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REACCELERATED OVER RELAXATION

(ROR) METHOD

V. B. Kumar Vatti, G. Chinna Rao and Srinesh S. Pai

Abstract. In this paper, a method named as ’Reaccelerated over relaxation
(ROR) Method’ for solving linear system of equations is introduced. The
eigenvalues of its iteration matrix are obtained interms of eigenvalues of the
Jacobi matrix and the choices of the parameters involved in ROR method are

estimated. And also, this method is compared with the well known AOR,
SOR, Gauss-Seidal and Jacobi methods through some numerical examples.

1. Introduction

For solving the linear system

(1.1) AX = b

where A is non-singular matrix with non-vanishing diagonal elements of order n,
X and b are unknown and known n-dimensional vectors. We split the coefficient
matrix A without any loss of generality, as

(1.2) A = I − L− U

where I is the unit matrix, −L and −U are strictly lower and upper triangular
parts of A respectively ([3, 4, 5]).

The Accelerated over Relaxation (AOR) method for solving (1.1) is given by

(1.3) (I − ωL)X(n+1) = {(1− r)I + (r− ω)L+ rU}X(n) + rb (n = 0, 1, 2, 3, · · ·) .
As noted by A. Hadjidimos [4], the methods Successive over Relaxation (SOR),
Gauss-Seidal (G.S) and Jacobi (J) can be realized from (1.3) for the choices of r
and ω as

(1.4) (r, ω) = (ω, ω), (1, 1), (1, 0)
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The iteration matrices of the above methods are:

(1.5) AOR : (I − ωL)−1{(1− r)I + (r − ω)L+ rU}

(1.6) SOR : (I − ωL)−1{(1− ω)I + ωU}

(1.7) G.S : (I − L)−1U

(1.8) J : (L+ U)

and whose spectral radii are given by
(1.9)

S(AOR) =



µ2

(1 +
√
1− µ2)2

if µ = 0 (or)

√
1− µ2 6 1− µ2 and 0 < µ < µ

0 if µ = µ

µ
√
µ2 − µ2√

1− µ2(1 +
√
1− µ2)

if 0 < µ < µ and 1− µ2 <

√
1− µ2

(1.10) S(SOR) =
µ2

(1 +
√
1− µ2)2

(1.11) S(G.S) = µ2

(1.12) S(J) = µ

where µ and µ are the smallest and the largest eigenvalues of Jacobian matrix J
in magnitude respectively. It is to note that Reza Behzadi [8] studied a new class
AOR preconditioned for L-Matrices.

We introduce the ROR method in section 2 and obtain the eigenvalues of its
iteration matrix. The choices of the parameters are estimated in section 3 and
ROR method is compared with other methods through some numerical examples
in Section 4.

2. Reaccelerated over relaxation (ROR) method

Considering two parameters r ̸= 0 and ω ̸= 0 and adding rω(AX − b) which is
absolutely zero, to the right hand side of AOR methods (1.3), we obtain

(2.1)

(I − ωL)X(n+1) = {(1− r)I + (r − ω)L+ rU}X(n) + rb+ rω(AX(n) − b)

= {(1− r)I + (r − ω)L+ rU)}X(n) + rb

+ rω[(I − L− U)X(n) − b]

= {(1− r + rω)I + (r − ω − rω)L+ (r − rω)U}X(n)

+ (r − rω)b.
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which is completely consistent one. This method can be called as Reaccelerated
over relaxation (ROR) method for solving (1.1) and whose iteration matrix is

(2.2) Rr,ω = (I − ωL)−1{(1− r + rω)I + (r − ω − rω)L+ (r − rω)U}

Theorem 2.1. If λ be the eigen value of the iteration matrix Rr,ω then the
characteristic equation of Rr,ω is

|[λ+ r(1− ω)− 1]I − {[ωλ+ r(1− ω)− ω]L+ [r(1− ω)]U}| = 0

Proof. Let
2.1.1

|Rr,ω − λI| = 0 (or) |λI −Rr,ω| = 0

Then |(λI − (I − ωL)−1{((1 − r + rω)I + (r − ω − rω)L + (r − rω)U)}| = 0
⇒ |λ(I − ωL)− {(1− r + rω)I + (r − ω − rω)L+ (r − rω)U}| = 0

