
BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE
ISSN (p) 2303-4874, ISSN (o) 2303-4955
www.imvibl.org /JOURNALS / BULLETIN
Bull. Int. Math. Virtual Inst., Vol. 10(2)(2020), 291-303

DOI: 10.7251/BIMVI2002291R

Former
BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA

ISSN 0354-5792 (o), ISSN 1986-521X (p)

GENERALIZED RICCI SOLITONS ON

(ε, δ)-TRANS SASAKIAN MANIFOLD

Shamsur Rahman and Amit Kumar Rai

Abstract. The purpose of the present research is to shows that a (ε, δ) trans-
Sasakian manifold, which also satisfies the Ricci soliton and generalized Ricci
soliton equation, satisfying some conditions, is necessarily the Einstein man-
ifold. Generalized Ricci solitons for 3-dimensional (ε, δ)-trans-Sasakian man-

ifolds are worked out. Also an example of Ricci solitons in 3-dimensional
(ε, δ)-trans-Sasakian manifold is provided in the region where trans-Sasakian
manifold is expanding (shrinking) the Lorentzian trans-Sasakian manifold is
shrinking (expanding).

1. Introduction

In [3], Bejancu-Duggal introduced (ε)-Sasakian manifolds. Later, these mani-
folds were studied by Xufeng and Xiaoli [21] from real hypersurfaces of indefinite
Kahlerian manifolds. Kumar et al. [9] studied the curvature conditions of these
manifolds. De and Sarkar [7] also introduced (ε)- Kenmotsu manifolds with indef-
inite metric. The notion of (ε)- trans-Sasakian manifolds with indefinite metric,
which are natural generalization of both (ε)-Sasakian and (ε)-Kenmotsu manifolds
was introduced by Shukla and Sing [16]. Nagaraja et. al. [12] and authors Rah-
man et. al. [14] studied (ε, δ)-trans-Sasakian manifolds and CR submanifolds of
nearly (ε, δ)-trans-Sasakian manifolds, which are extensions of (ε)-trans-Sasakian
manifolds.

There are stationary points of the Ricci flow given by

(1.1)
∂g

∂t
= −2Ric(g), for g(0) = g0.
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Ricci solitons move under the Ricci flow initiated by Hamilton [8] simply by diffeo-
morphisms of the initial metric. A Ricci soliton (g, V, λ) on a Riemannian manifold
is defined by

(1.2) LV g + 2S + 2λg = 0,

where S is the Ricci tensor, LV is the Lie derivative along the vector field V on
M and λ is a real scalar. Ricci soliton is said to be shrinking, steady or expanding
according as λ < 0, λ = 0 and λ > 0. If the vector field V is the gradient of a
potential function −ψ, then g is called a gradient Ricci soliton and equation (1.2)
assumes the form Hessψ = S + λg.

A metric g0 on a smooth manifold M is a Ricci soliton if there exist a function
σ(t) and a family of diffeomorphisms {η(t)} ⊂ Diff(M) such that

g(t) = σ(t)η(t)∗g0,

is a solution of the Ricci flow. In this expression, η(t)∗g0 indicates to pullback of the
metric g0 by the diffeomorphism η(t). Equivalently, a metric g0 is a Ricci soliton
if and only if it satisfies equation (1.2), which is a generalization of the Einstein
condition for the metrics

Ric(g0) = λg0.

Some generalizations, like, gradient Ricci solitons [4], quasi Einstein manifolds [5],
and generalized quasi Einstein manifolds [6], play an important role in solutions
of geometric flows and describe the local structure of certain manifolds. Nurowski
and Randall [13] introduced the concept of generalized Ricci soliton as a class of
over determined system of equations

(1.3) LXg = −2aX# ⊙X# + 2bS + 2λg,

where LXg and X# denote, respectively, the Lie derivative of the metric g in the
directions of vector field X and the canonical one-form associated to X, and some
real constants a, b, and λ. Levy [10] acquired the necessary and sufficient conditions
for the existence of such tensors. Sharma [15] initiated the study of Ricci solitons
in almost contact Riemannian geometry. Followed by Tripathi [19], Nagaraja et
al. [12], Turan [20], and others extensively studied Ricci solitons in almost contact
metric manifold. Recently [2, 1, 17, 18], the authors extensively studied Ricci
solitons in almost (ε)-contact metric manifolds.

