
BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE
ISSN (p) 2303-4874, ISSN (o) 2303-4955
www.imvibl.org /JOURNALS / BULLETIN
Vol. 10(2)(2019), 249-261

DOI: 10.7251/BIMVI2002249R

Former
BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA

ISSN 0354-5792 (o), ISSN 1986-521X (p)

MINIMAL PRIME S-IDEALS IN

0-DISTRIBUTIVE ALMOST SEMILATTICES

G. Nanaji Rao and Ch. Swapna

Abstract. Obtained necessary and sufficient conditions for a prime S-ideal to

become minimal prime S-ideal in terms of filters in 0-distributive almost semi-
lattices. Some properties of minimal prime S-ideals in 0-distributive almost
semilattices are established. Also, proved that the set B(L), of all annihilator

S-ideals of a 0-distributive ASL is a complete Boolean algebra. Finally, we
characterized the minimal prime annihilator S-ideals in a 0-distributive ASL
L.

1. Introduction

The concept of minimal prime ideal was put to advantage by Kist [2] by in-
vestigating commutative semigroups. Later, Thakare and Pawar [7] obtained some
properties of minimal prime ideals in 0-distributive semilattices. They character-
ized minimal prime ideals in a 0-distributive semilattices in terms of maximal filters.
Also, they provided useful tools for established properties of minimal prime ideals.
The concept of S-ideals and prime S-ideals in almost semilattice (ASL) was intro-
duced by Nanaji Rao, Swapna, Terefe [3] and established the set of all principal
S-ideals in ASL form a semilattice. Also, they introduced the concept of annihila-
tor and annihilator ideal and proved several results on annihilator ideals [4]. The
concept of S-ideals and prime S-ideals in almost semilattice (ASL) was introduced
by Nanaji Rao, Swapna, Terefe [5] and established the set of all principal S-ideals
in ASL form a semilattice. Also, they proved an isomorphism of the semilattice
SI(L) of all S-ideals in an ASL L onto the semilattice of all ideals of a semilattice
PSI(L), moreover, this isomorphism gives one-to-one correspondence between the
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prime S-ideals of L and those of PSI(L). Later, the concept of 0-distributive al-
most semilattice (0-distributive ASL) was introduced by Nanaji Rao and Swapna
[6] and proved some basic properties of 0-distributive almost semilattices.

In this paper, we obtained necessary and sufficient conditions for a prime S-
ideal to become minimal prime S-ideal. Certain basic properties of minimal prime
S-ideals in 0-distributive almost semilattices are established. Derived a set of iden-
tities for a prime S-ideal to become minimal prime S-ideal. Next, we introduce the
concept of annihilator S-ideal and proved that the set B(L), of all annihilator S-
ideals of a 0-distributive almost semilattice is a complete Boolean algebra. Finally,
we derived a set of identities for any nonempty subset A of a 0-distributive ASL L,
the annihilator S-ideal A∗ to become minimal prime annihilator S-ideal.

2. Preliminaries

In this section we collect a few important definitions and results which are
already known and which will be used more frequently in the text.

Definition 2.1. An ASL with 0 is an algebra (L, ◦, 0) of type (2, 0) satisfies
the following conditions:

1. (x ◦ y) ◦ z = x ◦ (y ◦ z)
2. (x ◦ y) ◦ z = (y ◦ x) ◦ z
3. x ◦ x = x
4. 0 ◦ x = 0, for all x, y, z ∈ L.

Definition 2.2. Let L be an ASL. A nonempty subset I of L is said to be an
S-ideal if it satisfies the following conditions:

1) If x ∈ I and a ∈ L, then x ◦ a ∈ I.
2) If x, y ∈ I, then there exists d ∈ I such that d ◦ x = x, d ◦ y = y.

Definition 2.3. Let L be an ASL and a ∈ L. Then (a] = {a ◦x : x ∈ L} is an
S-ideal of L and is called principal S-ideal generated by a.

Definition 2.4. A nonempty subset F of an ASL L is said to be a filter if F
satisfies the following conditions:

(1) x, y ∈ F implies x ◦ y ∈ F
(2) If x ∈ F and a ∈ L such that a ◦ x = x, then a ∈ F

Definition 2.5. A proper S-ideal P of an ASL L is said to be a prime S-ideal
if for any x, y ∈ L, x ◦ y ∈ P imply x ∈ P or y ∈ P .

Definition 2.6. A proper filter F of L is said to be a prime filter if for any
filters F1 and F2 of L, F1 ∩ F2 ⊆ F imply F1 ⊆ F or F2 ⊆ F .

Definition 2.7. A proper filter F of L is said to be maximal if for any filter
G of L such that F ⊆ G ⊆ L, then either F = G or G = L.

Definition 2.8. Let L be an ASL with 0. Then L is said to be 0-distributive
ASL if for any x, y, z ∈ L, x ◦ y = 0 and x ◦ z = 0 then there exists d ∈ L such that
d ◦ y = y, d ◦ z = z and d ◦ x = 0.