2.1.2

|(λ+ r(1− ω)− 1)I − {(λ ω + r(1− ω)− ω)L+ r(1− ω)U}| = 0

is the characteristic equation of Rr,ω �

Theorem 2.2. If λ be the eigen value of Rr,ω and µ be the eigenvalue of Jacobi
matrix J , then λ and µ are connected by the relation

[λ+ r(1− ω)− 1)]2 = rωµ2(1− ω)λ− rµ2(1− ω) + r2µ2(1− ω)2

Proof. Let λ be the eigenvalue of ROR iteration matrix Rr,ω. Then, from
Theorem 2.1, we have

|λI − (I − ωL)−1{(1− r + rω)I + (r − rω − ω)L+ (r − rω)U}| = 0

⇒ |λ(I − ωL)− {(1− r + rω)I + (r − rω − ω)L+ (r − rω)U}| = 0

⇒ |(λ+ r(1− ω)− 1)I − [(ω(λ− 1) + r(1− ω))L+ r(1− ω)U ]| = 0.

By using the theory given in G. Avdelas and A. Hadjidimos [2] and D. M. Young
[7], we obtain

λ+ r(1− ω)− 1

(ω(λ− 1) + r(1− ω))
1
2 r

1
2 (1− ω)

1
2

= µ.

(2.2.1) ⇒ [λ+ r(1− ω)− 1)]2 = rωµ2(1− ω)λ− rµ2(1− ω)ω+ r2µ2(1− ω)2.

�

Theorem 2.3. If λ be the eigenvalue of Rr,ω then

λ =
rωµ2(1− ω)

2
− r(1− ω) + 1

provoided

ω2µ2 − 4ω + 4 = 0
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Proof. From (2.2.1), we have

λ2 − [ω(r − rω)µ2 − 2(r − rω − 1)]λ+ (r − rω − 1)2 + ω(r − rω)µ2

− (r − rω)2µ2 = 0

(2.3.1) ⇒ λ =
rωµ2(1− ω)− 2[r(1− ω)− 1]

2
±

√
∆

2
,

where

∆ = ω2(r − rω)2µ4 + 4(r − rω − 1)2 − 4(r − rω − 1)ω(r − rω)µ2

− 4(r − rω − 1)2 − 4ω(r − rω)µ2 + 4(r − rω)2µ2

= (r − rω)µ2[ω2(r − rω)µ2 − 4ω(r − rω − 1 + 1) + 4(r − rω)]

= (r − rω)2µ2[ω2µ2 − 4ω + 4],

which will be zero if

(2.3.2) ω2µ2 − 4ω + 4 = 0

i.e.,if

(2.3.3) ω =
2

1 +
√
1− µ2

for any µ. Therefore,λ of (2.3.1) becomes

(2.3.4) λ =
rωµ2(1− ω)

2
− r(1− ω) + 1.

�

3. Choices of the Parameters r and ω

We rewrite λ of (2.3.4) as

(3.1) λ =
rωµ2(1− ω)

2
− [r(1− ω)− 1]

The two terms appearing in square brackets in the right hand side play a major
role in obtaining the minimum of the maximum′λ′ in magnitude with respect to
the Parameters ′r′ and ′ω′.

Let ′ω′ be fixed as

(3.2) ω = ω∗ =
2

1 +
√

1− µ2

And now let the terms in (3.1) be connected by the relation

(3.3)
rω∗µ2(1− ω∗)

2
= α[r(1− ω∗)− 1]

where α be any real constant not zero.
Solving the equation (3.3) for ′r′ in terms of ′α’ and ′α′ in terms of ′r′, we

obtain

(3.4) α =
rω∗µ2(1− ω∗)

2[r(1− ω∗)− 1]
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(3.5) r =

(
1

ω∗ − 1

)(
α

(1− α)−
√
1− µ2

)
From (3.4),we can have

(3.6)
α

ω∗ − 1
=

−rω∗µ2

2[r(1− ω∗)− 1]

From (3.5),we have

(3.7)
α

ω∗ − 1
= r[(1− α)−

√
1− µ2]

Equating (3.6) and (3.7) we get

r[(1− α)−
√
1− µ2] =

(
−r

[r(1− ω∗)− 1]

)(
ω∗µ2

2

)
(or)

