GENERALIZED RICCI SOLITONS ON (ε, δ)-TRANS SASAKIAN MANIFOLD

Shamsur Rahman and Amit Kumar Rai

Abstract

The purpose of the present research is to shows that a (ε, δ) transSasakian manifold, which also satisfies the Ricci soliton and generalized Ricci soliton equation, satisfying some conditions, is necessarily the Einstein manifold. Generalized Ricci solitons for 3-dimensional (ε, δ)-trans-Sasakian manifolds are worked out. Also an example of Ricci solitons in 3-dimensional (ε, δ)-trans-Sasakian manifold is provided in the region where trans-Sasakian manifold is expanding (shrinking) the Lorentzian trans-Sasakian manifold is shrinking (expanding).

1. Introduction

In [3], Bejancu-Duggal introduced (ε)-Sasakian manifolds. Later, these manifolds were studied by Xufeng and Xiaoli [21] from real hypersurfaces of indefinite Kahlerian manifolds. Kumar et al. [9] studied the curvature conditions of these manifolds. De and Sarkar [7] also introduced (ε) - Kenmotsu manifolds with indefinite metric. The notion of (ε) - trans-Sasakian manifolds with indefinite metric, which are natural generalization of both (ε)-Sasakian and (ε)-Kenmotsu manifolds was introduced by Shukla and Sing [16]. Nagaraja et. al. [12] and authors Rahman et. al. $[\mathbf{1 4}]$ studied (ε, δ)-trans-Sasakian manifolds and CR submanifolds of nearly (ε, δ)-trans-Sasakian manifolds, which are extensions of (ε)-trans-Sasakian manifolds.

There are stationary points of the Ricci flow given by

$$
\begin{equation*}
\frac{\partial g}{\partial t}=-2 \operatorname{Ric}(g), \quad \text { for } g(0)=g_{0} \tag{1.1}
\end{equation*}
$$

[^0]Ricci solitons move under the Ricci flow initiated by Hamilton [8] simply by diffeomorphisms of the initial metric. A Ricci soliton (g, V, λ) on a Riemannian manifold is defined by

$$
\begin{equation*}
\mathcal{L}_{V} g+2 S+2 \lambda g=0 \tag{1.2}
\end{equation*}
$$

where S is the Ricci tensor, \mathcal{L}_{V} is the Lie derivative along the vector field V on M and λ is a real scalar. Ricci soliton is said to be shrinking, steady or expanding according as $\lambda<0, \lambda=0$ and $\lambda>0$. If the vector field V is the gradient of a potential function $-\psi$, then g is called a gradient Ricci soliton and equation (1.2) assumes the form Hess $\psi=S+\lambda g$.

A metric g_{0} on a smooth manifold M is a Ricci soliton if there exist a function $\sigma(t)$ and a family of diffeomorphisms $\{\eta(t)\} \subset \operatorname{Diff}(M)$ such that

$$
g(t)=\sigma(t) \eta(t)^{*} g_{0}
$$

is a solution of the Ricci flow. In this expression, $\eta(t)^{*} g_{0}$ indicates to pullback of the metric g_{0} by the diffeomorphism $\eta(t)$. Equivalently, a metric g_{0} is a Ricci soliton if and only if it satisfies equation (1.2), which is a generalization of the Einstein condition for the metrics

$$
\operatorname{Ric}\left(g_{0}\right)=\lambda g_{0}
$$

Some generalizations, like, gradient Ricci solitons [4], quasi Einstein manifolds [5], and generalized quasi Einstein manifolds [6], play an important role in solutions of geometric flows and describe the local structure of certain manifolds. Nurowski and Randall [13] introduced the concept of generalized Ricci soliton as a class of over determined system of equations

$$
\begin{equation*}
\mathcal{L}_{X} g=-2 a X^{\#} \odot X^{\#}+2 b S+2 \lambda g, \tag{1.3}
\end{equation*}
$$

where $\mathcal{L}_{X} g$ and $X^{\#}$ denote, respectively, the Lie derivative of the metric g in the directions of vector field X and the canonical one-form associated to X, and some real constants a, b, and λ. Levy $[\mathbf{1 0}]$ acquired the necessary and sufficient conditions for the existence of such tensors. Sharma [15] initiated the study of Ricci solitons in almost contact Riemannian geometry. Followed by Tripathi [19], Nagaraja et al. [12], Turan [20], and others extensively studied Ricci solitons in almost contact metric manifold. Recently $[\mathbf{2}, \mathbf{1}, \mathbf{1 7}, \mathbf{1 8}]$, the authors extensively studied Ricci solitons in almost (ε)-contact metric manifolds.

2. Preliminaries

If \bar{M} is an almost contact metric manifold of dimension n equipped with an almost contact metric structure (ϕ, ξ, η, g) consisting of a $(1,1)$-tensor field ϕ, a vector field ξ, a 1-form η and a Riemannian metric g satisfying

$$
\begin{equation*}
\phi^{2} X=-X+\eta(X) \xi, \quad \eta(\xi)=1, \quad \phi \xi=0, \quad \eta \circ \phi=0 \tag{2.1}
\end{equation*}
$$

An almost contact metric manifold \bar{M} is called an (ε)-almost contact metric manifold if there exists a semi Riemannian metric g such that

$$
\eta(X)=\varepsilon g(X, \xi), \quad g(\xi, \xi)=\varepsilon
$$

$$
\begin{equation*}
g(\phi X, \phi Y)=g(X, Y)-\varepsilon \eta(X) \eta(Y), \quad \forall X, Y \in T M \tag{2.2}
\end{equation*}
$$

where $\varepsilon=g(\xi, \xi)= \pm 1$.
An (ε)-almost contact metric manifold is called an (ε, δ)-trans-Sasakian manifold if it follows,

$$
\begin{gather*}
\left(\bar{\nabla}_{X} \phi\right) Y=\alpha\{g(X, Y) \xi-\varepsilon \eta(Y) X\}+\beta\{g(\phi X, Y) \xi-\delta \eta(Y) \phi X\} \tag{2.3}\\
\bar{\nabla}_{X} \xi=-\varepsilon \alpha \phi X-\beta \delta \phi^{2} X \tag{2.4}
\end{gather*}
$$

and

$$
\begin{equation*}
\left(\nabla_{X} \eta\right) Y=\beta \delta[\varepsilon g(X, Y)-\eta(X) \eta(Y)]-\alpha g(\phi X, Y) \tag{2.5}
\end{equation*}
$$

holds for some smooth functions α and β on \bar{M} and $\varepsilon= \pm 1, \delta= \pm 1$. For $\beta=0$, $\alpha=1$, an (ε, δ)-trans-Sasakian manifold reduces to an (ε)-Sasakian and for $\alpha=0$, $\beta=1$, it reduces to a (δ)-Kenmotsu manifold.

