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GENERALIZED RICCI SOLITONS ON
(¢,0)-TRANS SASAKIAN MANIFOLD

Shamsur Rahman and Amit Kumar Rai

ABSTRACT. The purpose of the present research is to shows that a (g, §) trans-
Sasakian manifold, which also satisfies the Ricci soliton and generalized Ricci
soliton equation, satisfying some conditions, is necessarily the Einstein man-
ifold. Generalized Ricci solitons for 3-dimensional (g, §)-trans-Sasakian man-
ifolds are worked out. Also an example of Ricci solitons in 3-dimensional
(e, 9)-trans-Sasakian manifold is provided in the region where trans-Sasakian
manifold is expanding (shrinking) the Lorentzian trans-Sasakian manifold is
shrinking (expanding).

1. Introduction

In [3], Bejancu-Duggal introduced (e)-Sasakian manifolds. Later, these mani-
folds were studied by Xufeng and Xiaoli [21] from real hypersurfaces of indefinite
Kahlerian manifolds. Kumar et al. [9] studied the curvature conditions of these
manifolds. De and Sarkar [7] also introduced (¢)- Kenmotsu manifolds with indef-
inite metric. The notion of (¢)- trans-Sasakian manifolds with indefinite metric,
which are natural generalization of both (¢)-Sasakian and (¢)-Kenmotsu manifolds
was introduced by Shukla and Sing [16]. Nagaraja et. al. [12] and authors Rah-
man et. al. [14] studied (e, d)-trans-Sasakian manifolds and CR submanifolds of
nearly (e, d)-trans-Sasakian manifolds, which are extensions of (¢)-trans-Sasakian
manifolds.

There are stationary points of the Ricci flow given by

(1.1) % = —2Ric(g), for g(0) = go.
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Ricei solitons move under the Ricci flow initiated by Hamilton [8] simply by diffeo-
morphisms of the initial metric. A Ricci soliton (g, V, A) on a Riemannian manifold
is defined by

(1.2) Lyg+25+2\g =0,

where S is the Ricci tensor, Ly is the Lie derivative along the vector field V on
M and A is a real scalar. Ricci soliton is said to be shrinking, steady or expanding
according as A < 0, A = 0 and A > 0. If the vector field V is the gradient of a
potential function —, then g is called a gradient Ricci soliton and equation (1.2)
assumes the form Hessy = S + Ag.

A metric gg on a smooth manifold M is a Ricci soliton if there exist a function
o(t) and a family of diffeomorphisms {n(t)} C Dif f(M) such that

g(t) = a(t)n(t)" go,
is a solution of the Ricci flow. In this expression, 7(t)*go indicates to pullback of the
metric go by the diffeomorphism 7(t). Equivalently, a metric gy is a Ricci soliton
if and only if it satisfies equation (1.2), which is a generalization of the Einstein
condition for the metrics
Ric(go) = Ago-

Some generalizations, like, gradient Ricci solitons [4], quasi Einstein manifolds [5],
and generalized quasi Einstein manifolds [6], play an important role in solutions
of geometric flows and describe the local structure of certain manifolds. Nurowski
and Randall [13] introduced the concept of generalized Ricci soliton as a class of
over determined system of equations

(1.3) Lxg=—2aX"©®X* +2bS + 2)\g,

where L£xg and X# denote, respectively, the Lie derivative of the metric ¢ in the
directions of vector field X and the canonical one-form associated to X, and some
real constants a, b, and A. Levy [10] acquired the necessary and sufficient conditions
for the existence of such tensors. Sharma [15] initiated the study of Ricci solitons
in almost contact Riemannian geometry. Followed by Tripathi [19], Nagaraja et
al. [12], Turan [20], and others extensively studied Ricci solitons in almost contact
metric manifold. Recently [2, 1, 17, 18], the authors extensively studied Ricci
solitons in almost (g)-contact metric manifolds.

2. Preliminaries

If M is an almost contact metric manifold of dimension n equipped with an
almost contact metric structure (¢,£,n,g) consisting of a (1,1)-tensor field ¢, a
vector field &, a 1-form 7 and a Riemannian metric g satisfying

(2.1) P°X =-X+n(X)§, n€) =1, ¢£=0, nop=0.