MINIMAL PRIME S-IDEALS IN 0-DISTRIBUTIVE ALMOST SEMILATTICES 251

Definition 2.9. Let L be an ASL with 0. Then for any nonempty subset A
of L, A∗ = {x ∈ L : x ◦ a = 0 for all a ∈ A} is called the annihilator of A, and is
denoted by A∗.

Note that if A = {a}, then we denote A∗ = {a}∗ by [a]∗.

Theorem 2.1. Let L be an ASL with 0. Then for any nonempty subsets
I, J of L, we have the following.

(1) I∗ =
∩
a∈I

[a]∗

(2) (I ∩ J)∗ = (J ∩ I)∗

(3) I ⊆ J =⇒ J∗ ⊆ I∗

(4) I∗ ∩ J∗ ⊆ (I ∩ J)∗

(5) I ⊆ I∗∗

(6) I∗∗∗ = I∗

(7) I∗ ⊆ J∗ ⇔ J∗∗ ⊆ I∗∗

(8) I ∩ J = (0] ⇔ I ⊆ J∗ ⇔ J ⊆ I∗

(9) (I ∪ J)∗ = I∗ ∩ J∗

Theorem 2.2. Let L be an ASL with 0. Then for any x, y ∈ L, we have the
following.

(1) x 6 y ⇒ [y]∗ ⊆ [x]∗

(2) [x]∗ ⊆ [y]∗ ⇒ [y]∗∗ ⊆ [x]∗∗

(3) x ∈ [x]∗∗

(4) (x]∗ = [x]∗

(5) (x] ∩ [x]∗ = {0}
(6) [x ◦ y]∗ = [y ◦ x]∗
(7) [x]∗ ∩ [y]∗ ⊆ [x ◦ y]∗
(8) [x ◦ y]∗∗ = [x]∗∗ ∩ [y]∗∗

(9) [x]∗∗∗ = [x]∗

(10) [x]∗ ⊆ [y]∗ ⇔ [y]∗∗ ⊆ [x]∗∗

Theorem 2.3. Let L be an ASL with 0. A proper filter M of L is maximal if
and only if for any a ∈ L−M , there exists b ∈ M such that a ◦ b = 0.

Theorem 2.4. Let L be an ASL with 0, in which intersection of any family of
S-ideals is again an S-ideal. Then the following are equivalent:

(1) L is 0-distributive ASL.
(2) A∗ is an S-ideal, for all A( ̸= ∅) ⊆ L.
(3) SI(L) is pseudo-complemented semilattice.
(4) SI(L) is 0-distributive semilattice.
(5) PSI(L) is 0-distributive semilattice.

Theorem 2.5. Let L be 0-distributive ASL. Then every maximal filter of L is
a prime filter.

Definition 2.10. An element a in an ASL L with 0 is said to be dense element
if [a]∗ = {0}.

Note that the set of all dense elements in an ASL with 0 is denoted by D.
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Definition 2.11. Let (P,6) be a poset. Then P is said to satisfy ascending
chain condition (acc) if every ascending chain in P is terminate.

Definition 2.12. An element x in a semilattice L is said to be meet-prime if
for any a, b ∈ L, a ∧ b 6 x implies a 6 x or b 6 x.

Definition 2.13. Let L be a lattice with greatest element 1. An element a ∈ L
is said to be a dual atom if a is covered by 1.

Theorem 2.6. Let (L,∨,∧) be a lattice. Then for any x, y, z ∈ L, the following
conditions are equivalent:

(1) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)
(2) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
(3) (x ∨ y) ∧ z 6 x ∨ (y ∧ z).

Theorem 2.7. If P is a partial ordered set bounded above each of whose non-
viod subsets R has an infimum, then each non-void subset P will have a supremum,
too, and by the definitions

∩
R = inf(R),

∪
R = sup(R), then P becomes a com-

plete lattice.

Definition 2.14. A complemented distributive lattices is called Boolean alge-
bra.

3. Minimal Prime S-ideals

It is well-known that a minimal prime ideal in a semilattice S is a minimal
element in the set of all prime ideals of S. Analogy, a minimal prime S-ideal in an
ASL L is a minimal element in the set of all prime S-ideal of L. In this section,
we derive a necessary and sufficient conditions for a prime S-ideal to become a
minimal prime S-ideal in a 0-distributive ASL. Also, we prove some basic properties
of minimal prime S-ideals in a 0-distributive ASL. Obtain a set of identities for
a prime S-ideal to become a minimal prime S-ideal. First, we begin with the
following.

Lemma 3.1. Let L be an ASL. Then a subset P of L is a prime S-ideal if and
only if L− P is a prime filter.