The Riemannian curvature tensor R with respect to LeviCivita connections ∇ and the Ricci tensor S of a Riemannian manifold M are defined by

$$
\begin{gather*}
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z \tag{2.6}\\
S(X, Y)=\sum_{i=1}^{n} g\left(R\left(X, e_{i}\right) e_{i}, Y\right) \tag{2.7}
\end{gather*}
$$

for $X, Y, Z \Gamma(T M)$, where ∇ is with respect to the Riemannian metric g and, $\left\{e_{1}, e_{2}, \ldots, e_{i}\right\}$ where $1 \leqslant i \leqslant n$ is the orthonormal frame.

Given a smooth function ψ on M, the gradient of ψ is defined by

$$
\begin{equation*}
g(\operatorname{grad} \psi, X)=X(\psi) \tag{2.8}
\end{equation*}
$$

and the Hessian of ψ is defined by

$$
\begin{equation*}
(H e s s \psi)(X, Y)=g\left(\nabla_{X} \operatorname{grad} \psi, Y\right) \tag{2.9}
\end{equation*}
$$

where $X, Y \in \Gamma(T M)$. For $X \in \Gamma(T M)$, we define $X^{\#} \in \Gamma(T M)$ by

$$
\begin{equation*}
X^{\#}(Y)=g(X, Y) \tag{2.10}
\end{equation*}
$$

The generalized Ricci soliton equation in Riemannian manifold M is defined in [15] by

$$
\begin{equation*}
\mathcal{L}_{X} g=-2 a X^{\#} \odot X^{\#}+2 b S+2 \lambda g \tag{2.11}
\end{equation*}
$$

where $X \in \Gamma(T M)$ and $\mathcal{L}_{X} g$ is the Lie-derivative of g along X given by

$$
\begin{equation*}
\mathcal{L}_{X} g(Y, Z)=g\left(\nabla_{Y} X, Z\right)+g\left(\nabla_{Z} X, Y\right) \tag{2.12}
\end{equation*}
$$

for all $Y, Z \in \Gamma(T M)$, and $a, b, \lambda, \in R$.
The Lie-derivative of g along X is said to be (see $[\mathbf{4}, \mathbf{1 3}, \mathbf{1 5}]$)
(1) Killings equation if $a=b=\lambda=0$,
(2) equation for homotheties if $a=b=0$,
(3) Ricci soliton if $a=0, b=-1$,
(4) case of EinsteinWeyl if $a=1, b=\frac{-1}{n-2}$,
(5) metric projective structures with skew-symmetric Ricci tensor in projective class if $a=1, b=\frac{-1}{n-2}, \lambda=0$, and
(6) vacuum near-horizon geometry equation if $a=1, b=\frac{1}{2}$.

The Lie-derivative of g along X is also a generalization of Einstein manifolds [10]. Note that, if $X=\operatorname{grad} \psi$, where $\psi \in C^{\infty}(M)$, the generalized Ricci soliton equation is given by

$$
\begin{equation*}
H e s s \psi=-a d \psi \odot d \psi+b S+\lambda g . \tag{2.13}
\end{equation*}
$$

Remark 2.1. From (2.3), we have the following Remarks:
(1) $\varepsilon=\delta,(\varepsilon, \delta)$-trans-Sasakian manifold of type (α, β) reduces to ((ε) - transSasakian manifold of type (α, β).
(2) $\varepsilon=\delta=1,(\varepsilon, \delta)$-trans-Sasakian manifold of type (α, β) reduces to transSasakian manifold of type (α, β).
(3) $\alpha \neq 0, \beta \neq 0$, and $\varepsilon=-1, \delta=-1,(\varepsilon, \delta)$-trans-Sasakian manifold of type (α, β) reduces to the form Lorentzian trans-Sasakian manifold of type (α, β).
(4) $\alpha \neq 0, \beta \neq 0$, and $\varepsilon=1, \delta=-1,(\varepsilon, \delta)$-trans-Sasakian manifold of type (α, β) reduces in the form α-Sasakian Lorentzian β - Kenmostu manifold of type (α, β).
(5) $\alpha \neq 0, \beta \neq 0$, and $\varepsilon=-1, \delta=1,(\varepsilon, \delta)$-trans-Sasakian manifold of type (α, β) reduces in the form Lorentzian α-Sasakian β - Kenmostu manifold of type (α, β).
(6) $\alpha \neq 0, \beta=0$, and $\varepsilon=1$, or $\varepsilon=-1$, the (ε, δ)-trans-Sasakian manifold reduces to α-Sasakian manifold or Lorentzian α-Sasakian manifold respectively.
(7) $\alpha=0, \beta \neq 0$, and $\delta=1$, or $\delta=-1$, the (ε, δ)-trans-Sasakian manifold reduces to β-Kenmotsu manifold or Lorentzian β-Kenmotsu manifold respectively.
(8) If α and β are scalars and $\alpha=1$ and $\beta=0$ or $\alpha=0$ and $\beta=1$ then the (ε, δ)-trans-Sasakian manifold reduces to to (ε)-Sasakian manifolds and (δ)Kenmostu manifolds.
(a) Again, if in (ε)-Sasakian manifolds ε is 1 or -1 then the (ε)-Sasakian manifolds reduces to Sasakian manifolds or Lorentzian Sasakian manifolds.
(b) Further, if in (δ)-Kenmostu manifolds δ is 1 or -1 then the (δ)-Kenmostu manifolds reduces to Kenmotsu manifold or Lorentzian Kenmotsu manifold.