2. Preliminaries

If M̄ is an almost contact metric manifold of dimension n equipped with an
almost contact metric structure (ϕ, ξ, η, g) consisting of a (1, 1)-tensor field ϕ, a
vector field ξ, a 1-form η and a Riemannian metric g satisfying

(2.1) ϕ2X = −X + η(X)ξ, η(ξ) = 1, ϕξ = 0, η ◦ ϕ = 0.

An almost contact metric manifold M̄ is called an (ε)-almost contact metric mani-
fold if there exists a semi Riemannian metric g such that

η(X) = εg(X, ξ), g(ξ, ξ) = ε,
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(2.2) g(ϕX, ϕY ) = g(X,Y )− εη(X)η(Y ), ∀X,Y ∈ TM,

where ε = g(ξ, ξ) = ±1.

An (ε)-almost contact metric manifold is called an (ε, δ)-trans-Sasakian mani-
fold if it follows,

(2.3) (∇̄Xϕ)Y = α{g(X,Y )ξ − εη(Y )X}+ β{g(ϕX, Y )ξ − δη(Y )ϕX}

(2.4) ∇̄Xξ = −εαϕX − βδϕ2X,

and

(2.5) (∇Xη)Y = βδ[εg(X,Y )− η(X)η(Y )]− αg(ϕX, Y ),

holds for some smooth functions α and β on M̄ and ε = ±1, δ = ±1. For β = 0,
α = 1, an (ε, δ)-trans-Sasakian manifold reduces to an (ε)-Sasakian and for α = 0,
β = 1, it reduces to a (δ)-Kenmotsu manifold.

The Riemannian curvature tensor R with respect to LeviCivita connections ∇
and the Ricci tensor S of a Riemannian manifold M are defined by

(2.6) R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,

(2.7) S(X,Y ) =
n∑

i=1

g(R(X, ei)ei, Y ),

for X,Y, ZΓ(TM), where ∇ is with respect to the Riemannian metric g and ,
{e1, e2, ..., ei} where 1 6 i 6 n is the orthonormal frame.

Given a smooth function ψ on M , the gradient of ψ is defined by

(2.8) g(gradψ,X) = X(ψ),

and the Hessian of ψ is defined by

(2.9) (Hessψ)(X,Y ) = g(∇Xgradψ, Y ),

where X,Y ∈ Γ(TM). For X ∈ Γ(TM), we define X# ∈ Γ(TM) by

(2.10) X#(Y ) = g(X,Y ).

The generalized Ricci soliton equation in Riemannian manifoldM is defined in [15]
by

(2.11) LXg = −2aX# ⊙X# + 2bS + 2λg,

where X ∈ Γ(TM) and LXg is the Lie-derivative of g along X given by

(2.12) LXg(Y,Z) = g(∇YX,Z) + g(∇ZX,Y )

for all Y,Z ∈ Γ(TM), and a, b, λ,∈ R.

The Lie-derivative of g along X is said to be (see [4, 13, 15])

(1) Killings equation if a = b = λ = 0,

(2) equation for homotheties if a = b = 0,

(3) Ricci soliton if a = 0, b = −1,

(4) case of EinsteinWeyl if a = 1, b = −1
n−2 ,
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(5) metric projective structures with skew-symmetric Ricci tensor in projective
class if a = 1, b = −1

n−2 , λ = 0, and

(6) vacuum near-horizon geometry equation if a = 1, b = 1
2 .

The Lie-derivative of g along X is also a generalization of Einstein manifolds
[10]. Note that, if X = gradψ, where ψ ∈ C∞(M), the generalized Ricci soliton
equation is given by

(2.13) Hessψ = −adψ ⊙ dψ + bS + λg.

Remark 2.1. From (2.3), we have the following Remarks:

(1) ε = δ, (ε, δ)-trans-Sasakian manifold of type (α, β) reduces to (ε)- trans-
Sasakian manifold of type (α, β).