An almost contact metric manifold M is called an (g)-almost contact metric mani-
fold if there exists a semi Riemannian metric g such that

H(X):EQ(X@)» 9(5,5)25,



GENERALIZED RICCI SOLITONS ON (g,4)-TRANS SASAKIAN MANIFOLD 293

(2:2) 9(¢X, Y ) = g(X,Y) —en(X)n(Y), VXY €TM,
where € = g(§,&) = £1.

An (e)-almost contact metric manifold is called an (e, §)-trans-Sasakian mani-
fold if it follows,

(2.3) (Vx9)Y = a{g(X,Y)é —en(Y)X} + B{g(¢X,Y)E — on(Y)pX}
(2.4) Vxé=—capX — f6¢p° X,

and

(2.5) (Vxn)Y = Béleg(X,Y) —n(X)n(Y)] — ag(¢X,Y),

holds for some smooth functions o and 8 on M and € = £1, § = +1. For 8 =0,
a =1, an (g, §)-trans-Sasakian manifold reduces to an (g)-Sasakian and for a = 0,
B =1, it reduces to a (§)-Kenmotsu manifold.

The Riemannian curvature tensor R with respect to LeviCivita connections V
and the Ricci tensor S of a Riemannian manifold M are defined by

(2.6) R(X,Y)Z =VxVyZ - VyVxZ - VxyZ,
(2.7) S(X,Y) =Y g(R(X,e)e;, Y),
=1

for X,Y,ZT'(TM), where V is with respect to the Riemannian metric g and ,
{e1,ea,...,e;} where 1 < ¢ < n is the orthonormal frame.

Given a smooth function ¥ on M , the gradient of ¢ is defined by
(2.8) glgrady, X) = X (1),
and the Hessian of v is defined by
(2.9) (Hessi)(X,Y) = g(Vxgrady,Y),
where X,Y € I'(TM). For X € T'(TM), we define X# € I'(TM) by
(2.10) X#(Y) = g(X,Y).

The generalized Ricci soliton equation in Riemannian manifold M is defined in [15]
by

(2.11) Lxg=—2aX"®X# +2bS + 2)\g,
where X € I'(T'M) and Lxg is the Lie-derivative of g along X given by
(2.12) Lxg(Y,Z)=g(VyX,Z2)+g(VzX,Y)

forall Y, Z e (T M), and a,b, \, € R.
The Lie-derivative of g along X is said to be (see [4, 13, 15])
(1) Killings equation if a = b= X =0,
(2) equation for homotheties if a = b =0,
(3) Ricci soliton if a = 0,b = —1,
(4) case of EinsteinWeyl if a = 1,b = —%

n—27
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(5) metric projective structures with skew-symmetric Ricci tensor in projective
classifa=1,b= n;_12,/\ =0, and

(6) vacuum near-horizon geometry equation if a = 1,b = %

The Lie-derivative of g along X is also a generalization of Einstein manifolds
[10]. Note that, if X = grady, where ¢ € C*° (M), the generalized Ricci soliton

equation is given by
(2.13) Hessp = —ady © dip + bS + Ag.

REMARK 2.1. From (2.3), we have the following Remarks:

(1) e = 4, (e, d)-trans-Sasakian manifold of type (a, 3) reduces to (¢)- trans-
Sasakian manifold of type («, ).

(2) e = § =1, (e, d)-trans-Sasakian manifold of type («, ) reduces to trans-
Sasakian manifold of type (o, ).

(3) a#0,8#0,and e = —1,§ = —1, (e,d)-trans-Sasakian manifold of type
(c, B) reduces to the form Lorentzian trans-Sasakian manifold of type (o, 3).

(4) a # 0,8 # 0, and e = 1,5 = —1, (e, d)-trans-Sasakian manifold of type
(ar, B) reduces in the form a-Sasakian Lorentzian (- Kenmostu manifold of type
(a, ).