3. Main results

In an n-dimensional (ε, δ) - trans-Sasakian manifold M, we have the following relations:

$$
\begin{gather*}
R(X, Y) \xi=\varepsilon[(Y \alpha) \phi X-(X \alpha) \phi Y]+\delta\left[(Y \beta) \phi^{2} X-(X \beta) \phi^{2} Y\right] \tag{3.1}\\
+2 \alpha \beta(\delta-\varepsilon) g(\phi X, Y) \xi+2 \varepsilon \alpha \beta \delta[\eta(Y) \phi X-\eta(X) \phi Y] \\
+\left(\alpha^{2}-\beta^{2}\right)[\eta(Y) X-\eta(X) Y],
\end{gather*}
$$

$$
\begin{gather*}
S(X, \xi)=\left[(n-1)\left(\varepsilon \alpha^{2}-\delta \beta^{2}\right)-(\xi \beta)\right] \eta(X)-\varepsilon((\phi X) \alpha)-(n-2) \varepsilon(X \beta), \tag{3.2}\\
Q \xi=\left[(n-1)\left(\varepsilon \alpha^{2}-\delta \beta^{2}\right)-(\xi \beta)\right] \xi+\varepsilon(\operatorname{grad} \alpha)-2 n \varepsilon(\operatorname{grad} \beta) \tag{3.3}
\end{gather*}
$$

where R is curvature tensor, while Q is the Ricci operator given by $S(X, Y)=$ $g(Q X, Y)$.

Further, in 3-dimensional (ε, δ)-trans-Sasakian manifold, we have

$$
\begin{equation*}
\phi(\operatorname{grad} \alpha)=\operatorname{grad} \beta, \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\varepsilon(\xi \alpha)+2 \varepsilon \alpha \beta \delta=0 \tag{3.5}
\end{equation*}
$$

Using (3.4) and (3.5), for constants α and β, we have

$$
\begin{align*}
& R(\xi, Y) X= \varepsilon[(\operatorname{grad} \alpha) g(\phi X, Y)+(X \alpha) \phi Y]+\delta\left[(\operatorname{grad} \beta) g\left(\phi^{2} X, Y\right)-(X \beta) \phi^{2} Y\right] \tag{3.6}\\
&+2 \alpha \beta \varepsilon(\delta-\varepsilon) \eta(Y) \phi X+2 \varepsilon \alpha \beta \delta[\varepsilon g(\phi X, Y) \xi+\eta(X) \phi Y] \\
&+\left(\alpha^{2}-\beta^{2}\right)[\varepsilon g(X, Y) \xi-\eta(X) Y] \\
&3.7) R(X, Y) \xi=\left(\alpha^{2}-\beta^{2}\right)[\eta(Y) X-\eta(X) Y] .
\end{align*}
$$

An important consequence of (2.4) is that ξ is a geodesic vector field; that is,

$$
\begin{equation*}
\nabla_{\xi} \xi=0 . \tag{3.8}
\end{equation*}
$$

For an arbitrary vector field X, we have that

$$
\begin{equation*}
d \eta(\xi, X)=0 \tag{3.9}
\end{equation*}
$$

The ξ-sectional curvature K_{ξ} of M is the sectional curvature of the plane spanned by ξ and a unit vector field X. From (3.7), we have

$$
\begin{equation*}
K_{\xi}=g(R(\xi, X), \xi, X)=\left(\alpha^{2}-\beta^{2}\right) \tag{3.10}
\end{equation*}
$$

It follows from (3.10) that the ξ-sectional curvature does not depend on X.
Theorem 3.1. If M is a (ε, δ)-trans-Sasakian manifold of dimension n and it satisfy the generalized Ricci soliton (2.13) with $a\left[\lambda+(n+1) b\left(\beta^{2}-\alpha^{2}\right)\right] \neq-1$, then ψ is a constant function. In such case, if $b \neq 0$, then M is an Einstein manifold.

Next we state following remarks.
Remark 3.1. If M is a (ε, δ) - trans-Sasakian manifold which satisfies the gradient Ricci soliton equation Hess $\psi=S+\lambda g$; then ψ is a constant function and M is an Einstein manifold.

Remark 3.2. In a (ε, δ)-trans-Sasakian manifold M, there is no nonconstant smooth function ψ such that Hess $\psi=\lambda g$ for some constant λ.

For the proof of Theorem 3.1, first we need to prove the following lemmas.
Lemma 3.1. If M is a (ε, δ) - trans-Sasakian manifold, then

$$
\begin{gather*}
\quad\left(\mathcal{L}_{\xi}\left(\mathcal{L}_{X}\right)\right) g(Y, \xi)=-2\left\{\varepsilon^{2} \beta(\xi-\alpha)+2 \varepsilon \alpha \beta \delta\right\} g(X, \phi Y) \tag{3.11}\\
+\left(\alpha^{2}-\beta^{2}-\varepsilon \delta \beta(\xi-\beta)\right) g(X, Y)+g\left(\nabla_{\xi} \nabla_{\xi} X, Y\right)+Y g\left(\nabla_{\xi} X, \xi\right) .
\end{gather*}
$$

Proof. Using the property of Lie-derivative, we infer

$$
\begin{align*}
\left(\mathcal{L}_{\xi}\left(\mathcal{L}_{X} g\right)\right)(Y, \xi) & =\xi\left(\left(\mathcal{L}_{X} g\right)(Y, \xi)\right)-\left(\mathcal{L}_{X} g\right)\left(\mathcal{L}_{\xi} Y, \xi\right) \tag{3.12}\\
& -\left(\mathcal{L}_{X} g\right)\left(Y, \mathcal{L}_{\xi} \xi\right)
\end{align*}
$$

since $\left(\mathcal{L}_{\xi} Y=[\xi, Y],\left(\mathcal{L}_{\xi} \xi=[\xi, \xi]\right.\right.$ by using (2.12) and (3.12), we have

$$
\begin{gather*}
\left(\mathcal{L}_{\xi}\left(\mathcal{L}_{X} g\right)\right)(Y, \xi)=\xi g\left(\nabla_{Y} X, \xi\right)+\xi g\left(\nabla_{\xi} X, Y\right)-g\left(\nabla_{[\xi, Y]} X, \xi\right) \tag{3.13}\\
-g\left(\nabla_{\xi} X,[\xi, Y]\right) \\
=g\left(\nabla_{\xi} \nabla_{Y} X, \xi\right)+g\left(\nabla_{Y} X, \nabla_{\xi} \xi\right)+g\left(\nabla_{\xi} \nabla_{\xi} X, Y\right)+g\left(\nabla_{\xi} X, \nabla_{\xi} Y\right. \\
-g\left(\nabla_{\xi} X, \nabla_{\xi} Y\right)-g\left(\nabla_{[\xi, Y]} X, \xi\right)+g\left(\nabla_{\xi} X, \nabla_{Y} \xi\right) .
\end{gather*}
$$