Proof. Suppose P is a prime S-ideal of L. Now, we shall prove that L − P
is a prime filter. Clearly L − P is a nonempty proper subset of L. Now, let x, y ∈
L − P . Then x, y /∈ P . Since P is prime, x ◦ y /∈ P . Thus x ◦ y ∈ L − P . Let
x ∈ L − P and t ∈ L such that t ◦ x = x. Now, if t /∈ L − P , then t ∈ P and
hence x = t ◦ x ∈ P , a contradiction. Therefore t ∈ L− P . Thus L− P is a filter.
Now, suppose F1, F2 are filters of L such that F1 * L− P and F2 * L− P . Then
choose a ∈ F1 such that a /∈ L − P and b ∈ F2 such that b /∈ L − P . Therefore
a, b ∈ P . Since P is an S-ideal, there exists d ∈ P such that d ◦ a = a, d ◦ b = b.
It follows that d ∈ F1 and d ∈ F2. Hence d ∈ F1 ∩ F2 and also d /∈ L − P . Hence
F1 ∩ F2 * L− P . Thus L− P is a prime filter.

Conversely, suppose L − P is a prime filter. Now, we shall prove that P is a
prime S-ideal of L. Since L− P is nonempty proper subset of L, P is a nonempty
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proper subset of L. Now, let x ∈ P and t ∈ L. Then x /∈ L − P . Now, if
x ◦ t ∈ L− P , then t ◦ x ∈ L− P and hence x ∈ L− P , a contradiction. Therefore
x ◦ t /∈ L − P . Thus x ◦ t ∈ P . Now, let x, y ∈ P . Then x, y /∈ L − P . It
follows that [x) * L− P, [y) * L− P . Hence [x) ∩ [y) * L− P . Thus there exists
z ∈ [x) ∩ [y) such that z /∈ L − P . Since z ∈ [x), z ◦ x = x. Similarly, we get
z ◦ y = y. Therefore z ∈ P such that z ◦ x = x and z ◦ y = y. Thus P is an
S-ideal. Now, let x, y ∈ L such that x, y /∈ P . Then x, y ∈ L−P and hence x◦ y ∈
L−P since L−P is a filter. Therefore x ◦ y /∈ P . Thus P is a prime S-ideal. �

It is well-known that every proper filter of an ASL L is contained in a maximal
filter and hence every non-zero element is contained in a maximal filter. In the
following we give necessary and sufficient condition for a subset of a 0-distributive
ASL to become a minimal prime S-ideal.

Theorem 3.1. Let L be a 0-distributive ASL. Then a subset M of L is a
minimal prime S-ideal if and only if L−M is a maximal filter.

Proof. Suppose M is a minimal prime S-ideal of L. Now, we shall prove that
L −M is a maximal filter. Since M is a prime S-ideal, by Lemma 3.1, L −M is
a prime filter. Therefore there exists a maximal filter (say) F such that L −M is
contained in a maximal filter F . Since L is 0-distributive, F is a prime filter. It
follows that L−F is a prime S-ideal which is contained in M . Since M is minimal
prime S-ideal, L− F = M . Hence L−M is a maximal filter.

Conversely, suppose L−M is a maximal filter in L. Since L is 0-distributive,
L −M is a prime filter and hence by Lemma 3.1, M is a prime S-ideal. Suppose
J is a prime S-ideal of L such that J $ M . Then L −M is filter which properly
contained in a proper filter L − J , a contradiction. Thus M is a minimal prime
S-ideal. �

Corollary 3.1. Let L be a 0-distributive ASL. Then every prime S-ideal
contains a minimal prime S-ideal.

Proof. Suppose P is a prime S-ideal of L. Then by Lemma 3.1, L − P is
a proper filter. Hence there exists a maximal filter H of L such that L − P is
contained in H. It follows that P contains a minimal prime S-ideal L−H. �

In the following theorem we derive necessary and sufficient conditions for a
prime S-ideal to become minimal prime S-ideal.

Theorem 3.2. Let L be a 0-distributive ASL. Then a prime S-ideal M of L is
minimal if and only if [x]∗ −M ̸= ∅ for any x ∈ M .

Proof. Suppose M is a minimal prime S-ideal of L and x ∈ M . Then by
Theorem 3.1, L − M is a maximal filter. Since x ∈ L − (L − M), there exists
y ∈ L−M such that x ◦ y = 0. Hence y ∈ [x]∗ and y /∈ M . Thus [x]∗ −M ̸= ∅.

Conversely, assume the condition. Now, we shall prove that M is minimal
prime S-ideal. Let z /∈ L − M . Then z ∈ M and hence [z]∗ − M ̸= ∅. Hence
choose y ∈ [z]∗ such that y /∈ M . Thus there exists y ∈ L−M such that y ◦ z = 0.
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Therefore L−M is a maximal filter. Hence by Theorem 3.1, M is a minimal prime
S-ideal. �

Corollary 3.2. Let L be a 0-distributive ASL. Then a prime S-ideal M of L
is minimal if and only if it contains precisely one of {x}, [x]∗ for every x ∈ L.