(2) ε = δ = 1, (ε, δ)-trans-Sasakian manifold of type (α, β) reduces to trans-
Sasakian manifold of type (α, β).

(3) α ̸= 0, β ̸= 0, and ε = −1, δ = −1, (ε, δ)-trans-Sasakian manifold of type
(α, β) reduces to the form Lorentzian trans-Sasakian manifold of type (α, β).

(4) α ̸= 0, β ̸= 0, and ε = 1, δ = −1, (ε, δ)-trans-Sasakian manifold of type
(α, β) reduces in the form α-Sasakian Lorentzian β- Kenmostu manifold of type
(α, β).

(5) α ̸= 0, β ̸= 0, and ε = −1, δ = 1, (ε, δ)-trans-Sasakian manifold of type
(α, β) reduces in the form Lorentzian α-Sasakian β- Kenmostu manifold of type
(α, β).

(6) α ̸= 0, β = 0, and ε = 1, or ε = −1, the (ε, δ)-trans-Sasakian manifold
reduces to α-Sasakian manifold or Lorentzian α-Sasakian manifold respectively.

(7) α = 0, β ̸= 0, and δ = 1, or δ = −1, the (ε, δ)-trans-Sasakian manifold
reduces to β-Kenmotsu manifold or Lorentzian β-Kenmotsu manifold respectively.

(8) If α and β are scalars and α = 1 and β = 0 or α = 0 and β = 1 then
the (ε, δ)-trans-Sasakian manifold reduces to to (ε)-Sasakian manifolds and (δ)-
Kenmostu manifolds.

(a) Again, if in (ε)-Sasakian manifolds ε is 1 or -1 then the (ε)-Sasakian mani-
folds reduces to Sasakian manifolds or Lorentzian Sasakian manifolds.

(b) Further, if in (δ)-Kenmostu manifolds δ is 1 or -1 then the (δ)-Kenmostu
manifolds reduces to Kenmotsu manifold or Lorentzian Kenmotsu manifold.

3. Main results

In an n-dimensional (ε, δ)- trans-Sasakian manifold M , we have the following
relations:

(3.1) R(X,Y )ξ = ε[(Y α)ϕX − (Xα)ϕY ] + δ[(Y β)ϕ2X − (Xβ)ϕ2Y ],

+2αβ(δ − ε)g(ϕX, Y )ξ + 2εαβδ[η(Y )ϕX − η(X)ϕY ]

+(α2 − β2)[η(Y )X − η(X)Y ],
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(3.2) S(X, ξ) = [(n− 1)(εα2 − δβ2)− (ξβ)]η(X)− ε((ϕX)α)− (n− 2)ε(Xβ),

(3.3) Qξ = [(n− 1)(εα2 − δβ2)− (ξβ)]ξ + ε(gradα)− 2nε(gradβ),

where R is curvature tensor, while Q is the Ricci operator given by S(X,Y ) =
g(QX,Y ).

Further, in 3-dimensional (ε, δ)-trans-Sasakian manifold, we have

(3.4) ϕ(gradα) = gradβ,

and

(3.5) ε(ξα) + 2εαβδ = 0.

Using (3.4) and (3.5), for constants α and β, we have
(3.6)
R(ξ, Y )X = ε[(gradα)g(ϕX, Y ) + (Xα)ϕY ] + δ[(gradβ)g(ϕ2X,Y )− (Xβ)ϕ2Y ]

+2αβε(δ − ε)η(Y )ϕX + 2εαβδ[εg(ϕX, Y )ξ + η(X)ϕY ]

+(α2 − β2)[εg(X,Y )ξ − η(X)Y ],

(3.7) R(X,Y )ξ = (α2 − β2)[η(Y )X − η(X)Y ].

An important consequence of (2.4) is that ξ is a geodesic vector field; that is,

(3.8) ∇ξξ = 0.

For an arbitrary vector field X, we have that

(3.9) dη(ξ,X) = 0.

The ξ -sectional curvature Kξ of M is the sectional curvature of the plane spanned
by ξ and a unit vector field X. From (3.7), we have

(3.10) Kξ = g(R(ξ,X), ξ,X) = (α2 − β2).