From (2.4), we get $\nabla_{\xi} \xi=\phi \xi=0$; so that we deduce

$$
\begin{align*}
& \left(\mathcal{L}_{\xi}\left(\mathcal{L}_{X} g\right)\right)(Y, \xi)=g\left(\nabla_{\xi} \nabla_{Y} X, \xi\right)+g\left(\nabla_{\xi} \nabla_{\xi} X, Y\right)-g\left(\nabla_{[\xi, Y]} X, \xi\right) \tag{3.14}\\
& +Y g\left(\nabla_{\xi} X, \xi\right)-g\left(\nabla_{Y} \nabla_{\xi} X, \xi\right)
\end{align*}
$$

using (3.6) and (3.14), we infer

$$
\begin{equation*}
\left(\mathcal{L}_{\xi}\left(\mathcal{L}_{X} g\right)\right)(Y, \xi)=g(R(\xi, Y) X, \xi)+g\left(\nabla_{\xi} \nabla_{\xi} X, Y\right)+Y g\left(\nabla_{\xi} X, \xi\right) . \tag{3.15}
\end{equation*}
$$

Now from (3.6), with $g(Y, \xi)=0$, we infer

$$
\begin{align*}
g(R(\xi, Y) X, \xi) & =g(R(Y, \xi) \xi, X)=-2\left\{\varepsilon^{2} \beta(\xi-\alpha)+2 \varepsilon \alpha \beta \delta\right\} g(X, \phi Y) \tag{3.16}\\
& +\left(\alpha^{2}-\beta^{2}-\varepsilon \delta \beta(\xi-\beta)\right) g(X, Y)
\end{align*}
$$

the lemma follows from (3.14) and (3.15).
Now, we have another useful lemma.
Lemma 3.2. If M is a Riemannian manifold with $\psi \in C^{\infty}(M)$, then

$$
\begin{equation*}
\left(\mathcal{L}_{\xi}(d \psi \odot d \psi)\right)(Y, \xi)=Y(\xi(\psi)) \xi(\psi)+Y(\psi) \xi(\xi(\psi)), \tag{3.17}
\end{equation*}
$$

for $\xi, Y \in \Gamma(T M)$.
Proof. It is easy to see that

$$
\begin{gathered}
\left(\mathcal{L}_{\xi}(d \psi \odot d \psi)\right)(Y, \xi)=\xi(Y(\psi)) \xi(\psi)-[\xi, Y](\psi) \xi(\psi)-Y(\psi)[\xi, \xi](\psi) \\
=\xi(Y(\psi)) \xi(\psi)+Y(\psi) \xi(\xi(\psi))-[\xi, Y](\psi) \xi(\psi)
\end{gathered}
$$

since $[\xi, Y](\psi)=\xi(Y(\psi))-Y(\xi(\psi))$, we get

$$
\begin{gathered}
\left(\mathcal{L}_{\xi}(d \psi \odot d \psi)\right)(Y, \xi)=[\xi, Y](\psi) \xi(\psi)+Y(\xi(\psi)) \xi(\psi) \\
+Y(\psi) \xi(\xi(\psi))-[\xi, Y](\psi) \xi(\psi) \\
=Y(\xi(\psi)) \xi(\psi)+Y(\psi) \xi(\xi(\psi)) .
\end{gathered}
$$

Lemma 3.3. If M is a (ε, δ)-trans-Sasakian manifold of dimension n, which satisfies the generalized Ricci soliton equation (2.13), then

$$
\begin{equation*}
\nabla_{\xi} \operatorname{grad} \psi=\left[\lambda+b(n+1)\left(\beta^{2}-\alpha^{2}\right)\right] \xi-a \xi(\psi) \operatorname{grad} \psi . \tag{3.18}
\end{equation*}
$$

Proof. Because $Y \in \Gamma(T M)$, using the definition of Ricci curvature S (2.7) and the curvature condition (3.7), we infer

$$
\begin{gathered}
\left.S(\xi, Y)=g\left(R\left(\xi, e_{i}\right) e_{i}, Y\right)=g\left(R\left(e_{i}, Y\right) \xi,\right) e_{i}\right) \\
=\left(\beta^{2}-\alpha^{2}\right)\left(g\left(Y, e_{i}\right)+\eta(Y) g\left(e_{i}, e_{i}\right)\right. \\
=\left(\beta^{2}-\alpha^{2}\right)(\eta(Y)+n \eta(Y))=\left(\beta^{2}-\alpha^{2}\right)(n+1) \eta(Y) \\
=\left(\beta^{2}-\alpha^{2}\right)(n+1) g(\xi, Y),
\end{gathered}
$$

where $\left\{e_{1}, e_{2}, \ldots, e_{i}\right\}$, and $1 \leqslant i \leqslant n$ is an orthonormal frame on M implies that

$$
\begin{gather*}
\lambda g(\xi, Y)+b S(\xi, Y)=\lambda g(\xi, Y)+b\left(\beta^{2}-\alpha^{2}\right)(n+1) g(\xi, Y) \tag{3.19}\\
=\left[\lambda+b(n+1)\left(\beta^{2}-\alpha^{2}\right)\right] g(\xi, Y)
\end{gather*}
$$

From (2.13) and (3.19), we obtain

$$
\begin{align*}
& (H e s s \psi)(\xi, Y)=-a \xi(\psi)(Y)(\psi)+\left[\lambda+b(n+1)\left(\beta^{2}-\alpha^{2}\right)\right] g(\xi, Y) \tag{3.20}\\
& \quad=-a \xi(\psi) g(\operatorname{grad} \psi, Y)+\left[\lambda+b(n+1)\left(\beta^{2}-\alpha^{2}\right)\right] g(\xi, Y)
\end{align*}
$$

the lemma follows from equation (3.20) and the definition of Hessian (2.7).
Now, with help of Lemmas 3.1, 3.2, and 3.3, we can prove Theorem 3.1.
Proof. (Proof of Theorem 3.1.) If $Y \in \Gamma(T M)$ is such that $g(\xi, Y)=0$, then from Lemma 3.1, with $X=\operatorname{grad} \psi$, we infer

$$
\begin{equation*}
2\left(\mathcal{L}_{\xi}(\operatorname{Hess} \psi)\right)(Y, \xi)=Y(\psi)+g\left(\nabla_{\xi} \nabla_{\xi} \operatorname{grad} \psi, Y\right)+Y g\left(\nabla_{\xi} \operatorname{grad} \psi, \xi\right), \tag{3.21}
\end{equation*}
$$

from Lemma 3.3 and equation (3.21), we deduce

$$
\begin{equation*}
2\left(\mathcal{L}_{\xi}(\text { Hess } \psi)\right)(Y, \xi)=Y(\psi)+\left[\lambda+b(n+1)\left(\beta^{2}-\alpha^{2}\right)\right] g\left(\nabla_{\xi} \xi, Y\right) \tag{3.22}
\end{equation*}
$$

$$
-a g\left(\nabla_{\xi}(\xi(\psi) \operatorname{grad} \psi), Y\right)-a Y\left(\xi\left(\psi^{2}\right)\right)+\left[\lambda+b(n+1)\left(\beta^{2}-\alpha^{2}\right) Y g(\xi, \xi) .\right.
$$