Proof. SupposeM is a minimal prime S-ideal in L and x ∈ L. Now, if x ∈ M ,
then by Theorem 3.2, [x]∗−M ̸= ∅. Therefore there exists t ∈ [x]∗ such that t /∈ M .
Hence [x]∗ * M . Suppose [x]∗ ⊆ M and suppose x ∈ M . Then x /∈ L − M and
hence x ∈ L− (L−M). Since M is a minimal prime S-ideal, L−M is a maximal
filter. Therefore there exists y ∈ L−M such that x ◦ y = 0. It follows that y ∈ [x]∗

and y /∈ M . Hence [x]∗ * M , a contradiction. Therefore x /∈ M .
Conversely, assume the condition. Let y ∈ L−(L−M). Then y ∈ M . Therefore

by assumption, [y]∗ * M . Hence there exists z ∈ [y]∗ such that z /∈ M . Therefore
z ∈ L − M such that y ◦ z = 0. Hence L − M is a maximal filter. It follows by
Theorem 3.1, M is a minimal prime S-ideal. �

Corollary 3.3. Let L be a 0-distributive ASL, in which intersection of any
family of S-ideals is again an S-ideal and let M be a minimal prime S-ideal. Then
x ∈ M if and only if [x]∗∗ ⊆ M .

Proof. Suppose M is a minimal prime S-ideal in L and x ∈ M . Then by
Theorem 3.1, L−M is a maximal filter. Since x /∈ L−M , there exists y ∈ L−M
such that x ◦ y = 0 and hence y ∈ [x]∗. Suppose [x]∗∗ * M . Then there exists
z ∈ [x]∗∗ such that z /∈ M and hence z ∈ L−M . Since L−M is a filter, y◦z ∈ L−M .
On the other hand, since y ∈ [x]∗, y ◦ z ∈ [x]∗. Similarly, y ◦ z ∈ [x]∗∗. It follows
that y ◦ z ∈ [x]∗ ∩ [x]∗∗ = {0}. Hence y ◦ z = 0. Therefore 0 = y ◦ z ∈ L − M .
Hence L−M = L, a contradiction to L−M is a maximal filter. Thus [x]∗∗ ⊆ M .

Converse is clear, since x ∈ [x]∗∗. �
Recall that I∗ is the pseudo-complement of an S-ideal I in the semilattice

SI(L), of all S-ideals in a 0-distributive ASL. Also, note that the set of all min-
imal prime S-ideals in 0-distributive ASL is denoted by M. In the following we
characterize the pseudo-complement I∗ of an S-ideal I in 0-distributive ASL.

Theorem 3.3. Let L be a 0-distributive ASL, in which intersection of any
family of S-ideals is again an S-ideal. Then for any S-ideal I of L, I∗ is the
intersection of all minimal prime S-ideals not containing I.

Proof. Suppose I is an S-ideal of L. Then we have, I ∩ I∗ = (0]. Now, let
M be a minimal prime S-ideal of L. Since I ∩ I∗ = (0] ⊆ M , either I ⊆ M or
I∗ ⊆ M . Therefore I∗ ⊆ ∩{M ∈ M : I " M}. Suppose I∗ ⊂ ∩{M ∈ M : I " M}.
Then there exists x ∈ ∩{M ∈ M : I " M} such that x /∈ I∗. Therefore there exists
y ∈ I such that x ◦ y ̸= 0. Hence [x ◦ y) is a proper filter. Therefore there exists a
maximal filter (say) F of L such that [x ◦ y) ⊆ F . This implies x ◦ y ∈ F . Since
x ◦ y 6 y, y ∈ F . It follows that y /∈ L − F . Hence I * L − F . Since L − F is
a minimal prime S-ideal, ∩{M ∈ M : I " M} ⊆ L − F . On the other hand, we
have x ◦ y ∈ F and hence y ◦ x ∈ F and y ◦ x 6 x. Hence x ∈ F , a contradiction to
x ∈ L− F . Therefore ∩{M ∈ M : I " M} = I∗. �
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Next, we introduce the concept of an annihilator S-ideal in an ASL with 0 and
characterize annihilator S-ideals in terms of minimal prime S-ideals.

Definition 3.1. Let L be an ASL with 0. Then an S-ideal I of L is said to
be an annihilator S-ideal if I = A∗ for some nonempty subset A of L.

It can be easily seen that if I is an annihilator S-ideal in an ASL L with 0 then
I = I∗∗.

Example 3.1. Let L = {0, a, b, c} and define a binary operation ◦ on L as
follows:

◦ 0 a b c
0 0 0 0 0
a 0 a 0 a
b 0 0 b b
c 0 a b c

Then clearly (L, ◦) is an ASL with 0. Now, put I = {0, a}. Then clearly I = I∗∗.
Hence I is an annihilator S-ideal.

In the following we characterize annihilator S-ideals in terms of minimal prime
S-ideals.

Theorem 3.4. Let L be a 0-distributive ASL, in which intersection of any
family of S-ideals is again an S-ideal. Then any annihilator S-ideal I of L is the
intersection of all minimal prime S-ideals containing it.