It follows from (3.10) that the ξ-sectional curvature does not depend on X.

Theorem 3.1. If M is a (ε, δ)-trans-Sasakian manifold of dimension n and it
satisfy the generalized Ricci soliton (2.13) with a[λ+(n+1)b(β2−α2)] ̸= −1 , then
ψ is a constant function. In such case, if b ̸= 0 , then M is an Einstein manifold.

Next we state following remarks.

Remark 3.1. If M is a (ε, δ)- trans-Sasakian manifold which satisfies the gra-
dient Ricci soliton equation Hessψ = S + λg ; then ψ is a constant function and
M is an Einstein manifold.

Remark 3.2. In a (ε, δ)-trans-Sasakian manifold M , there is no nonconstant
smooth function ψ such that Hessψ = λg for some constant λ .

For the proof of Theorem 3.1, first we need to prove the following lemmas.

Lemma 3.1. If M is a (ε, δ)- trans-Sasakian manifold, then

(3.11) (Lξ(LX))g(Y, ξ) = −2{ε2β(ξ − α) + 2εαβδ}g(X,ϕY )

+(α2 − β2 − εδβ(ξ − β))g(X,Y ) + g(∇ξ∇ξX,Y ) + Y g(∇ξX, ξ).
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Proof. Using the property of Lie-derivative, we infer

(3.12) (Lξ(LXg))(Y, ξ) = ξ((LXg)(Y, ξ))− (LXg)(LξY, ξ)

−(LXg)(Y,Lξξ),

since (LξY = [ξ, Y ], (Lξξ = [ξ, ξ] by using (2.12) and (3.12), we have

(3.13) (Lξ(LXg))(Y, ξ) = ξg(∇YX, ξ) + ξg(∇ξX,Y )− g(∇[ξ,Y ]X, ξ)

−g(∇ξX, [ξ, Y ])

= g(∇ξ∇YX, ξ) + g(∇YX,∇ξξ) + g(∇ξ∇ξX,Y ) + g(∇ξX,∇ξY

−g(∇ξX,∇ξY )− g(∇[ξ,Y ]X, ξ) + g(∇ξX,∇Y ξ).

From (2.4), we get ∇ξξ = ϕξ = 0 ; so that we deduce

(3.14) (Lξ(LXg))(Y, ξ) = g(∇ξ∇YX, ξ) + g(∇ξ∇ξX,Y )− g(∇[ξ,Y ]X, ξ)

+Y g(∇ξX, ξ)− g(∇Y ∇ξX, ξ),

using (3.6) and (3.14), we infer

(3.15) (Lξ(LXg))(Y, ξ) = g(R(ξ, Y )X, ξ) + g(∇ξ∇ξX,Y ) + Y g(∇ξX, ξ).

Now from (3.6), with g(Y, ξ) = 0 , we infer

(3.16) g(R(ξ, Y )X, ξ) = g(R(Y, ξ)ξ,X) = −2{ε2β(ξ − α) + 2εαβδ}g(X,ϕY )

+(α2 − β2 − εδβ(ξ − β))g(X,Y ),

the lemma follows from (3.14) and (3.15). �

Now, we have another useful lemma.

Lemma 3.2. If M is a Riemannian manifold with ψ ∈ C∞(M), then

(3.17) (Lξ(dψ ⊙ dψ))(Y, ξ) = Y (ξ(ψ))ξ(ψ) + Y (ψ)ξ(ξ(ψ)),

for ξ, Y ∈ Γ(TM).

Proof. It is easy to see that

(Lξ(dψ ⊙ dψ))(Y, ξ) = ξ(Y (ψ))ξ(ψ)− [ξ, Y ](ψ)ξ(ψ)− Y (ψ)[ξ, ξ](ψ)

= ξ(Y (ψ))ξ(ψ) + Y (ψ)ξ(ξ(ψ))− [ξ, Y ](ψ)ξ(ψ),

since [ξ, Y ](ψ) = ξ(Y (ψ))− Y (ξ(ψ)), we get

(Lξ(dψ ⊙ dψ))(Y, ξ) = [ξ, Y ](ψ)ξ(ψ) + Y (ξ(ψ))ξ(ψ)

+Y (ψ)ξ(ξ(ψ))− [ξ, Y ](ψ)ξ(ψ)

= Y (ξ(ψ))ξ(ψ) + Y (ψ)ξ(ξ(ψ)).

