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0-DISTRIBUTIVE ALMOST LATTICES

G. Nanaji Rao and R. Venkata Aravinda Raju

Abstract. The concept of annihilator of a nonempty subset of an AL with 0
is introduced and proved some basic properties of annihilators in an AL with
0. We introduced the concept of 0-distributive AL and obtained necessary and
sufficient conditions for an AL with 0 to become 0-distributive AL in terms of

annihilators, ideals and pseudo-complementations.

1. Introduction

J. C. Varlet [1], introduced the concept of 0-distributive lattices to generalize
the notion of pseudo-complemented lattices and observed that every distributive
lattice with 0 is 0-distributive and also, observed every pseudo-complemented lat-
tice is 0-distributive. The concept of almost lattice (AL) was introduced by Nanaji
Rao and Habtamu Tiruneh Alemu [2] as a common abstraction of almost all lat-
tice theoretic generalizations of Boolean algebra like distributive lattices, almost
distributive lattices and lattices and established necessary and sufficient conditions
for an AL L to become lattice. Also, they introduced the concepts of initial seg-
ments, ideals and filters in an AL and proved that the set I(L) of all ideals in an
AL L form a complete lattice and proved the PI(L) of all principal ideals of L is a
sub lattice of the lattice I(L). The concept of pseudo-complemented almost lattices
was introduced by G. Nanaji Rao and R. Venkata Aravinda Raju [4] and proved
some basic properties of pseudo-complementation on an AL L. Also, they proved
that pseudo-complementation on an AL L is equationally definable and proved that
a one-to-one correspondence between set of pseudo-complementations on an AL L
and the set of all maximal elements in L.
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In this paper, the concept of annihilator of a nonempty subset of an AL L is
introduced and proved some basic properties of annihilators in L. Next, the con-
cept of 0-distributive AL is introduced and gave certain examples of 0-distributive
ALs. Obtained necessary and sufficient conditions for an AL with 0 to become
0-distributive AL in terms of annihilators, ideals and pseudo-complementations.

2. Preliminaries

In this section we collect few important definitions and results which are already
known and which will be used more frequently in the paper.

Definition 2.1. An algebra (L,∨,∧, 0) of type (2, 2, 0) is called an AL with 0
if, for any a, b, c ∈ L, it satisfies the following conditions:

(1) (a ∧ b) ∧ c = (b ∧ a) ∧ c
(2) (a ∨ b) ∧ c = (b ∨ a) ∧ c
(3) (a ∧ b) ∧ c = a ∧ (b ∧ c)
(4) (a ∨ b) ∨ c = a ∨ (b ∨ c)
(5) a ∧ (a ∨ b) = a
(6) a ∨ (a ∧ b) = a
(7) (a ∧ b) ∨ b = b
(8) 0 ∧ a = a

It can be easily seen that a ∧ b = a if and only if, a ∨ b = b in an AL.

Definition 2.2. Let L be an AL and a, b ∈ L. Then we define a is less than
or equal to b and write a 6 b if and only if a ∧ b = a or equivalently a ∨ b = b.

Theorem 2.1. The relation 6 is a partial ordering on an AL L and hence
(L,6) is a poset.

Definition 2.3. Let L be any nonempty set. Define, for any x, y ∈ L ,
x ∨ y = x = y ∧ x. Then, clearly L is an AL and is called descrete AL.

Definition 2.4. Let (P,6) be a poset. Then P is said to satisfy ascending
condition (acc) if every ascending chain in P is terminate.

Definition 2.5. Let L be an AL with 0. Then a unary operation a 7→ a∗

on L is called a pseudo-complementation on L if, for any a, b ∈ L, it satisfies the
following conditions:

(P1) a ∧ b = 0 ⇒ a∗ ∧ b = b
(P2) a ∧ a∗ = 0
(P3) (a ∨ b)∗ = a∗ ∧ b∗

Definition 2.6. Let L be an AL. Then a nonempty subset I of L is said to
be an ideal of L if it satisfies the following:

(1) If x, y ∈ I then there exists d ∈ I such that d ∧ x = x and d ∧ y = y.
(2) If x ∈ I and a ∈ L then x ∧ a ∈ I.
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Lemma 2.1. Let L be an AL and I be an ideal of L. Then the following are
equivalent:

(1) x, y ∈ I implies x ∨ y ∈ I. and
(2) x, y ∈ I implies there exists d ∈ I such that d ∧ x = x and d ∧ y = y.