Proof. Suppose I is an annihilator S-ideal in a 0-distributive ASL L. Then
I = I∗∗. Therefore by Theorem 3.3, we have (I∗)∗ = ∩{M ∈ M : I∗ " M}. Since
I ∩ I∗ = (0] ⊆ M and M is prime, I ⊆ M . It follows that

I = (I∗)∗ = ∩{M ∈ M : I ⊆ M}.

�

Corollary 3.4. Let L be a 0-distributive ASL, in which intersection of any
family of S-ideals is again an S-ideal. Then a principal S-ideal of L is an anni-
hilator S-ideal if and only if it is the intersection of all minimal prime S-ideals
containing it.

Proof. Suppose I = (a] is an annihilator S-ideal. Then (a] = (a]∗∗. Therefore
by Theorem 3.3,

((a]∗]∗ = ∩{M ∈ M : (a]∗ " M} = ∩{M ∈ M : (a] ⊆ M}.

Conversely, assume the condition. Now, we shall prove that every principal
S-ideal of L is an annihilator S-ideal. Let I = (a] be a principal S-ideal of L. Then
(a] = ∩{M ∈ M : (a] ⊆ M}. Consider

((a]∗]∗ = ∩{M ∈ M : (a]∗ " M} = ∩{M ∈ M : (a] ⊆ M} = (a].

Therefore (a] = (a]∗∗. Thus (a] is an annihilator S-ideal. �
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Corollary 3.5. The intersection of all minimal prime S-ideals of a 0-distribu-
tive ASL is {0}.

In the following we introduce the concept of dense S-ideal in 0-distributive ASL.
An interesting property of non-dense S-ideal in a 0-distributive ASL is investigated
in the following.

Definition 3.2. An S-ideal I in a 0-distributive ASL L is called dense if
I∗ = {0}.

Example 3.2. Let L = {0, a, b, c} and define a binary operation ◦ on L as
follows:

◦ 0 a b c
0 0 0 0 0
a 0 a a a
b 0 a b b
c 0 a b c

Then clearly (L, ◦) is an ASL with 0. Now, put I = {0, a}. Then clearly, I is an
S-ideal and also I∗ = {0}. Therefore I is dense.

Theorem 3.5. Any non-dense ideal of a 0-distributive ASL is contained in a
minimal prime S-ideal and the converse is true for principal S-ideals.

Proof. Suppose I is a non-dense S-ideal of a 0-distributive ASL L. Then
I∗ ̸= {0}. Therefore we can choose t ∈ I∗ such that t ̸= 0. Hence there exists a
maximal filter F such that t ∈ F . This implies t /∈ L−F . Since L−F is a minimal
prime S-ideal and I∗ " L− F, I ⊆ L− F .

Suppose (a] is contained in a minimal prime S-ideal (say) M in L. This implies
a ∈ M . Since a ∈ M, [a]∗ " M . Hence (a]∗ = [a]∗ ̸= {0}. Thus (a] is non-
dense. �

Recall that an element x in an ASL L with 0 is called dense element if [x]∗ =
{0}. Now, we prove the following.

Theorem 3.6. Let L be a 0-distributive ASL. Then an element in L belongs
to some minimal prime S-ideal of L if and only if it is non-dense.

Proof. Suppose x ∈ L such that x is in a minimal prime S-ideal (say) M of
L. Then by Corollary 3.2, [x]∗ " M . Hence [x]∗ ̸= {0}. Therefore x is non-dense
element.

Converse is clear. �
In the following, we derive a set of identities for a prime S-ideal to become

minimal prime S-ideal.

Theorem 3.7. Let L be a 0-distributive ASL. Then the following are equivalent:

(1) Every prime S-ideal is minimal prime.
(2) Every prime filter is minimal prime.
(3) Every prime filter is maximal.
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Proof. (1) ⇒ (2): Assume (1). Now, we shall prove that every prime filter is
minimal prime. Suppose F is a prime filter and suppose F is not minimal. Then
there exists a prime filter F1 such that F1 ⊂ F . This implies L−F is contained in
L−F1 and both L−F, L−F1 are prime S-ideals. But, by (1), L−F1 is minimal
prime and L − F is contained in L − F1, a contradiction. Therefore F is minimal
prime filter.

(2) ⇒ (3): Assume (2). Now, we shall prove that every prime filter is maximal.
Suppose H is a prime filter and suppose H is not maximal. Then there exists a
maximal filter M such that H is contained in M . Since L is 0-distributive, M is
a prime filter. Hence by (2), M is a minimal prime filter. It follows that H = M .
Thus H is maximal.

(3) ⇒ (1): Assume (3). Now, we shall prove that every prime S-ideal is minimal
prime. Suppose P is a prime S-ideal in L. Suppose Q is a prime S-ideal of L such
that Q ⊆ P . Then L− P ⊆ L−Q and we have both L− P and L−Q are prime
filters. Hence by (3), we get Q = P . Thus P is minimal prime S-ideal. �

Finally, we give a necessary and sufficient condition for a prime S-ideal to
become minimal prime S-ideal.