(5) a # 0,8 # 0, and e = —1,§ = 1, (e, )-trans-Sasakian manifold of type
(a, B) reduces in the form Lorentzian a-Sasakian - Kenmostu manifold of type
(a, ).

(6) « #£ 0,8 =0, and e = 1, or ¢ = —1, the (e, J)-trans-Sasakian manifold
reduces to a-Sasakian manifold or Lorentzian a-Sasakian manifold respectively.

(7) a=0,8+#0,and § = 1, or § = —1, the (g, J)-trans-Sasakian manifold
reduces to -Kenmotsu manifold or Lorentzian S-Kenmotsu manifold respectively.

(8) If a and B are scalars and @« = 1 and 8 = 0 or @« = 0 and 3 = 1 then
the (g,0)-trans-Sasakian manifold reduces to to (g)-Sasakian manifolds and (§)-
Kenmostu manifolds.

(a) Again, if in (g)-Sasakian manifolds € is 1 or -1 then the (¢)-Sasakian mani-
folds reduces to Sasakian manifolds or Lorentzian Sasakian manifolds.

(b) Further, if in (0)-Kenmostu manifolds § is 1 or -1 then the (§)-Kenmostu
manifolds reduces to Kenmotsu manifold or Lorentzian Kenmotsu manifold.
3. Main results

In an n-dimensional (g, §)- trans-Sasakian manifold M, we have the following
relations:

(3.1) R(X,Y)¢ =¢[(Ya)oX — (Xa)pY] +6[(YB)¢° X — (XB)¢°Y],
+2aB(6 — €)g(pX,Y)E + 2eaBd[n(Y)opX — n(X)oY]
+(a? = B2 (V)X —n(X)Y],
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(32)  S(X,&) = [(n—1)(ea® = 58%) = (£H)N(X) — e((#X)a) — (n — 2)e(XB),
(3-3) Q¢ = [(n — 1)(ea” = 68%) — (§B)]¢ + e(grada) — 2ne(gradp),

where R is curvature tensor, while @ is the Ricci operator given by S(X,Y) =

9(QX,Y).
Further, in 3-dimensional (g, §)-trans-Sasakian manifold, we have
(3.4) ¢(grada) = gradp,
and
(3.5) e(a) + 2eapd = 0.
Using (3.4) and (3.5), for constants « and S, we have
(3.6)

R(§,Y)X = e[(grada)g(¢X,Y) + (Xa)oY] + 6[(gradB)g(¢*X,Y) — (X 8)¢*Y]
+208e(0 — e)n(YV)9X + 2eaBdleg(¢X, V) + n(X)oY]
+(o? = 5)[eg(X,Y)E — n(X)Y],

(3.7) RX,Y)E = (o — B)[n(Y)X — n(X)Y].

An important consequence of (2.4) is that ¢ is a geodesic vector field; that is,
(3.8) Ve =0.

For an arbitrary vector field X, we have that

(3.9) dn(¢,X) =0.

The & -sectional curvature K¢ of M is the sectional curvature of the plane spanned
by £ and a unit vector field X. From (3.7), we have

(3.10) K¢ =g(R(€ X), & X) = (o - 7).
It follows from (3.10) that the {-sectional curvature does not depend on X.

THEOREM 3.1. If M is a (g,0)-trans-Sasakian manifold of dimension n and it
satisfy the generalized Ricci soliton (2.13) with a[lA+ (n+1)b(8% —a?)] # —1, then
1 is a constant function. In such case, if b # 0 , then M is an Einstein manifold.

Next we state following remarks.

REMARK 3.1. If M is a (g,0)- trans-Sasakian manifold which satisfies the gra-
dient Ricci soliton equation Hessy = S + Ag ; then 9 is a constant function and
M is an Einstein manifold.

REMARK 3.2. In a (g, d)-trans-Sasakian manifold M, there is no nonconstant
smooth function ¥ such that Hessy = Ag for some constant A .