Since $\nabla_{\xi} \xi=0$ and $g(\xi, \xi)=1$, from equation (3.22), we deduce

$$
\begin{align*}
2\left(\mathcal{L}_{\xi}(\operatorname{Hess} \psi)\right)(Y, \xi)= & Y(\psi)-a \xi(\xi(\psi)) Y(\psi)-a \xi(\psi) g\left(\nabla_{\xi} g r a d \psi, Y\right) \tag{3.23}\\
& -2 a \xi(\psi) Y(\xi(\psi))
\end{align*}
$$

From Lemma 3.3 and equation (3.23) and since $g(\xi, Y)=0$, we deduce

$$
\begin{gather*}
2\left(\mathcal{L}_{\xi}(H e s s \psi)\right)(Y, \xi)=Y(\psi)-a \xi(\xi(\psi)) Y(\psi)+a^{2} \xi(\psi)^{2} Y(\psi) \tag{3.24}\\
-2 a \xi(\psi) Y(\xi(\psi))
\end{gather*}
$$

Note that, from (2.11) and (2.12), we have $\mathcal{L}_{\xi} g=0$, which is a Killing vector field; it implies that $\mathcal{L}_{\xi} S=0$; taking the Lie derivative of the generalized Ricci soliton equation (2.13) yields

$$
\begin{gather*}
\left(\alpha^{2}-\beta^{2}\right) Y(\psi)-a \xi(\xi(\psi)) Y(\psi)+a^{2} \xi(\psi)^{2} Y(\psi)-2 a \xi(\psi) Y(\xi(\psi)) \tag{3.25}\\
=-2 a Y(\xi(\psi)) \xi(\psi)-2 a Y(\psi) \xi(\xi(\psi))
\end{gather*}
$$

which is equivalent to

$$
\begin{equation*}
Y(\psi)\left[\left(\alpha^{2}-\beta^{2}\right)+a \xi(\xi(\psi))+a^{2} \xi(\psi)^{2}\right]=0 \tag{3.26}
\end{equation*}
$$

according to Lemma 3.3, we infer

$$
\begin{equation*}
a \xi(\xi(\psi))=a \xi g(\xi, \operatorname{grad} \psi)=a g\left(\xi, \nabla_{\xi} \operatorname{grad} \psi\right) \tag{3.27}
\end{equation*}
$$

$$
=a\left[\lambda+b(n+1)\left(\beta^{2}-\alpha^{2}\right)\right]-a^{2} \xi(\psi)^{2},
$$

by equations (3.26) and (3.27), we deduce

$$
Y(\psi)\left[1+a\left(\lambda+b(n+1)\left(\beta^{2}-\alpha^{2}\right)\right)\right]=0
$$

since $a\left[\lambda+b(n+1)\left(\beta^{2}-\alpha^{2}\right)\right] \neq-1$, we find that $Y(\psi)=0$; that is, $\operatorname{grad} \psi$ is parallel to ξ. Hence $\operatorname{grad} \psi=0$ as $D=k e r \eta$ is not integrable any where, which means ψ is a constant function.

For particular values of α and β, there arise possible cases:
Case (i) For $\alpha=0$ or $(\beta=1)$, we infer
Corollary 3.1. If M is a δ-Kenmotsu (or Kenmotsu) manifold of dimension n, and it satisfies the generalized Ricci soliton (2.13) with condition $a(\lambda+b(n+1)) \neq$ -1 , then ψ is a constant function. In such case, if $b \neq 0$, then M is an Einstein manifold.

Case (ii) For $\beta=0$, or $(\alpha=1)$, we infer
Corollary 3.2. If M is a ε-Sasakian (or Sasakian) manifold of dimension n, and it satisfies the generalized Ricci soliton (2.13) with $a(\lambda-b(n+1)) \neq-1$, then ψ is a constant function. In such case, if $b \neq 0$, then M is an Einstein manifold.

Corollary 3.3. There exist no steady Ricci soliton (g, ξ, λ) indefinite (ε, δ) -trans-Sasakian manifold.

Proof. From Linear Algebra either the vector field $V \epsilon \operatorname{Span} \xi$ or $V \perp \xi$. However the second case seems to be complex to analyse in practice. For this reason we investigate for the case $V=\xi$. A simple computation of $\mathcal{L}_{\xi} g+2 S$ gives

$$
\begin{equation*}
\left(\mathcal{L}_{\xi} g\right)(X, Y)=2 \beta \delta[g(X, Y)-\varepsilon \eta(X) \eta(Y)] . \tag{3.28}
\end{equation*}
$$

From equation (1.1), we have $h(X, Y)=-2 \lambda g(X, Y)$ and then putting $X=Y=\xi$, we infer

$$
\begin{equation*}
h(\xi, \xi)=-2 \lambda \varepsilon, \tag{3.29}
\end{equation*}
$$

where $h(X, Y)=\left(\mathcal{L}_{\xi} g\right)(X, Y)+2 S(X, Y)$ and then if we put $X=Y=\xi$ and again by using (3.31) and (3.2), we deduce

$$
\begin{gathered}
h(\xi, \xi)=2 \beta \delta[g(\xi, \xi)-\varepsilon \eta(\xi) \eta(\xi)]+2\left\{\varepsilon\left[(n-1)\left(\varepsilon \alpha^{2}-\delta \beta^{2}\right)-(\xi \beta)\right] \eta(\xi)\right. \\
-\varepsilon((\phi \xi) \alpha)-(n-2) \varepsilon(\xi \beta)\} .
\end{gathered}
$$

By using (2.1), (2.2) and (3.4) in the above equation, we infer

$$
\begin{equation*}
h(\xi, \xi)=2(n-1) \varepsilon\left(\varepsilon \alpha^{2}-\delta \beta^{2}\right) \tag{3.30}
\end{equation*}
$$

Equating (3.29) and (3.30), we deduce

$$
\begin{equation*}
\lambda=-(n-1)\left(\varepsilon \alpha^{2}-\delta \beta^{2}\right) \tag{3.31}
\end{equation*}
$$

Since from (3.31), we have $\lambda \neq 0$. The proof is complete.