�

Lemma 3.3. If M is a (ε, δ)-trans-Sasakian manifold of dimension n, which
satisfies the generalized Ricci soliton equation (2.13), then

(3.18) ∇ξgradψ = [λ+ b(n+ 1)(β2 − α2)]ξ − aξ(ψ)gradψ.
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Proof. Because Y ∈ Γ(TM), using the definition of Ricci curvature S (2.7)
and the curvature condition (3.7), we infer

S(ξ, Y ) = g(R(ξ, ei)ei, Y ) = g(R(ei, Y )ξ, )ei)

= (β2 − α2)(g(Y, ei) + η(Y )g(ei, ei)

= (β2 − α2)(η(Y ) + nη(Y )) = (β2 − α2)(n+ 1)η(Y )

= (β2 − α2)(n+ 1)g(ξ, Y ),

where {e1, e2, ..., ei}, and 1 6 i 6 n is an orthonormal frame on M implies that

(3.19) λg(ξ, Y ) + bS(ξ, Y ) = λg(ξ, Y ) + b(β2 − α2)(n+ 1)g(ξ, Y )

= [λ+ b(n+ 1)(β2 − α2)]g(ξ, Y ).

From (2.13) and (3.19), we obtain

(3.20) (Hessψ)(ξ, Y ) = −aξ(ψ)(Y )(ψ) + [λ+ b(n+ 1)(β2 − α2)]g(ξ, Y )

= −aξ(ψ)g(gradψ, Y ) + [λ+ b(n+ 1)(β2 − α2)]g(ξ, Y ),

the lemma follows from equation (3.20) and the definition of Hessian (2.7). �
Now, with help of Lemmas 3.1, 3.2, and 3.3, we can prove Theorem 3.1.

Proof. (Proof of Theorem 3.1.) If Y ∈ Γ(TM) is such that g(ξ, Y ) = 0 ,
then from Lemma 3.1, with X = gradψ, we infer

(3.21) 2(Lξ(Hessψ))(Y, ξ) = Y (ψ) + g(∇ξ∇ξgradψ, Y ) + Y g(∇ξgradψ, ξ),

from Lemma 3.3 and equation (3.21), we deduce

(3.22) 2(Lξ(Hessψ))(Y, ξ) = Y (ψ) + [λ+ b(n+ 1)(β2 − α2)]g(∇ξξ, Y )

−ag(∇ξ(ξ(ψ)gradψ), Y )− aY (ξ(ψ2)) + [λ+ b(n+ 1)(β2 − α2)Y g(ξ, ξ).

Since ∇ξξ = 0 and g(ξ, ξ) = 1, from equation (3.22), we deduce

(3.23) 2(Lξ(Hessψ))(Y, ξ) = Y (ψ)− aξ(ξ(ψ))Y (ψ)− aξ(ψ)g(∇ξgradψ, Y )

−2aξ(ψ)Y (ξ(ψ)).

From Lemma 3.3 and equation (3.23) and since g(ξ, Y ) = 0, we deduce

(3.24) 2(Lξ(Hessψ))(Y, ξ) = Y (ψ)− aξ(ξ(ψ))Y (ψ) + a2ξ(ψ)2Y (ψ)

−2aξ(ψ)Y (ξ(ψ)).