Corollary 2.1. Let L be an AL and a ∈ L. Then (a] = {a ∧ x| x ∈ L} is an
ideal of L and is called principal ideal generated by a.

Corollary 2.2. Let L be an AL and a, b ∈ L. Then a ∈ (b] if and only if
a = b ∧ a.

Corollary 2.3. Let L be an AL and a, b ∈ L. Then (a ∧ b] = (b ∧ a].

Theorem 2.2. Let L be an AL. Then the set I(L) of all ideals of L form
a lattice under set inclusion in which the glb and lub for any I, J ∈ I(L) are
respectively I ∧ J = I ∩ J and I ∨ J = {x ∈ L : (a ∨ b) ∧ x = x for some a ∈ I and
b ∈ J}.

Lemma 2.2. Let L be an AL. Then for any a, b ∈ L, we have the following:
(1) (a] ∨ (b] = (a ∨ b] = (b ∨ a] and
(2) (a] ∩ (b] = (a ∧ b] = (b ∧ a].

Theorem 2.3. Let L be an AL. Then the set PI(L) of all principal ideals of
L is a sublattice of the lattice I(L) of all ideals of L.

3. Annihilators

In this section, we introduce the concept of annihilator of a nonempty subset
of an AL L with 0 and prove some basic properties of annihilators in L. First, we
begin this section with the following definition.

Definition 3.1. Let L be an AL with 0. Then for any nonempty subset A of
L, define A∗ = {x ∈ L : x ∧ a = 0 for all a ∈ A}. Here A∗ is called the annihilator
of A in L.

Note that if A = {a} then we write [a]∗ instead of A∗. In the following we
prove some basic properties of annihilators.

Theorem 3.1. Let L be an AL with 0. Then for any non-empty subsets A,B
of L, we have the following.

(1) A∗ =
∩

a∈A

[a]∗

(2) (A ∩B)∗ = (B ∩A)∗

(3) If A ⊆ B, then B∗ ⊆ A∗

(4) A∗ ∩B∗ ⊆ (A ∩B)∗

(5) A ⊆ A∗∗

(6) A∗∗∗ = A∗

(7) A∗ ⊆ B∗ ⇔ B∗∗ ⊆ A∗∗

(8) (A ∪B)∗ = A∗ ∩B∗ = (B ∪A)∗
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Proof. (1) Let x ∈ A∗. Then x ∧ a = 0 for all a ∈ A. Hence x ∈ [a]∗ for all
a ∈ A. Therefore x ∈

∩
a∈A

[a]∗. Thus A∗ ⊆
∩

a∈A

[a]∗. Conversely, suppose t ∈
∩

a∈A

[a]∗.

Then t ∈ [a]∗ for all a ∈ A. This implies t ∧ a = 0 for all a ∈ A. Therefore t ∈ A∗.
Thus

∩
a∈A

[a]∗ ⊆ A∗. Therefore A∗ =
∩

a∈A

[a]∗.

(2) Proof is clear, since A ∩B = B ∩A.

(3) Suppose A ⊆ B and x ∈ B∗. Then x∧a = 0, for all a ∈ B. Hence x∧a = 0
for all a ∈ A. Thus x ∈ A∗. Therefore B∗ ⊆ A∗.

(4) Since A∩B ⊆ A,B, by (3), we get A∗, B∗ ⊆ (A∩B)∗. Therefore A∗∩B∗ ⊆
(A ∩B)∗.

(5) Suppose x ∈ A and y ∈ A∗. Then y ∧ a = 0 for all a ∈ A. In particular,
y ∧ x = 0. Hence x ∈ A∗∗. Thus A ⊆ A∗∗.

(6) From (5), we get A ⊆ A∗∗. Therefore from (3), we get A∗∗∗ ⊆ A∗. Con-
versely, suppose x ∈ A∗ and a ∈ A∗∗. Then x ∧ a = 0. Therefore x ∈ A∗∗∗ and
hence A∗ ⊆ A∗∗∗. Thus A∗∗∗ = A∗. Proof of (7) follows by conditions (3) and (6).