For the proof of Theorem 3.1, first we need to prove the following lemmas.
LEMMA 3.1. If M s a (g,0)- trans-Sasakian manifold, then
(3.11) (Le(Lx))g(Y,€) = —2{e*B(€ — @) + 2caBd}g(X, ¢Y)
+(o? = §2 = e0B(€ — B))g(X.Y) + g(VeVe X, Y) + YVg(Ve X, 6).
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PRrROOF. Using the property of Lie-derivative, we infer
(3.12) (Le(Lxg))(Y,€) = E((Lxg)(Y,€)) — (Lxg)(LeY,€)
—(Lxg)(Y, Leg),
since (LY = [€,Y], (L€ = [€, €] by using (2.12) and (3.12), we have
(3.13) (Le(Lxg))(Y,6) = Eg(Vy X, 6) +E9(Ve X, Y) — g(Vie v X, §)
—9(VeX, [€,Y])
=g(VeVy X, 8) + 9(Vy X, V) + g(VeVeX, Y ) + g(Ve X, VY
—9(VeX,VeY) = g(Vie v X, 6) + 9(Ve X, Vy&).
From (2.4), we get V¢& = ¢€ = 0 ; so that we deduce
(3.14) (Le(Lxg))(Y,6) = g(VeVy X, §) + 9(VeVeX,Y) = g(Vie v X, €)
+Yg(VeX,€) — g(VyVeX, §),
using (3.6) and (3.14), we infer
(3.15) (Le(Lxg)(Y,8) = g(R(E,Y)X,€) + 9(VeVe X, Y) + Yg(Ve X, §).
Now from (3.6), with g(Y,&) = 0, we infer
(3.16)  g(R(£,Y)X,€) = g(R(Y,€)¢, X) = —2{e?B(¢ — a) + 2cafd}g(X, oY)
+(a® = % = edB(€ - B))g(X,Y),
the lemma follows from (3.14) and (3.15). O
Now, we have another useful lemma.
LEMMA 3.2. If M is a Riemannian manifold with ¢ € C*°(M), then
(3.17) (Le(dp © dp))(Y,€) =Y (E())E() + Y (¥)E(E(¢)),
for &Y e T(TM).
PROOF. It is easy to see that
(Le(dip © dip))(Y,€) = E(Y (4))§(¥) — [€, Y](¥)E(¥) — Y (¥)[8, €](¥)
= §(Y ()§(¥) + Y ()E(E(¥)) — € Y]()E(),
since (€, Y](¥) = £(Y () = Y(£(¥)), we get
(Le(dp © dy))(Y,€) = [§, Y](¥)E(¢) + Y ((1))E(¥)
Y (W)EEW)) — 16 Y]()E(¥)
()

1
= Y(E@))E(W) + Y (¥)E(E())-
O

LEMMA 3.3. If M is a (g, 0)-trans-Sasakian manifold of dimension n, which
satisfies the generalized Ricci soliton equation (2.13), then

(3.18) Vegrady = [+ b(n +1)(82 — a?)|¢ — at(¢)grady.
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PROOF. Because Y € T'(T'M), using the definition of Ricci curvature S (2.7)
and the curvature condition (3.7), we infer

SEY) =g(R(& ei)e,Y) = g(R(e;, Y)E, es)
= (8% —a?)(9(Y,e:) + n(Y)g(ei, e;)
= (82— a®)((Y) +nn(Y)) = (87 — a®)(n+ 1)n(Y)

= (82 = a®)(n+1)g(&,Y),
where {e1, ez, ...,e;}, and 1 < ¢ < n is an orthonormal frame on M implies that

(3.19) Ag(E,Y) +DS(E,Y) = Ag(£,Y) +b(8° — a®)(n + 1)g(&,Y)
= +bn+1)(8 —a®)g(&Y).
From (2.13) and (3.19), we obtain
(3.20) (Hessy)(€,Y) = —a€(¥)(Y)(¢) + A +b(n +1)(8% — a?)g(€, Y)

= —af()g(grady,Y) + [A +b(n + 1)(5” — ?)]g(&,Y),
the lemma follows from equation (3.20) and the definition of Hessian (2.7). O

Now, with help of Lemmas 3.1, 3.2, and 3.3, we can prove Theorem 3.1.