Note that, from (2.11) and (2.12), we have Lξg = 0, which is a Killing vector field;
it implies that LξS = 0; taking the Lie derivative of the generalized Ricci soliton
equation (2.13) yields

(3.25) (α2 − β2)Y (ψ)− aξ(ξ(ψ))Y (ψ) + a2ξ(ψ)2Y (ψ)− 2aξ(ψ)Y (ξ(ψ))

= −2aY (ξ(ψ))ξ(ψ)− 2aY (ψ)ξ(ξ(ψ)),

which is equivalent to

(3.26) Y (ψ)[(α2 − β2) + aξ(ξ(ψ)) + a2ξ(ψ)2] = 0,

according to Lemma 3.3, we infer

(3.27) aξ(ξ(ψ)) = aξg(ξ, gradψ) = ag(ξ,∇ξgradψ)
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= a[λ+ b(n+ 1)(β2 − α2)]− a2ξ(ψ)2,

by equations (3.26) and (3.27), we deduce

Y (ψ)[1 + a(λ+ b(n+ 1)(β2 − α2))] = 0,

since a[λ + b(n + 1)(β2 − α2)] ̸= −1 , we find that Y (ψ) = 0 ; that is, gradψ is
parallel to ξ . Hence gradψ = 0 as D = kerη is not integrable any where, which
means ψ is a constant function. �

For particular values of α and β, there arise possible cases:

Case (i) For α = 0 or (β = 1) , we infer

Corollary 3.1. If M is a δ -Kenmotsu (or Kenmotsu) manifold of dimension
n, and it satisfies the generalized Ricci soliton (2.13) with condition a(λ+b(n+1)) ̸=
−1, then ψ is a constant function. In such case, if b ̸= 0 , then M is an Einstein
manifold.

Case (ii) For β = 0 , or (α = 1), we infer

Corollary 3.2. If M is a ε -Sasakian (or Sasakian) manifold of dimension n,
and it satisfies the generalized Ricci soliton (2.13) with a(λ− b(n+ 1)) ̸= −1, then
ψ is a constant function. In such case, if b ̸= 0 , then M is an Einstein manifold.

Corollary 3.3. There exist no steady Ricci soliton (g, ξ, λ) indefinite (ε, δ)
-trans-Sasakian manifold.

Proof. From Linear Algebra either the vector field V ϵSpanξ or V ⊥ ξ. How-
ever the second case seems to be complex to analyse in practice. For this reason
we investigate for the case V = ξ. A simple computation of Lξg + 2S gives

(3.28) (Lξg)(X,Y ) = 2βδ[g(X,Y )− εη(X)η(Y )].

From equation (1.1), we have h(X,Y ) = −2λg(X,Y ) and then putting X = Y = ξ,
we infer

(3.29) h(ξ, ξ) = −2λε,

where h(X,Y ) = (Lξg)(X,Y )+2S(X,Y ) and then if we put X = Y = ξ and again
by using (3.31) and (3.2), we deduce

h(ξ, ξ) = 2βδ[g(ξ, ξ)− εη(ξ)η(ξ)] + 2{ε[(n− 1)(εα2 − δβ2)− (ξβ)]η(ξ)

−ε((ϕξ)α)− (n− 2)ε(ξβ)}.
By using (2.1), (2.2) and (3.4) in the above equation, we infer

(3.30) h(ξ, ξ) = 2(n− 1)ε(εα2 − δβ2).

Equating (3.29) and (3.30), we deduce

(3.31) λ = −(n− 1)(εα2 − δβ2).

Since from (3.31), we have λ ̸= 0. The proof is complete. �
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4. Ricci solitons in 3-dimensional (ε, δ)-trans-Sasakian manifold

Corollary 4.1. There exist no steady Ricci soliton (g, ξ, λ) indefinite 3-dimen-
sional (ε, δ)-trans-Sasakian manifold with varying scalar curvature where

λ = −2(εα2 − δβ2).

Proof. The Riemannian curvature tensor R of M with respect to the 3-
dimensional (ε, δ)-trans-Sasakian manifold is defined by

(4.1) R(X,Y )Z = g(Y,Z)QX − g(X,Z)QY + S(Y,Z)X − S(X,Z)Y

−r
2
[g(Y,Z)X − g(X,Z)Y ].

Putting Z = ξ in (4.1) and by using (2.12) and (2.15) for 3-dimensional (ε, δ)-trans-
Sasakian manifold, we infer

(4.2) ε[(Y α)ϕX − (Xα)ϕY ] + δ[(Y β)ϕ2X − (Xβ)ϕ2Y ]

+2αβ(δ − ε)g(ϕX, Y )ξ + 2εαβδ[η(Y )ϕX − η(X)ϕY ]

+(α2 − β2)[η(Y )X − η(X)Y ] = εη(Y )QX − εη(X)QY

+ε[(εα2 − δβ2)− (ξβ)](η(Y )X − η(X)Y )

−ε[((ϕY )α)X + (Y β)X] + ε[((ϕX)α)Y + (Xβ)Y ].