Theorem 3.8. A prime S-ideal P is a minimal prime S-ideal in a 0-distributive
ASL L if and only if P consists precisely of all elements x ∈ L such that x ◦ y = 0
for some y /∈ P .

Proof. Suppose P is a minimal prime S-ideal in L and x ∈ P . Then by
Theorem 3.2, [x]∗ − P ̸= ∅. Hence we can choose y ∈ [x]∗ such that y /∈ P . It
follows that x ◦ y = 0 and y /∈ P . Suppose z ∈ L such that z ◦ x = 0 for some
x /∈ P . Then z ◦ x = 0 ∈ P . Since P is prime, z ∈ P . Thus P consists precisely of
all elements x ∈ L such that x ◦ y = 0 for some y /∈ P .

Conversely, assume the condition. Suppose Q is a prime S-ideal of L such that
Q ⊆ P . Suppose Q ⊂ P . Then there exists x ∈ P such that x /∈ Q. Therefore by
assumption, there exists y /∈ P such that x ◦ y = 0. Since x ◦ y = 0 ∈ Q and Q is
prime, x ∈ Q or y ∈ Q. It follows that y ∈ Q ⊂ P . Hence y ∈ P , a contradiction
to y /∈ P . Therefore Q = P . Thus P is minimal. �

4. Minimal prime annihilator S-ideal

Recall that if L is a 0-distributive ASL in which intersection of any family of
S-ideals is again an S-ideal then for any nonempty subset A of L, A∗ is an S-ideal
and also, clearly A∗ is an annihilator S-ideal (since A∗ = A∗∗∗). Let L be a 0-
distributive ASL in which intersection of any family of S-ideals is again an S-ideal.
Denote by B(L) the set {A∗ : ∅ ̸= A ⊆ L}. Thus B(L) is the set of all annihilator
S-ideals in L. In this section, we prove that B(L) is a complete Boolean algebra.
Also, derive a set of identities for any nonempty subset A of a 0-distributive ASL,
in which intersection of any family of S-ideals is again an S-ideal, the annihilator
S-ideal A∗ to become a minimal prime annihilator S-ideal. First, we prove that
B(L) is a complete Boolean algebra. For this we need the following.
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Lemma 4.1. Let L be an ASL with 0. Then for any S-ideals I, J of L,

(I ∩ J)∗∗ = I∗∗ ∩ J∗∗.

Proof. Let I, J ∈ SI(L). Then we have I ∩ J ⊆ I, J . Hence by Theorem
2.1(3), we get I∗, J∗ ⊆ (I ∩ J)∗. It follows that (I ∩ J)∗∗ ⊆ I∗∗, J∗∗. Thus
(I ∩ J)∗∗ ⊆ I∗∗ ∩ J∗∗.

Conversely, let x ∈ I∗∗∩J∗∗ and y ∈ (I∩J)∗. Then for any i ∈ I and j ∈ J , we
have i◦j ∈ I∩J . Hence (y◦ i)◦j = y◦(i◦j) = 0. Therefore y◦ i ∈ J∗. Again, since
x ∈ J∗∗ and y ◦ i ∈ J∗, we get (x ◦ y) ◦ i = x ◦ (y ◦ i) = 0. Hence x ◦ y ∈ I∗. Since
x ∈ I∗∗, we get x◦y ∈ I∗∗. Thus x◦y ∈ I∗∩ I∗∗ = {0}. Hence x◦y = 0. Therefore
x ∈ (I ∩ J)∗∗. Thus I∗∗ ∩ J∗∗ ⊆ (I ∩ J)∗∗. Hence (I ∩ J)∗∗ = I∗∗ ∩ J∗∗. �

Corollary 4.1. If {Ii | i ∈ ∆} is a family of S-ideals of L, then

(
∩
i∈∆

Ii)
⋆⋆ =

∩
i∈∆

(Ii)
⋆⋆.

Theorem 4.1. Let L be a 0-distributive ASL,in which intersection of any family
of S-ideals is again an S-ideal. Then the set B(L), of all annihilator S-ideals of L
is a complete Boolean algebra.