PrOOF. (Proof of Theorem 3.1.) If Y € I'(T'M) is such that g(£,Y) =0,
then from Lemma 3.1, with X = grady, we infer

(3:21)  2(Le(Hessy))(Y,€) =Y () + g(VeVegrady,Y) +Yg(Vegradi, £),
from Lemma 3.3 and equation (3.21), we deduce
(3.22) 2(Le(Hessy))(Y,€) =Y () + [N +b(n +1)(8% — a®)]g(VeE, V)

—ag(Ve(€()grady),Y) — aY (£(¥?)) + [ +b(n +1)(5* — a*)Yg(&, €).
Since V¢€ =0 and ¢(€, ) = 1, from equation (3.22), we deduce

(3.23)  2(Le(Hessy))(Y,€) =Y (¢) — al(§())Y () — al(¥)g(Vegrady,Y')

—2aE(W)Y (€(1)).

From Lemma 3.3 and equation (3.23) and since ¢g(§,Y) = 0, we deduce

(3.24) 2(Le(Hessy))(Y,€) =Y () — af(€(¥)Y (¥) + a*€(4)*Y (¢)
—2a§()Y (E(¥)).-

Note that, from (2.11) and (2.12), we have L¢g = 0, which is a Killing vector field;
it implies that £¢S = 0; taking the Lie derivative of the generalized Ricci soliton
equation (2.13) yields

(3.25) (0 = B2)Y (v) — a€(§(W)Y (¥) + a’€(1)?Y (v) — 2a€(¥)Y (€())
= —2aY (£(¥)E() — 2aY (¥)E(E(¥)),

which is equivalent to

(3.26) Y (¥)l(a® = 5%) + a&(£(v)) + a€(¥)*] = 0,

according to Lemma 3.3, we infer

(3.27) a&(§(v)) = agg(§, grady) = ag(§, Vegrady)
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= alA +b(n +1)(5” - a®)] = a®¢()%,
by equations (3.26) and (3.27), we deduce
Y(@)[1+a(A +b(n+1)(5* = a?))] =0,

since a[A + b(n + 1)(8% — a?)] # —1 , we find that Y (¢)) = 0 ; that is, grady is
parallel to & . Hence grady = 0 as D = kern is not integrable any where, which
means ) is a constant function. U

For particular values of o and 3, there arise possible cases:
Case (i) Fora=0or (8=1) , we infer

COROLLARY 3.1. If M is a 0 -Kenmotsu (or Kenmotsu) manifold of dimension
n, and it satisfies the generalized Ricci soliton (2.13) with condition a(A+b(n+1)) #
—1, then ¥ is a constant function. In such case, if b # 0 , then M is an Einstein
manifold.

Case (ii) For 6 =0, or (a = 1), we infer

COROLLARY 3.2. If M is a e -Sasakian (or Sasakian) manifold of dimension n,
and it satisfies the generalized Ricci soliton (2.13) with a(A—b(n+ 1)) # —1, then
1 1s a constant function. In such case, if b # 0 , then M is an Finstein manifold.

COROLLARY 3.3. There exist no steady Ricci soliton (g,&, \) indefinite (g,0)
-trans-Sasakian manifold.

PROOF. From Linear Algebra either the vector field VeSpan& or V' L &. How-
ever the second case seems to be complex to analyse in practice. For this reason
we investigate for the case V' = &. A simple computation of L¢g + 25 gives

(3.28) (Leg)(X,Y) =280[g(X,Y) —en(X)n(Y)].

From equation (1.1), we have h(X,Y) = —2Ag(X,Y) and then putting X =Y =¢,
we infer

(3.29) h(£,€) = —2)e,

where h(X,Y) = (L¢g)(X,Y)+25(X,Y) and then if we put X =Y = £ and again
by using (3.31) and (3.2), we deduce

h(€,€) = 285[g(¢,€) — en(©)n(&)] + 2{el(n — 1)(ea® — 85%) — (£)In(€)

—&((¢)a) — (n —2)e(EB)
By using (2.1), (2.2) and (3.4) in the above equation, we infer

(3.30) h(€,€) = 2(n — 1)e(ea® — 652).
Equating (3.29) and (3.30), we deduce
(3.31) A= —(n—1)(ea® — 63%).