Again, putting Y = ξ in the above equation and by using (2.1) and (2.17), we
deduce

(4.3) QX = [
r

2
− 2(εα2 − δβ2) + ε(α2 − β2)]X

+[4(εα2 − δβ2)− r

2
− ε(α2 − β2)]η(X)ξ.

From (4.3), we deduce

(4.4) S(X,Y ) = [
r

2
− 2(εα2 − δβ2) + ε(α2 − β2)]g(X,Y )

+[4(εα2 − δβ2)− r

2
− ε(α2 − β2)]εη(X)η(Y ).

Equation (4.4) shows that a 3-dimensional (ε, δ)-trans-Sasakian manifold is η
-Einstein. Now we show that the scalar curvature r is not a constant that is r is
varying. Now

(4.5) h(X,Y ) = (Lξg)(X,Y ) + 2S(X,Y ).

By using (3.13) and (4.4) in (4.5), we deduce

(4.6) h(X,Y ) = [r − 4(εα2 − δβ2) + 2ε(α2 − β2) + 2βδ]g(X,Y )

+[8(εα2 − δβ2)− 2βδ − 2ε(α2 − β2)− r]εη(X)η(Y ).

Differentiating (4.6) covariantly with respect to Z, we infer

(4.7) (∇Zh)(X,Y ) = [∇Zr − 4(2εα(Zα)− 2δβ(Zβ)) + 2ε(2α(Zα)− 2β(Zβ))

+2δ(Zβ)]g(X,Y ) + [8(2εα(Zα)− 2δβ(Zβ))− 2δ(Zβ)− 2ε(2α(Zα)

−2β(Zβ)−∇Zr]εη(X)η(Y ) + [8(εα2 − δβ2)− 2βδ

−2ε(α2 − β2)− r][g(X,∇Zξ)η(Y ) + g(Y,∇Zξ)η(X)].
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Substituting Z = ξ,X = Y ∈ (Spanξ)⊥ in (4.7) and by virtue of ∇h = 0 and
(2.17), we infer

∇ξr − 4εα(ξα) = 0.

By using (2.16) in the above equation, we deduce

(4.8) ∇ξr = −8εα2βδ.

Thus, r is not a constant. Now we have to check the nature of the soliton
that is Ricci soliton (g, ξ, λ) where λ = −2(εα2−δβ2) in 3-dimensional (ε, δ)-trans-
Sasakian manifold:

From (1.1), we have h(X,Y ) = −2λg(X,Y ) and then putting X = Y = ξ, we
infer

(4.9) h(ξ, ξ) = −2λε.

If X = Y = ξ, in (4.6), we deduce

(4.10) h(ξ, ξ) = 4ε(εα2 − δβ2).

Equating (4.9) and (4.10), we deduce

(4.11) λ = −2(εα2 − δβ2).

Since from (4.11), we have λ ̸= 0 . There exist no steady Ricci soliton (g, ξ, λ) of
3-dimensional (ε, δ)-trans-Sasakian manifold. �

Example 4.1. ([2]) We consider the 3-dimensional manifold M = {(x, y, z) :
(x, y, z) ∈ R3, z ̸= 0}. Let {E1, E2, E3} be linearly independent global frame field
on M given by

(4.12) E1 = z(
∂

∂z
+ δy

∂

∂z
), E2 = δz

∂

∂y
,E3 =

∂

∂z
.

Let g be the Riemannian metric defined by

g(E1, E2) = g(E2, E3) = g(E1, E3) = 0, g(E1, E1) = g(E2, E2) = g(E3, E3) = ε,

where g is given by

g =
ε

z2
[(1− y2z2)dx⊗ dx+ dy ⊗ dy + z2dz ⊗ dz].

The (ϕ, ξ, η) is given by

η = dz − δydx, ξ = E3 = ∂
∂z , ϕE1 = E2, ϕE2 = −E1, ϕE3 = 0.