Proof. Clearly, the set B(L), of all annihilator S-ideals of a 0-distributive
ASL L is nonempty, since {0}, L ∈ B(L). Also, clearly, B(L) is a poset with
respect to set inclusion. Now, for any A∗, B∗ ∈ B(L), define A∗∧B∗ = A∗∩B∗ and
A∗∨B∗ = (A∗∗∩B∗∗)∗. Then clearly ∧,∨ are binary operations on B(L) and also,
clearly (B(L),∨,∧) is a bounded lattice with bounds {0} and L. Let A∗ ∈ B(L).
Then we have A∗∗ ∈ B(L). Now, A∗ ∧ A∗∗ = A∗ ∩ A∗∗ = {0} and A∗ ∨ A∗∗ =
(A∗∗ ∩A∗∗∗)∗ = {0}∗ = L. Thus B(L) is a complemented lattice. Finally, we shall
prove that B(L) is a distributive lattice. That is, enough to prove that for any
A∗, B∗, C∗ ∈ B(L), (A∗ ∨B∗) ∧ C∗ ⊆ A∗ ∨ (B∗ ∧ C∗). We have A∗ ∩ C∗ ∩ [A∗∗ ∩
(B∗ ∩ C∗)∗] = (0]. It follows that C∗ ∩ [A∗∗ ∩ (B∗ ∩ C∗)∗] ⊆ A∗∗. Again, we have
B∗ ∩ C∗ ∩ [A∗∗ ∩ (B∗ ∩ C∗)∗] = (0]. Therefore C∗ ∩ [A∗∗ ∩ (B∗ ∩ C∗)∗] ⊆ B∗∗.
Hence C∗ ∩ [A∗∗ ∩ (B∗ ∩ C∗)∗] ⊆ A∗∗ ∩ B∗∗. It follows that (C∗ ∩ (A∗∗ ∩ (B∗ ∩
C∗)∗))∩(A∗∗∩B∗∗)∗ = (0]. Hence we get (A∗∗∩B∗∗)∗∩C∗ ⊆ (A∗∗∩(B∗∩C∗)∗)∗.
Therefore (A∗ ∨B∗)∧C∗ ⊆ A∗ ∨ (B∗ ∧C∗). Therefore by Theorem 2.6, B(L) is a
distributive lattice. Then B(L) is a Boolean Algebra. Also, by Theorem 2.7, and
by Corollary 4.1, B(L) is a complete Boolean algebra. �

In the following we establish a set of identities which characterize minimal prime
annihilator S-ideals in 0-distributive ASLs. For, this first we need the following.

Lemma 4.2. Let L be a 0-distributive ASL, in which intersection of any family
of S-ideals is again an S-ideal. Then an annihilator S-ideal A∗ is a prime S-ideal
in L if and only if A∗ is a dual atom in B(L).

Proof. Suppose A∗ is a prime S-ideal in L. Now, we shall prove that A∗ is
a dual atom in B(L). Suppose A∗ ⊆ B∗ and suppose B∗ ̸= L. Then there exists
s ∈ L such that s /∈ B∗. Hence s ◦ b ̸= 0 for some b( ̸= 0) ∈ B. Now, let c ∈ B∗.
Then c ◦ b = 0 ∈ A∗. Therefore either c ∈ A∗ or b ∈ A∗ since A∗ is a prime S-ideal.
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Suppose b ∈ A∗. Then b ∈ B∗ and also b ∈ B and hence b ◦ b = 0. Therefore b = 0,
a contradiction. Hence b /∈ A∗. It follows that c ∈ A∗. Hence B∗ ⊆ A∗. Therefore
A∗ = B∗. Thus A∗ is a dual atom.

Conversely, suppose A∗ is a dual atom in B(L). Now, we shall prove that
A∗ is a prime S-ideal. Clearly A∗ is an S-ideal. Again, since A∗ is a dual atom,
A∗ ̸= L. Therefore there exists s ∈ L such that s /∈ A∗. This implies s ◦ a ̸=
0 for some a( ̸= 0) ∈ A. It follows that [a]∗ ̸= L. Since a ∈ A, A∗ ⊆ [a]∗ ̸= L.
Therefore A∗ = [a]∗ since A∗ is a dual atom. Suppose x, y ∈ L such that x◦y ∈ [a]∗

and suppose x /∈ [a]∗. Since x ◦ a 6 a, [a]∗ ⊆ [x ◦ a]∗. Again, since [a]∗ = A∗,
which is a dual atom, either [a]∗ = [x ◦ a]∗ or [x ◦ a]∗ = L. Suppose [x ◦ a]∗ = L.
Then x ∈ L = [x ◦ a]∗. It follows that x ◦ (x ◦ a) = 0. Hence x ◦ a = 0. Therefore
x ∈ [a]∗, a contradiction to x /∈ [a]∗. Hence [a]∗ = [x ◦ a]∗. Now, since x ◦ y ∈ [a]∗,
(x◦y)◦a = 0. It follows that y ∈ [x◦a]∗ = [a]∗. Therefore y ∈ [a]∗. Thus A∗ = [a]∗

is a prime S-ideal. �

It is well-known that, in a Boolean algebra B, an element a is meet-prime if
and only if it is a dual atom. Hence we have the following.

Corollary 4.2. Let L be a 0-distributive ASL, in which intersection of any
family of S-ideals is again an S-ideal. Then an annihilator S-ideal A∗ is prime in
L if and only if A∗ is a meet-prime element of B(L).

Lemma 4.3. Let L be a 0-distributive ASL, in which intersection of any family
of S-ideals is again an S-ideal. Then every prime annihilator S-ideal is minimal
prime in L.