Since from (3.31), we have A # 0. The proof is complete. O
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4. Ricci solitons in 3-dimensional (g, §)-trans-Sasakian manifold

COROLLARY 4.1. There exist no steady Ricci soliton (g, &, \) indefinite 3-dimen-

sional (e, §)-trans-Sasakian manifold with varying scalar curvature where
A= —2(ca? - 653?).

ProOOF. The Riemannian curvature tensor R of M with respect to the 3-
dimensional (e, §)-trans-Sasakian manifold is defined by
(4.1) RX,Y)Z =9(Y,2)QX —g(X,2)QY + S(Y,Z)X — S(X,2)Y

—%[Q(Y, Z)X —g(X, 2)Y].
Putting Z = £ in (4.1) and by using (2.12) and (2.15) for 3-dimensional (e, §)-trans-
Sasakian manifold, we infer
(4.2) £[(Ya)sX — (Xa)o¥] +O[(Y )62 X — (XB)62Y]
+2a5(0 — €)g(¢ X, Y)E + 2eaBé[n(Y)pX — n(X)oY]
+a? = B (Y)X —n(X)Y] = en(Y)QX — en(X)QY
+el(ea® = 05%) — (€8)](n(Y)X — n(X)Y)
—e[((9Y)a) X + (Y B)X] + e[((¢X)a)Y + (X B)Y].

Again, putting Y = £ in the above equation and by using (2.1) and (2.17), we
deduce

(4.3) QX =[5 —2(ea? = 68%) +e(a® — )X

+A(ea® = 05%) — 5 — e(a® = B)In(X)¢.
From (4.3), we deduce
(4.4) S(XY) = [5 = 2(ca? = 36 +e(a? = B)]g(X,Y)

+a(ea? = 38%) = 5 = =(a® = B))en(X)n(Y).

Equation (4.4) shows that a 3-dimensional (g, §)-trans-Sasakian manifold is 7
-Einstein. Now we show that the scalar curvature r is not a constant that is r is
varying. Now

(4.5) MX,Y) = (Leg)(X,Y)+25(X,Y).
By using (3.13) and (4.4) in (4.5), we deduce
(4.6) hMX,Y) = [r—4(ea® = 68%) 4 2¢(a® — 57) 4 286]g(X,Y)

+[8(ea® — 68%) — 286 — 2e(a® — %) — rlen(X)n(Y).
Differentiating (4.6) covariantly with respect to Z, we infer
(4.7)  (Vzh)(X,Y) = [Vzr — 4(2ea(Za) — 268(ZB)) + 2e(2a(Za) — 2B(ZB))
+20(ZB))g(X,Y) + [8(2ea(Za) — 268(ZB)) — 20(ZB) — 2e(2a(Zx)
—2B(ZB) =V zrlen(X)n(Y) + [8(ea® — 65%) — 280
—2e(a® = §%) = r][g(X, V2E)n(Y) + (Y, VzE)n(X)].
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Substituting Z = ¢, X =Y € (Spané)* in (4.7) and by virtue of Vh = 0 and
(2.17), we infer
Ver —4dea(éa) = 0.
By using (2.16) in the above equation, we deduce
(4.8) Ver = —8ea? 4.

Thus, r is not a constant. Now we have to check the nature of the soliton
that is Ricci soliton (g,&, ) where A = —2(ea? — §3?) in 3-dimensional (&, §)-trans-
Sasakian manifold:

From (1.1), we have h(X,Y) = —2M\g(X,Y) and then putting X =Y = ¢, we
infer

(4.9) h(&, &) = —2)e.
IfX =Y =¢, in (4.6), we deduce

(4.10) h(€,€) = de(sa® — 5B%).

Equating (4.9) and (4.10), we deduce

(4.11) A= —2(ca® —643%).