(3.8) [r(1− ω∗)− 1)][α− (1−
√
1− µ2))] =

ω∗µ2

2

Now, on taking µ = µ and multiplying and dividing the R.H.S term by [ω+
µ2−µ2

2 ]
we obtain

(3.9) [r(1− ω∗)− 1)][α− (1−
√
1− µ2)] =

[
ω∗ +

µ2 − µ2

2

][
ω∗µ2

2(ω∗ +
µ2−µ2

2 )

]
On equating the respective factors above, we obtain

(3.10) r(1− ω∗)− 1 = ω∗ +
µ2 − µ2

2

(3.11) α− (1−
√
1− µ2) =

ω∗µ2

2
(
ω∗ +

µ2−µ2

2

)
From (3.10) and (3.11), we obtain ′r′ and ′α′ as

(3.12) r =
1 + ω∗ +

µ2−µ2

2

1− ω∗

and

(3.13) α =

(
1−

√
1− µ2

)
+

 ω∗µ2

2
(
ω∗ +

µ2−µ2

2

)


It is observed that r should be taken as ′r′ as in (3.12) if α > 1 and if α < 1, then
′r′ should be taken as r

2 of (3.12). When α=1, the choice of r is as given (3.5).
Therefore, we summarize these results below.

Type 1: when µ = µ and α = 1.
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Here, the choices of ω and r are to be taken as

(3.14) ω = ω∗ =
2

1 +
√

1− µ2

(3.15) r = r∗ =

(
1√

1− µ2

)(
1

1− ω∗

)
Type 2: when µ ̸= µ and α > 1

In type, ω and r are to be considered as

(3.16) ω = ω∗ =
2

1 +
√

1− µ2

(3.17) r = r∗ =
1 + ω∗ +

µ2−µ2

2

1− ω∗

Type 3: when µ ̸= µ and α < 1

In this type,r and ω are

(3.18) ω = ω∗ =
2

1 +
√

1− µ2

(3.19) r = r∗ =
1 + ω∗ +

µ2−µ2

2

2(1− ω∗)

It is to note that µ can also zero in all the above types.

4. Numerical Examples

Let unit vector be a solution of the linear system

(4.1) AX = b

for a given matrix A and known vector b. The methods discussed in this paper are
applied to obtain the solution of (4.1) correct to 9 decimal places taking null vector
as an initial guess considering various A′s and b′s and tabulated the results such as
choices of the parameters, number of iterations conceded by each method, spectral
radii of the iteration matrices and the error

E =

√√√√ r∑
i=1

|1− xr|.

We now start with the problems satisfied the Type 1 criteria.

Example 4.1. If
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A =


1 0 1

5
1
5

0 1 −18
5 6

24
5

1
5 1 0

12
5

1
5 0 1

 and b =


1.4
3.4
6
3.6

 ,

then the eigenvalues of Jacobian matrix J are ±
√
24
5 with a multiplicity two. There-

fore,

µ =

√
24

5
= µ.

This matrix is considered by G. Avdelas and A. Hadjidimos [2].

Table 1

S.No. Method Choices of Number of Spectral error
paramers iterations radius

1 AOR ω = 5/3,r = 5 4 0 0.18× 10−11

2 ROR ω = 5/3,r = −7.5 4 0 0.14× 10−11

3 SOR ω = 5/3,r = 5/3 92 2/3 0.48× 10−9

4 G.S. - 713 0.96 0.486× 10−9

5 J - 1431 0.9798 0.496× 10−9

Example 4.2. If A =

[
3 −4
2 −3

]
considered by A. Hadjidimos [4] and if b =[

−1
−1

]
of (4.1) then the Jacobian matrix eigen values are given by ±2

√
2

3 and hence

µ =
2
√
2

3
= µ.