Proof. Suppose P is an annihilator prime S-ideal. Then P = A∗ for some
A( ̸= ∅) ⊆ L. Suppose A = {0}. Then A∗ = [0]∗ = L. Hence P = L, a contradiction
to P is a prime S-ideal. Therefore A ̸= {0}. Now, let x ∈ A∗. Then x ◦ a =
0 for all a ∈ A. It follows that a ∈ [x]∗ for all a ∈ A. Therefore A ⊆ [x]∗. Now, we
shall prove that [x]∗ − A∗ ̸= ∅. Let a(̸= 0) ∈ A. Then a ∈ [x]∗. Suppose a ∈ A∗.
Then a ◦ a = 0. It follows that a = 0, a contradiction to a ̸= 0. Hence a /∈ A∗.
Therefore A ⊆ [x]∗ − A∗. Hence [x]∗ − A∗ ̸= ∅. It follows that [x]∗ − P ̸= ∅. Thus
by Theorem 3.2, P is a minimal prime S-ideal. �

Theorem 4.2. Let L be a 0-distributive ASL, in which intersection of any
family of S-ideals is again an S-ideal. Then for any nonempty subset A of L, the
following are equivalent:

(1) A∗ is a dual atom in B(L).
(2) A∗ is a meet-prime element of B(L).
(3) A∗ is a minimal prime annihilator S-ideal.
(4) A∗ is a prime annihilator S-ideal.

It is well-known that if a Boolean algebra B satisfies ascending chain condi-
tion(acc) then B is finite. Thus there will be only finite number of dual atoms in
B when it satisfies acc. In accordance with this observation and by Lemma 4.3, we
have the following.
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Lemma 4.4. Let L be a 0-distributive ASL, in which intersection of any family
of S-ideals is again an S-ideal. Then L contains a finite family of minimal prime
S-ideals with intersection {0} when B(L) satisfies ascending chain condition.

Proof. Suppose B(L) satisfies ascending chain condition and suppose A∗
1,.....,

A∗
n are dual atoms in B(L). Since A∗

i is a dual atom, we get A∗
i = [ai]

∗ for some

ai( ̸= 0) ∈ Ai for i = 1, 2, 3, ...., n. Let x( ̸= 0) ∈
n∩

i=1

A∗
i . Then by Theorem 3.2 in

[1], [x]∗ ⊆ A∗
j for j, 1 6 j 6 n. Since x ∈ A∗

j = [aj ]
∗, x ◦ aj = 0. This implies

aj ∈ [x]∗ ⊆ A∗
j . hence we get aj = 0, a contradiction to a′is are non-zero. Thus

n∩
i=1

A∗
i = {0}. �

Theorem 4.3. Let L be a 0-distributive ASL, in which intersection of any fam-
ily of S-ideals is again an S-ideal and let B(L) satisfies ascending chain condition.
Then the set complement of union of dual atoms in B(L) is the set of all dense
elements of L.

Proof. Suppose B(L) satisfies ascending chain condition. Then we have B(L)
is finite. Suppose A∗

1, ....., A
∗
n are distinct dual atoms in L and suppose x ∈ L −

n∪
i=1

A∗
i . Now, we shall prove that [x]∗ = {0}. Suppose [x]∗ ̸= {0}. Then there exists

y( ̸= 0) ∈ L such that x ◦ y = 0. This implies x ∈ [y]∗. Since [y]∗ ̸= L, it follows

that [y]∗ ⊆ A∗
j for some j 6 n. Hence x ∈

n∪
i=1

A∗
j , a contradiction. Therefore

[x]∗ = {0}. Hence x is a dense element. Conversely, suppose x /∈ L−
n∪

i=1

A∗
i . Then

x ∈
n∪

i=1

A∗
i . Therefore x ∈ A∗

j for some j 6 n. Put A∗
j ◦ (

∩
i ̸=j

A∗
i ) = {x ◦ y :

x ∈ A∗
j , y ∈

∩
i ̸=j

A∗
i }. Let x ◦ y ∈ A∗

j ◦ (
∩
i ̸=j

A∗
i ). Then x ∈ A∗

j and y ∈
∩
i̸=j

A∗
i .

This implies x ◦ y ∈ A∗
j and x ◦ y ∈

∩
i ̸=j

A∗
i . It follows that x ◦ y ∈ A∗

j ◦ (
∩
i ̸=j

A∗
i ).

Hence x ◦ y ∈
n∩

i=1

A∗
i . Therefore A∗

j ◦ (
∩
i ̸=j

A∗
i ) ⊆

n∩
i=1

A∗
i . Since by Lemma 4.4,

n∩
i=1

A∗
i = {0}, A∗

j ◦
∩
i ̸=j

A∗
i = {0}. Since A∗

i ’s are distinct, there exists y( ̸= 0) ∈
∩
i ̸=j

A∗
i

such that y ◦ x = 0. Therefore y ∈ [x]∗. Hence [x]∗ ̸= {0}. Thus x is non-dense.
Therefore the set complement of union of dual atoms in B(L) is the set of all dense
elements of L. �
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