4. Ricci solitons in 3-dimensional (ε, δ)-trans-Sasakian manifold

Corollary 4.1. There exist no steady Ricci soliton (g, ξ, λ) indefinite 3-dimensional (ε, δ)-trans-Sasakian manifold with varying scalar curvature where

$$
\lambda=-2\left(\varepsilon \alpha^{2}-\delta \beta^{2}\right)
$$

Proof. The Riemannian curvature tensor R of M with respect to the 3 dimensional (ε, δ)-trans-Sasakian manifold is defined by

$$
\begin{align*}
R(X, Y) Z=g(Y, Z) & Q X-g(X, Z) Q Y+S(Y, Z) X-S(X, Z) Y \tag{4.1}\\
& -\frac{r}{2}[g(Y, Z) X-g(X, Z) Y]
\end{align*}
$$

Putting $Z=\xi$ in (4.1) and by using (2.12) and (2.15) for 3-dimensional (ε, δ)-transSasakian manifold, we infer

$$
\begin{gather*}
\varepsilon[(Y \alpha) \phi X-(X \alpha) \phi Y]+\delta\left[(Y \beta) \phi^{2} X-(X \beta) \phi^{2} Y\right] \tag{4.2}\\
+2 \alpha \beta(\delta-\varepsilon) g(\phi X, Y) \xi+2 \varepsilon \alpha \beta \delta[\eta(Y) \phi X-\eta(X) \phi Y] \\
+\left(\alpha^{2}-\beta^{2}\right)[\eta(Y) X-\eta(X) Y]=\varepsilon \eta(Y) Q X-\varepsilon \eta(X) Q Y \\
+\varepsilon\left[\left(\varepsilon \alpha^{2}-\delta \beta^{2}\right)-(\xi \beta)\right](\eta(Y) X-\eta(X) Y) \\
-\varepsilon[((\phi Y) \alpha) X+(Y \beta) X]+\varepsilon[((\phi X) \alpha) Y+(X \beta) Y] .
\end{gather*}
$$

Again, putting $Y=\xi$ in the above equation and by using (2.1) and (2.17), we deduce

$$
\begin{align*}
& Q X=\left[\frac{r}{2}-2\left(\varepsilon \alpha^{2}-\delta \beta^{2}\right)+\varepsilon\left(\alpha^{2}-\beta^{2}\right)\right] X \tag{4.3}\\
& +\left[4\left(\varepsilon \alpha^{2}-\delta \beta^{2}\right)-\frac{r}{2}-\varepsilon\left(\alpha^{2}-\beta^{2}\right)\right] \eta(X) \xi
\end{align*}
$$

From (4.3), we deduce

$$
\begin{align*}
& S(X, Y)=\left[\frac{r}{2}-2\left(\varepsilon \alpha^{2}-\delta \beta^{2}\right)+\varepsilon\left(\alpha^{2}-\beta^{2}\right)\right] g(X, Y) \tag{4.4}\\
& \quad+\left[4\left(\varepsilon \alpha^{2}-\delta \beta^{2}\right)-\frac{r}{2}-\varepsilon\left(\alpha^{2}-\beta^{2}\right)\right] \varepsilon \eta(X) \eta(Y)
\end{align*}
$$

Equation (4.4) shows that a 3-dimensional (ε, δ)-trans-Sasakian manifold is η -Einstein. Now we show that the scalar curvature r is not a constant that is r is varying. Now

$$
\begin{equation*}
h(X, Y)=\left(\mathcal{L}_{\xi} g\right)(X, Y)+2 S(X, Y) \tag{4.5}
\end{equation*}
$$

By using (3.13) and (4.4) in (4.5), we deduce

$$
\begin{align*}
& h(X, Y)=\left[r-4\left(\varepsilon \alpha^{2}-\delta \beta^{2}\right)+2 \varepsilon\left(\alpha^{2}-\beta^{2}\right)+2 \beta \delta\right] g(X, Y) \tag{4.6}\\
& \quad+\left[8\left(\varepsilon \alpha^{2}-\delta \beta^{2}\right)-2 \beta \delta-2 \varepsilon\left(\alpha^{2}-\beta^{2}\right)-r\right] \varepsilon \eta(X) \eta(Y)
\end{align*}
$$

Differentiating (4.6) covariantly with respect to Z, we infer

$$
\begin{gather*}
\left(\nabla_{Z} h\right)(X, Y)=\left[\nabla_{Z} r-4(2 \varepsilon \alpha(Z \alpha)-2 \delta \beta(Z \beta))+2 \varepsilon(2 \alpha(Z \alpha)-2 \beta(Z \beta))\right. \tag{4.7}\\
+2 \delta(Z \beta)] g(X, Y)+[8(2 \varepsilon \alpha(Z \alpha)-2 \delta \beta(Z \beta))-2 \delta(Z \beta)-2 \varepsilon(2 \alpha(Z \alpha) \\
\left.-2 \beta(Z \beta)-\nabla_{Z} r\right] \varepsilon \eta(X) \eta(Y)+\left[8\left(\varepsilon \alpha^{2}-\delta \beta^{2}\right)-2 \beta \delta\right. \\
\left.-2 \varepsilon\left(\alpha^{2}-\beta^{2}\right)-r\right]\left[g\left(X, \nabla_{Z} \xi\right) \eta(Y)+g\left(Y, \nabla_{Z} \xi\right) \eta(X)\right]
\end{gather*}
$$

Substituting $Z=\xi, X=Y \in(\operatorname{Span} \xi)^{\perp}$ in (4.7) and by virtue of $\nabla h=0$ and (2.17), we infer

$$
\nabla_{\xi} r-4 \varepsilon \alpha(\xi \alpha)=0
$$

By using (2.16) in the above equation, we deduce

$$
\begin{equation*}
\nabla_{\xi} r=-8 \varepsilon \alpha^{2} \beta \delta \tag{4.8}
\end{equation*}
$$

Thus, r is not a constant. Now we have to check the nature of the soliton that is Ricci soliton (g, ξ, λ) where $\lambda=-2\left(\varepsilon \alpha^{2}-\delta \beta^{2}\right)$ in 3-dimensional (ε, δ)-transSasakian manifold:

From (1.1), we have $h(X, Y)=-2 \lambda g(X, Y)$ and then putting $X=Y=\xi$, we infer

$$
\begin{equation*}
h(\xi, \xi)=-2 \lambda \varepsilon . \tag{4.9}
\end{equation*}
$$

If $X=Y=\xi$, in (4.6), we deduce

$$
\begin{equation*}
h(\xi, \xi)=4 \varepsilon\left(\varepsilon \alpha^{2}-\delta \beta^{2}\right) . \tag{4.10}
\end{equation*}
$$

Equating (4.9) and (4.10), we deduce

$$
\begin{equation*}
\lambda=-2\left(\varepsilon \alpha^{2}-\delta \beta^{2}\right) \tag{4.11}
\end{equation*}
$$

Since from (4.11), we have $\lambda \neq 0$. There exist no steady Ricci soliton (g, ξ, λ) of 3 -dimensional (ε, δ)-trans-Sasakian manifold.