Since from (4.11), we have A\ # 0 . There exist no steady Ricci soliton (g, &, A) of
3-dimensional (e, §)-trans-Sasakian manifold. O

EXAMPLE 4.1. ([2]) We consider the 3-dimensional manifold M = {(z,y, 2) :
(r,y,2) € R% 2 # 0}. Let {Ey, Ea, E3} be linearly independent global frame field
on M given by

0 0 0

0
(4'12) E, = Z(@ + 5y£),E2 = 528—y Erh

Let g be the Riemannian metric defined by
9(En, E») = g(E2, E3) = g(En, E3) =0, g(E1, E1) = g(E2, E») = g(E3, E3) = ¢,
where g is given by

3

g=—[(1—y*2)dr @ dr + dy ® dy + 2*dz ® dz].

22
The (¢,&,n) is given by

n=dz—6bydx, { = By = 2, ¢E| = By, 9By = —E1, ¢E3 = 0.
Clearly (¢,&,n, g) structure is an indefinite (g, §)-trans-Sasakian structure and sat-
isfy,
(4.13) (Vx@)Y = o{g(X, V)€ —en(Y)X} + B{g(¢X,Y)E — on(Y)p X},
(4.14) Vxé=—capX — f6¢p° X,

where o = f% # 0 and 8 = ,ZL(S # 0 . Hence (4,&,7,g) structure defines
indefinite (g, d)-trans-Sasakian structure. Thus M equipped with indefinite (&, §)-
trans-Sasakian structure is a (g, §)-trans- Sasakian manifold.
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Using the above a and S in (4.8), we infer

(4.14) Ver = —8ea2B6 = —Saé(ﬁ)(i) — 223
' & N 4e2 28
zte
4.1 = —.
(415) r=2
Using the above o and /8 in (4.11), we infer

45 — 28
222
Hence Ricci soliton (g,&, A) is given by (4.16) with varying scalar curvature (4.15).
. 4—75 2-7%)(2+23

(1) fe=06=1,in (4.16), then \ = 2% = E=ZJ2HZ)

(a) A>0in {Z:—2% < Z <25}
Hence by Remark (2.1), Ricci soliton of the given 3-dimensional trans-Sasakian
manifold is expanding in the region

(4.17) {(z,y,2) € R®: =25 < Z < 25}
(b) Also A < 0in {Z: —23 > Z > 23 }:

Hence by Remark (2.1), Ricci soliton of the given 3-dimensional trans-Sasakian
manifold is shrinking in the region

(4.16) A=

(4.18) {(z,y,2) € R®: =25 > Z > 25}
Hence the regions (4.17) and (4.18) are complementary to one another that is
(4.19) M ={(z,y,2) ER®: 25 < Z <25} F{-25 > Z > 25}.

(2) Ife =30 =—1,in (4.16), then A = £t = (Z2=2(2+27)

(a) A>0in {Z:—2% >Z>23}:
Hence by Remark (2.1), Ricci soliton in Lorentzian trans-Sasakian manifold is ex-
panding in the region

(4.20) {(z,y,2) € R®: —25 > Z > 25}
(b) Also A < 0in {Z: —23 < Z < 23 }:

Hence by Remark (2.1), Ricci soliton in Lorentzian trans-Sasakian manifold is
shrinking in the region

(4.18) {(z,y,2) € R®: =25 < Z < 25}
Hence the regions (4.17) and (4.18) are complementary to one another that is
(4.19) M ={(z,y,2) ER®: —25 > Z >25} F{-25 < Z < 25}

Thus from cases (1) and (2) one can conclude that in a region where the trans-
Sasakian manifold is shrinking the Lorentzian trans-Sasakian manifold is expanding
and in a region where the trans-Sasakian manifold is expanding the Lorentzian
trans-Sasakian manifold is shrinking. Hence in given example trans-Sasakian and
Lorentzian trans-Sasakian manifolds are complementary to each other.
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(3) If e = —1,6 = 1, in (4.16), then A = Z4% > 0. By Remark (2.1), Ricci

soliton in Lorentzian a-Sasakian  -Kenmotsu manifold is expanding.
(4) Ife = 1,6 = —1, in (4.16), then A = —Z % < 0. By Remark (2.1), Ricci
soliton in a-Sasakian Lorentzian § -Kenmotsu manifold is shrinking.
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