Clearly (ϕ, ξ, η, g) structure is an indefinite (ε, δ)-trans-Sasakian structure and sat-
isfy,

(4.13) (∇̄Xϕ)Y = α{g(X,Y )ξ − εη(Y )X}+ β{g(ϕX, Y )ξ − δη(Y )ϕX},

(4.14) ∇̄Xξ = −εαϕX − βδϕ2X,

where α = − z2δ
2ε ̸= 0 and β = − 1

zδ ̸= 0 . Hence (ϕ, ξ, η, g) structure defines
indefinite (ε, δ)-trans-Sasakian structure. Thus M equipped with indefinite (ε, δ)-
trans-Sasakian structure is a (ε, δ)-trans- Sasakian manifold.
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Using the above α and β in (4.8), we infer

(4.14) ∇ξr = −8εα2βδ = −8εδ(
z4δ2

4ε2
)(

1

zδ
) = 2εz3

(4.15) r =
z4ε

2
.

Using the above α and β in (4.11), we infer

(4.16) λ =
4δ − εz6

2z2
.

Hence Ricci soliton (g, ξ, λ) is given by (4.16) with varying scalar curvature (4.15).

(1) If ε = δ = 1 , in (4.16), then λ = 4−Z6

2Z2 = (2−Z3)(2+Z3)
2Z2 .

(a) λ > 0 in {Z : −2
1
3 < Z < 2

1
3 }:

Hence by Remark (2.1), Ricci soliton of the given 3-dimensional trans-Sasakian
manifold is expanding in the region

(4.17) {(x, y, z) ∈ R3 : −2
1
3 < Z < 2

1
3 }.

(b) Also λ < 0 in {Z : −2
1
3 > Z > 2

1
3 }:

Hence by Remark (2.1), Ricci soliton of the given 3-dimensional trans-Sasakian
manifold is shrinking in the region

(4.18) {(x, y, z) ∈ R3 : −2
1
3 > Z > 2

1
3 }.

Hence the regions (4.17) and (4.18) are complementary to one another that is

(4.19) M = {(x, y, z) ∈ R3 : −2
1
3 < Z < 2

1
3 } ∓ {−2

1
3 > Z > 2

1
3 }.

(2) If ε = δ = −1 , in (4.16), then λ = Z6−4
2Z2 = (Z3−2)(2+Z3)

2Z2 .

(a) λ > 0 in {Z : −2
1
3 > Z > 2

1
3 }:

Hence by Remark (2.1), Ricci soliton in Lorentzian trans-Sasakian manifold is ex-
panding in the region

(4.20) {(x, y, z) ∈ R3 : −2
1
3 > Z > 2

1
3 }.

(b) Also λ < 0 in {Z : −2
1
3 < Z < 2

1
3 }:

Hence by Remark (2.1), Ricci soliton in Lorentzian trans-Sasakian manifold is
shrinking in the region

(4.18) {(x, y, z) ∈ R3 : −2
1
3 < Z < 2

1
3 }.

Hence the regions (4.17) and (4.18) are complementary to one another that is

(4.19) M = {(x, y, z) ∈ R3 : −2
1
3 > Z > 2

1
3 } ∓ {−2

1
3 < Z < 2

1
3 }.

Thus from cases (1) and (2) one can conclude that in a region where the trans-
Sasakian manifold is shrinking the Lorentzian trans-Sasakian manifold is expanding
and in a region where the trans-Sasakian manifold is expanding the Lorentzian
trans-Sasakian manifold is shrinking. Hence in given example trans-Sasakian and
Lorentzian trans-Sasakian manifolds are complementary to each other.
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(3) If ε = −1, δ = 1, in (4.16), then λ = Z6+4
2Z2 > 0. By Remark (2.1), Ricci

soliton in Lorentzian α-Sasakian β -Kenmotsu manifold is expanding.

(4) If ε = 1, δ = −1, in (4.16), then λ = −Z6+4
2Z2 < 0. By Remark (2.1), Ricci

soliton in α-Sasakian Lorentzian β -Kenmotsu manifold is shrinking.
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