Table 2

S.No. Method Choices of Number of Spectral error
paramers iterations radius

1 AOR ω=1.5,r = 3 2 0 0
2 ROR ω = 1.5,r = −6 2 0 0
3 SOR ω = 1.5,r = 1.5 38 0.5 0.31× 10−9

4 G.S. - 187 0.88889 0.49× 10−9

5 J - 370 0.94281 0.49× 10−9
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Example 4.3. If

A =


1 0 1

5
1
5

0 1 − 71
10

113
10

16
5

1
5 1 0

2 1
5 0 1



which is considered by G. Avdelas and Hadjidimos [2] and b =


1.4
5.2
4.4
3.2

 then the

eigenvalues of the Jacobi matrix are ±
√
23
5 and ±

√
24
5 and hence

µ =

√
23

5
, µ =

√
24

5
/

It can be seen that the conditions given by G.Avdelas and A. Hadjidimos [2]
i.e.,

0 < µ < µ and 1− µ2 <
√

1− µ2

are satisfied. As given by them, the spectral radius of AOR matrix calculated from

the formula (1.9) is
√
46
12 and mentioned that which is less than the spectral radius

of SOR i.e., 23 .
It is calculated that the AOR iteration matrix Mr,ω is

Mr,ω =


9
4 0 1

4
1
4

0 9
4 −71

8
113
8

−8
3 − 1

6
93
24 − 145

24

−5
3 − 1

6
17
8 −79

24


whose spectral radius happens to be

√
246
12 but not

√
46
12 as mentioned by Avdelas

and A. Hadjidimos [2] and G. Avdelas and A. Hadjimos [7].

Table 3

S.No. Method Choices of Number of Spectral error
paramers iterations radius

1 AOR ω=5/3,r = −5/4 Diverging 1.30703262 -
2 AOR ω=5/3,r = 14/3 91 0.75129518 0.184× 10−9

3 ROR ω = 5/3,r = −4.03 44 0.56892569 0.426× 10−9

4 SOR ω = 5/3,r = 5/3 76 2/3 0.348× 10−9

5 G.S. - 614 0.96 0.491× 10−9

6 J - 1203 0.97979590 0.4902× 10−9

It is to note that AOR method converged for different choices of the parameters
as shown in S. No. 2 in Table 3 given down.
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Example 4.4. If

A =



35 −2 −3 −1 0 −2 −3 −1

−5 27 −3 −4 −4 −1 −2 0

−7 −4 71 −9 −2 −6 0 −3

−1 −1 −2 20 −4 −3 −2 −4

−2 −2 −3 0 71 −2 −1 −1

0 −2 −5 −4 −3 53 −5 −4

−3 −2 −1 −3 −5 −4 32 −3

−4 −3 −2 −5 −1 −2 −7 31


and b =



23
8
40
3
60
30
11
7


Then, we have µ = 0.050245255 and µ = 0.533454460.

In this case,

1− µ2 ≮
√
1− µ2

and hence the rate of convergence of AOR will be same as that of SOR method.
The choices of ω and r are estimated using (3.17) and (3.18) as α in this case
happens to be less than one.

Table 4

S.No. Method Choices of Number of Spectral error
paramers iterations radius

1 AOR ω = 1.08352411, 15 0.08352411 0.442× 10−9

r = 1.08352411
2 ROR ω = 1.08352411, 14 0.059206388 0.491× 10−9

r = −13.316805
3 SOR ω = 1.08352411, 15 0.08352411 0.442× 10−9

r = 1.08352411
4 G.S. − 21 0.284573661 0.184× 10−9

5 J − 36 0.533454460 0.435× 10−9

Example 4.5. If

A =



4 0 0 0 −1 −1

0 4 0 0 −1 −1

0 0 4 −1 −1 0

0 0 −1 4 0 0

−1 −1 −1 0 4 0

−1 −1 0 0 0 4


and b = (2, 2, 2, 3, 1, 2)T .

Considered by I. K. Youssef and A. A. Taha [8] of (4.1), then

µ = 0 and µ = 0.543831937 and 1− µ2 ≮
√
1− µ2.
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Table 5

S.No. Method Choices of Number of Spectral error
paramers iterations radius

1 AOR ω = 1.08743277, 11 0.087432775 0.194× 10−9

r = 1.08743277
2 ROR ω = 1.08743277, 10 0.062070778 0.392× 10−9

r = −12.7830174
3 SOR ω = 1.08743277, 11 0.087432775 0.194× 10−9

r = 1.08743277
4 G.S. − 19 0.295753176 0.293× 10−9

5 J − 37 0.543831937 0.3799× 10−9

Conclusion: It can be clearly seen from all the examples considered that the
rate of convergence of ROR method is a bit faster compared to the other methods
discussed in this paper in all the cases irrespective of the values of µ and µ.
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