(8) we have A,B ⊆ A∪B. Therefore by (3), we get (A∪B)∗ ⊆ A∗, B∗. Hence
(A ∪ B)∗ ⊆ A∗ ∩ B∗. Conversely, suppose x ∈ A∗ ∩ B∗ and a ∈ A ∪ B. Then
we get x ∧ a = 0. Thus x ∈ (A ∪ B)∗ and hence A∗ ∩ B∗ ⊆ (A ∪ B)∗. Therefore
(A ∪B)∗ = A∗ ∩B∗. Since A ∪B = B ∪A, A∗ ∩B∗ = (B ∪A)∗. �

Corollary 3.1. Let L be an AL with 0. Then for any ideals I, J of L. we
have the following.

(1) I ∩ I∗ = (0]
(2) I∗ =

∩
a∈I

[a]∗

(3) (I ∩ J)∗ = (J ∩ I)∗

(4) I ⊆ J ⇒ J∗ ⊆ I∗

(5) I∗ ∩ J∗ ⊆ (I ∩ J)∗

(6) I ⊆ I∗∗

(7) I∗∗∗ = I∗

(8) I∗ ⊆ J∗ ⇔ J∗∗ ⊆ I∗∗

(9) (I ∪ J)∗ = I∗ ∩ J∗ = (J ∪ I)∗

Corollary 3.2. Let L be an AL with 0. Then for any ideals I, J of L, we
have the following.

(1) (I ∩ J)∗∗ = I∗∗ ∩ J∗∗

(2) I ∩ J = (0] ⇔ I ⊆ J∗ ⇔ J ⊆ I∗

Proof. (1) Clearly, (I ∩ J)∗∗ ⊆ I∗∗ ∩ J∗∗. Conversely, let x ∈ I∗∗ ∩ J∗∗ and
y ∈ (I ∩ J)∗. Then for any i ∈ I and j ∈ J , we have i ∧ j ∈ I ∩ J . It follows
y∧ (i∧ j) = 0. Hence (y∧ i)∧ j = 0 Therefore y∧ i ∈ J∗. Again, since x ∈ J∗∗ and
y ∧ i ∈ J∗, we get (x∧ y)∧ i = x∧ (y ∧ i) = 0. Therefore x∧ y ∈ I∗. Since x ∈ I∗∗,
x∧(x∧y) = 0. Hence x∧y = 0. Thus x ∈ (I∩J)∗∗. Therefore I∗∗∩J∗∗ ⊆ (I∩J)∗∗.
Hence (I ∩ J)∗∗ = I∗∗ ∩ J∗∗.
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(2) Suppose I ∩ J = (0]. Let x ∈ I and y ∈ J . Then x ∧ y ∈ I ∩ J = (0].
Therefore x ∧ y = 0. Hence x ∈ J∗. Thus I ⊆ J∗. Now, suppose I ⊆ J∗. Then
by condition (4) of Corollary 3.1., we get J∗∗ ⊆ I∗. Hence by condition (6) of
Corollary 3.1., we get J ⊆ I∗. Finally, suppose J ⊆ I∗. This implies I ∩J ⊆ I ∩ I∗.
It follows that I ∩ J = (0]. �

Corollary 3.3. Let L be an AL with 0. If {Ii : i ∈ ∆} is a family of ideals
of L, then (

∩
i∈∆

Ii)
∗∗ =

∩
i∈∆

(Ii)
∗∗.

Finally, we prove the following.

Theorem 3.2. Let L be an AL with 0. Then for any x, y ∈ L, we have the
following.

(1) (x] ∩ [x]∗ = (0]

(2) [x]∗ ∩ [x]∗∗ = (0]

(3) (x]∗ = [x]∗

(4) (x]∗ ∩ [x]∗∗ = (0]

(5) x 6 y ⇒ [y]∗ ⊆ [x]∗

(6) [x ∧ y]∗ = [y ∧ x]∗

(7) [x ∨ y]∗ = [y ∨ x]∗

(8) (x] ⊆ [x]∗∗

(9) [x]∗∗∗ = [x]∗

(10) [x]∗ ⊆ [y]∗ ⇔ [y]∗∗ ⊆ [x]∗∗.

(11) [x ∧ y]∗∗ = [x]∗∗ ∩ [y]∗∗

Proof. (1) Let t ∈ (x]∩ [x]∗. Then t ∈ (x] and t ∈ [x]∗. This implies t = x∧ t
and t ∧ x = 0. Hence t = 0. Therefore (x] ∩ [x]∗ = (0].