Example 4.1. ([2]) We consider the 3-dimensional manifold $M=\{(x, y, z)$: $\left.(x, y, z) \in R^{3}, z \neq 0\right\}$. Let $\left\{E_{1}, E_{2}, E_{3}\right\}$ be linearly independent global frame field on M given by

$$
\begin{equation*}
E_{1}=z\left(\frac{\partial}{\partial z}+\delta y \frac{\partial}{\partial z}\right), E_{2}=\delta z \frac{\partial}{\partial y}, E_{3}=\frac{\partial}{\partial z} \tag{4.12}
\end{equation*}
$$

Let g be the Riemannian metric defined by

$$
g\left(E_{1}, E_{2}\right)=g\left(E_{2}, E_{3}\right)=g\left(E_{1}, E_{3}\right)=0, g\left(E_{1}, E_{1}\right)=g\left(E_{2}, E_{2}\right)=g\left(E_{3}, E_{3}\right)=\varepsilon
$$

where g is given by

$$
g=\frac{\varepsilon}{z^{2}}\left[\left(1-y^{2} z^{2}\right) d x \otimes d x+d y \otimes d y+z^{2} d z \otimes d z\right] .
$$

The (ϕ, ξ, η) is given by

$$
\eta=d z-\delta y d x, \xi=E_{3}=\frac{\partial}{\partial z}, \phi E_{1}=E_{2}, \phi E_{2}=-E_{1}, \phi E_{3}=0
$$

Clearly (ϕ, ξ, η, g) structure is an indefinite (ε, δ)-trans-Sasakian structure and satisfy,

$$
\begin{gather*}
\left(\bar{\nabla}_{X} \phi\right) Y=\alpha\{g(X, Y) \xi-\varepsilon \eta(Y) X\}+\beta\{g(\phi X, Y) \xi-\delta \eta(Y) \phi X\} \tag{4.13}\\
\bar{\nabla}_{X} \xi=-\varepsilon \alpha \phi X-\beta \delta \phi^{2} X \tag{4.14}
\end{gather*}
$$

where $\alpha=-\frac{z^{2} \delta}{2 \varepsilon} \neq 0$ and $\beta=-\frac{1}{z \delta} \neq 0$. Hence (ϕ, ξ, η, g) structure defines indefinite (ε, δ)-trans-Sasakian structure. Thus M equipped with indefinite (ε, δ)-trans-Sasakian structure is a (ε, δ)-trans- Sasakian manifold.

Using the above α and β in (4.8), we infer

$$
\begin{gather*}
\nabla_{\xi} r=-8 \varepsilon \alpha^{2} \beta \delta=-8 \varepsilon \delta\left(\frac{z^{4} \delta^{2}}{4 \varepsilon^{2}}\right)\left(\frac{1}{z \delta}\right)=2 \varepsilon z^{3} \tag{4.14}\\
r=\frac{z^{4} \varepsilon}{2} \tag{4.15}
\end{gather*}
$$

Using the above α and β in (4.11), we infer

$$
\begin{equation*}
\lambda=\frac{4 \delta-\varepsilon z^{6}}{2 z^{2}} \tag{4.16}
\end{equation*}
$$

Hence Ricci soliton (g, ξ, λ) is given by (4.16) with varying scalar curvature (4.15).
(1) If $\varepsilon=\delta=1$, in (4.16), then $\lambda=\frac{4-Z^{6}}{2 Z^{2}}=\frac{\left(2-Z^{3}\right)\left(2+Z^{3}\right)}{2 Z^{2}}$.
(a) $\lambda>0$ in $\left\{Z:-2^{\frac{1}{3}}<Z<2^{\frac{1}{3}}\right\}$:

Hence by Remark (2.1), Ricci soliton of the given 3-dimensional trans-Sasakian manifold is expanding in the region

$$
\begin{equation*}
\left\{(x, y, z) \in R^{3}:-2^{\frac{1}{3}}<Z<2^{\frac{1}{3}}\right\} \tag{4.17}
\end{equation*}
$$

(b) Also $\lambda<0$ in $\left\{Z:-2^{\frac{1}{3}}>Z>2^{\frac{1}{3}}\right\}$:

Hence by Remark (2.1), Ricci soliton of the given 3-dimensional trans-Sasakian manifold is shrinking in the region

$$
\begin{equation*}
\left\{(x, y, z) \in R^{3}:-2^{\frac{1}{3}}>Z>2^{\frac{1}{3}}\right\} \tag{4.18}
\end{equation*}
$$

Hence the regions (4.17) and (4.18) are complementary to one another that is

$$
\begin{equation*}
M=\left\{(x, y, z) \in R^{3}:-2^{\frac{1}{3}}<Z<2^{\frac{1}{3}}\right\} \mp\left\{-2^{\frac{1}{3}}>Z>2^{\frac{1}{3}}\right\} \tag{4.19}
\end{equation*}
$$

(2) If $\varepsilon=\delta=-1$, in (4.16), then $\lambda=\frac{Z^{6}-4}{2 Z^{2}}=\frac{\left(Z^{3}-2\right)\left(2+Z^{3}\right)}{2 Z^{2}}$.
(a) $\lambda>0$ in $\left\{Z:-2^{\frac{1}{3}}>Z>2^{\frac{1}{3}}\right\}$:

Hence by Remark (2.1), Ricci soliton in Lorentzian trans-Sasakian manifold is expanding in the region

$$
\begin{equation*}
\left\{(x, y, z) \in R^{3}:-2^{\frac{1}{3}}>Z>2^{\frac{1}{3}}\right\} \tag{4.20}
\end{equation*}
$$

