(k − 1)]

+
∑

u∈V (G)

[(n− 1) + d(u)(k − 1)](2)kd(u)

=

[
n(n− 1)

2
−m

]
(n− 1)2 + (n− 1)(k − 1)M1(G) + (k − 1)2M2(G)

+ 2k(2(n− 1)m+ (k − 1)M1(G)).

�

Corollary 3.19. Let G be an (n,m)-graph. Then

M2(G
−+
k ) =2

(
n(n− 1)

2
−m(1− 2k)

)2

−
[
n(n− 1)

2
−m

]
(n− 1)2 − (n− 1)

(k − 1)M1(G)− (k − 1)2M2(G)− 2k(2(n− 1)m− (k − 1)M1(G))

− 1

2

[
4m(nk − n− k + 1) + (k − 1)2M1(G) + n(n− 1)2 + 4mk

]
.

Corollary 3.20. Let G be an (n,m)-graph. Then

M2(G
−+
k ) =

[
2

(
n(n− 1)

2
−m(1− 2k)

)2

−
[
n(n− 1)

2
−m

]
(n− 1)2 −

(n− 1)(k − 1)M1(G)− (k − 1)2M2(G)− 2k(2(n− 1)m− (k − 1)

M1(G)− 1

2

[
4m(nk − n− k + 1) + (k − 1)2M1(G) + n(n− 1)2+

4mk]

]
+ (n+ km− 1)

[
m2k2(mk + 3n− 10) +mk(4m− 6n+ 9 + n2)

+(k − 1)2M1(G)

]
+

[(
n+ km

2

)
−
(
n

2

)
+m(1− 2k)

]
(n+ km− 1)2.

Corollary 3.21. Let G be an (n,m)-graph. Then

M2(G
−+
k ) =

[(
n

2

)
−m(1− 2k)

]
(n+ km− 1)2 − (n+ km− 1)

[
4m(nk − n

−k + 1) + (k − 1)2M1(G) + n(n− 1)2 + 4mk

]
+

[(
n(n− 1)

2
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−m

)
(n− 1)2 + (n− 1)(k − 1)M1(G) + (k − 1)2M2(G)

+2k(2(n− 1)m+ (k − 1)M1(G))

]
.

Theorem 3.8. Let G be an (n,m)-graph. Then

M2(G
−−
k ) = (n+ km− 1)

[
(n+ km− 1)

((
n

2

)
−m

)
+ km(n− 2)2 −

(k + 1)M1(G)

]
+k(k + 1)(n− 2)(−2m2 +M1(G)) + (k + 1)2M2(G).

.

Proof. Since G−−
k has (n+km) vertices and n

2 (n−1)−m−mk(n−2) edges.

M2(G
−−
k ) =

∑
uv∈E(G−−

k )

dG−−
k

(u)dG−−k(v)

=
∑

uv∈E(G)

dG−−
k

(u)dG−−
k

(v) +
∑

uv∈E(G−−
k )−E(G)

dG−−
k

(u)dG−−
k

(e)

By Proposition 3.1, we have,

M2(G
−−
k ) =

∑
uv∈E(G)

[n+ km− 1− (k + 1)d(vi)] [n+ km− 1− (k + 1)d(ui)]

+
∑

uv∈E(G−−
k )−E(G)

(n− 2)[n+ km− 1− (k + 1)d(v)]

= (n+ km− 1)2
((

n

2

)
−m

)
− (n+ km− 1)(k + 1)M1(G)

+(k + 1)2M2(G)

+
∑

u∈V (G)

(n+ km− 1− (k + 1)d(u))(n− 2)k(m− d(u))

= (n+ km− 1)

[
(n+ km− 1)

((
n

2

)
−m

)
+ km(n− 2)2

−(k + 1)M1(G)

]
+k(k + 1)(n− 2)(−2m2 +M1(G)) + (k + 1)2M2(G).

�

Corollary 3.22. Let G be an (n,m)-graph. Then

M2(G
−−
k ) = 2

(n
2
(n− 1)−m+mk(n− 2)

)2

−(n+ km− 1)

[
(n+ km− 1)

((
n

2

)
−m

)
+ km(n− 2)2 −
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(k + 1)M1(G)

]
− k(k + 1)(n− 2)(−2m2 +M1(G))− (k + 1)2M2(G)

−1

2

[
mk(nkm− 4mk − 4m+ 3n2 − 10n+ 8)− 4m(n− 1)

+n(n− 1)2 + (k + 1)2M1(G)
]
.

Corollary 3.23. Let G be an (n,m)-graph. Then

M2(G
−−
k ) =

[
2
(n
2
(n− 1)−m+mk(n− 2)

)2

−(n+ km− 1)

[
(n+ km− 1)

((
n

2

)
−m

)
+ km(n− 2)2

−(k + 1)M1(G)

]
−k(k + 1)(n− 2)(−2m2 +M1(G))

−(k + 1)2M2(G)− 1

2

[
mk(nkm− 4mk − 4m+ 3n2 − 10n+ 8)

−4m(n− 1) + n(n− 1)2 + (k + 1)2M1(G)
]]

+ (n+ km− 1)[
M1(G

−−
k ) + (km+ n− 1) [(km+ n)(km+ n− 1)− 2n(n− 1)

+4m− 4mk(n− 2)]

]
+

[(
n+ km

2

)
−
(
n

2

)
+m−mk(n− 2)

]
(n+ km− 2)2.

Corollary 3.24. Let G be an (n,m)-graph. Then

M2(G
−−
k ) =

[(
n

2

)
−m+mk(n− 2)

]
(n+ km− 2)2 − (n+ km− 2)[

mk(nkm− 4mk − 4m+ 3n2 − 10n+ 8)− 4m(n− 1)

+n(n− 1)2 + (k + 1)2M1(G)

]
+

[
(n+ km− 1)(

(n+ km− 1)

((
n

2

)
−m

)
+ km(n− 2)2 − (k + 1)M1(G)

)
+k(k + 1)(n− 2)(−2m2 +M1(G)) + (k + 1)2M2(G)

]
.
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