(b) Also $\lambda<0$ in $\left\{Z:-2^{\frac{1}{3}}<Z<2^{\frac{1}{3}}\right\}$:

Hence by Remark (2.1), Ricci soliton in Lorentzian trans-Sasakian manifold is shrinking in the region

$$
\begin{equation*}
\left\{(x, y, z) \in R^{3}:-2^{\frac{1}{3}}<Z<2^{\frac{1}{3}}\right\} . \tag{4.18}
\end{equation*}
$$

Hence the regions (4.17) and (4.18) are complementary to one another that is

$$
\begin{equation*}
M=\left\{(x, y, z) \in R^{3}:-2^{\frac{1}{3}}>Z>2^{\frac{1}{3}}\right\} \mp\left\{-2^{\frac{1}{3}}<Z<2^{\frac{1}{3}}\right\} \tag{4.19}
\end{equation*}
$$

Thus from cases (1) and (2) one can conclude that in a region where the transSasakian manifold is shrinking the Lorentzian trans-Sasakian manifold is expanding and in a region where the trans-Sasakian manifold is expanding the Lorentzian trans-Sasakian manifold is shrinking. Hence in given example trans-Sasakian and Lorentzian trans-Sasakian manifolds are complementary to each other.
(3) If $\varepsilon=-1, \delta=1$, in (4.16), then $\lambda=\frac{Z^{6}+4}{2 Z^{2}}>0$. By Remark (2.1), Ricci soliton in Lorentzian α-Sasakian β-Kenmotsu manifold is expanding.
(4) If $\varepsilon=1, \delta=-1$, in (4.16), then $\lambda=-\frac{Z^{6}+4}{2 Z^{2}}<0$. By Remark (2.1), Ricci soliton in α-Sasakian Lorentzian β-Kenmotsu manifold is shrinking.

Acknowledgement: The authors are thankful to the anonymous referees for their valuable comments and suggestions towards the improvement of the paper.

References

[1] M. E. Amine Mekki and A. M. Cherif. Generalised Ricci soliton on Sasakian manifolds. Kyunfpook Math. J., 57(4)(2017), 677-682.
[2] C. S. Bagewadi and G. Ingalahalli. Ricci solitons in (ε, δ)-trans-Sasakain manifolds. Int. J. Anal. Appl., 4(2)(2017), 209-217.
[3] A. Bejancu and K. L. Duggal. Real hypersurfaces of indefinite Kahler manifolds. Int. J. Math. Math. Sci., 16(3)(1993), 545-556.
[4] H. D. Cao. Recent progress on Ricci solitons. In: Y.-I. Lee, C.-S. Lin and M.-P. Tsui (Eds.). Recent Advances in Geometric Analysis, Vol. 11 (pp.1-30). Int. Press, Somerville, 2010.
[5] J. Case, Y.-J. Shu and G. Wei. Rigidity of quasi-Einstein metrics. Differential Geo. Appl., 29(1)(2011), 93-100.
[6] G. Catino. Generalized quasi-Einstein manifolds with harmonic Weyl tensor. Math. Z., 271(3-4)(2012), 751-756.
[7] U. C. De and A. Sarkar. On ε-Kenmotsu manifolds. Hadronic Journal, 32(2)(2009), 231-242.
[8] R. S. Hamilton. The Ricci flow on surfaces. In J. A. Isenberg (Ed.). Mathematics and general relativity. (pp 237-262.). Contemporary Mathematics, Vol. 71. American Mathematical Society, Providence, RI, 1988.
[9] R. Kumar, R. Rani and R. K. Nagaich. On sectional curvature of (ε)-Sasakian manifolds. Int. J. Math. Math. Sci., 2007 Article ID 93562
[10] H. Levy. Symmetric tensors of the second order whose covariant derivatives vanish. Ann. Math., 27(2)(1925), 91-98.
[11] H. G. Nagaraja, C. R. Premalatha and G. Somashekhara. On (ε, δ)-trans-Sasakian strucutre. Proc. Est. Acad. Sci. Ser. Math., 61(1)(2012), 20-28.
[12] H. G. Nagaraja and C. R. Premalatha. Ricci solitons in Kenmotsu manifolds. J. Math. Anal., 3(2)(2012), 18-24.
[13] P. Nurowski and M. Randall. Generalized Ricci solitons. J. Geom. Anal., 26(2)(2016), 12801345.
[14] S. Rahman and J. B. Jun. CR submanifolds of a nearly (ε, δ) trans-Sasakian manifold. Proc. Jangjeon Math. Soc., 19(4)(2016), 717-727.
[15] R. Sharma. Certain results on K-contact and (k, μ)-contact manifolds. J. Geom., 89(1-2) (2008), 138-147.
[16] S. S. Shukla and D. D. Singh. On (ع)-trans-Sasakian manifolds. Int. J. Math. Anal., 4(49) (2010), 2401-2414.
[17] M. D. Siddiqi. Generalized Ricci solitons on trans-Sasakian manifolds. Khayyam J. Math., 4(2)(2018), 178-186.
[18] M. D. Siddiqi. η-Ricci soliton in (ε, δ)-trans-Sasakian manifolds. Facta. Univ. (Niš), Math. Inform., 34(1)(2019), 45-56.
[19] M. M. Tripathi. Ricci solitons in contact metric manifolds. arXiv:0801.4222 [math.DG].
[20] M. Turan, U. C. De and A. Yildiz. Ricci solitons and gradient Ricci solitons in threedimensional trans-Sasakian manifolds. Filomat, 26(2)(2012), 363-370.
[21] X. Xufeng and C. Xiaoli. Two theorems on (ε)-Sasakain manifolds. Int. J. Math. Math. Sci., 21(2)(1998), 249-254.

Received by editors 28.07.2019; Revised version 05.11.2019; Available online 25.11.2019.

Shamsur Rahman,
Department of Mathematics, Maulana Azad National Urdu University, Polytechnic, Darbhanga (Branch), Bihar 846001, India

E-mail address: shamsur@rediffmail.com, shamsur@manuu.ac.in
Amit Kumar Rai,
University School of Basic and Applied Science, Guru Gobind Singh Indraprastha University, New Delhi -110078, India

E-mail address: rai.amit08au@gmail.com

[^0]: 2010 Mathematics Subject Classification. 53C15, 53C20, 53C25, 53C44, 53D10.
 Key words and phrases. Generalized Ricci Solitons, (ε, δ) - trans-Sasakian manifold, Einstein manifold.