(2) Let t ∈ [x]∗ ∩ [x]∗∗. Then t ∈ [x]∗ and t ∈ [x]∗∗. This implies that t∧ t = 0.
Thus t = 0. Therefore [x]∗ ∩ [x]∗∗ = (0].

(3) Let t ∈ (x]∗. Then t ∧ s = 0 for all s ∈ (x]. In particular, t ∧ x = 0, since
x ∈ (x]. Thus t ∈ [x]∗. Therefore (x]∗ ⊆ [x]∗. Conversely, suppose t ∈ [x]∗. Then
t∧x = 0. Let s ∈ (x]. Then s = x∧s. Now, t∧s = t∧(x∧s) = (t∧x)∧s = 0∧s = 0.
Therefore t ∈ (x]∗. Hence [x]∗ ⊆ (x]∗. Thus (x]∗ = [x]∗. Proof of (4) follows by
condition (3).

(5) Suppose x 6 y. Let t ∈ [y]∗. Then t ∧ y = 0. Since x 6 y, t ∧ x 6 t ∧ y. It
follows that t ∧ x = 0. Hence t ∈ [x]∗. Therefore [y]∗ ⊆ [x]∗.

(6) Since x ∧ y = 0 if and only if y ∧ x = 0, [x ∧ y]∗ = [y ∧ x]∗.

(7) Since (x∨y)∧t = 0 if and only if (y∨x)∧t = 0 for all t ∈ L, [x∨y]∗ = [y∨x]∗.
(8) Let t ∈ (x] and s ∈ [x]∗. Then t = x ∧ t and s ∧ x = 0. Now, s ∧ t =

s ∧ (x ∧ t) = (s ∧ x) ∧ t = 0 ∧ t = 0. Therefore t ∈ [x]∗∗. Thus (x] ⊆ [x]∗∗.
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(9) From (8), we get (x] ⊆ [x]∗∗. Therefore, from condition (3) of theorem 3.1.
we get [x]∗∗∗ ⊆ [x]∗. Conversely, let t ∈ [x]∗ and s ∈ [x]∗∗. Then t ∧ s = 0. It
follows that t ∈ [x]∗∗∗. Hence [x]∗ ⊆ [x]∗∗∗. Thus [x]∗ = [x]∗∗∗.

Proof of (10) follows by condition (3) of Theorem 3.1. and by condition (9).

(11) Clearly, [x∧y]∗∗ ⊆ [x]∗∗∩ [y]∗∗. Conversely, suppose t ∈ [x]∗∗∩ [y]∗∗. Then
t ∈ [x]∗∗ and t ∈ [y]∗∗. We shall prove that t ∈ [x∧y]∗∗. Now, let s ∈ [x∧y]∗. Then
s ∧ (x ∧ y) = 0. Which implies (s ∧ x) ∧ y = 0. Therefore s ∧ x ∈ [y]∗ and we have
t ∈ [y]∗∗. It follows that t∧ (s∧x) = 0. Hence (t∧ s)∧x = 0. Therefore t∧ s ∈ [x]∗

and we have t ∈ [x]∗∗. We get t ∧ (t ∧ s) = 0 and hence t ∧ s = 0. Therefore
t ∈ [x ∧ y]∗∗. Hence [x]∗∗ ∩ [y]∗∗ ⊆ [x ∧ y]∗∗. Thus [x ∧ y]∗∗ = [x]∗∗ ∩ [y]∗∗. �

4. 0-distributive Almost Lattices

In this section, we introduce the concept of 0-distributive AL and give certain
examples of 0-distributive ALs. We establish necessary and sufficient conditions
for an AL with 0 to become 0-distributive AL in terms of annihilators, ideals and
pseudo-complementations. We begin this section with the following.

Definition 4.1. Let L be an AL with 0. Then L is said to be 0-distributive if
for any a, b, c ∈ L, a ∧ b = 0 and a ∧ c = 0 imply a ∧ (b ∨ c) = 0.

Example 4.1. Let A = {0, a} and B = {0, b1, b2} be two discrete ALs. Now,
put L = A×B = {(0, 0), (0, b1), (0, b2), (a, 0), (a, b1), (a, b2)} and define opera-
tions ∨ and ∧ on L as follows.

∨ (0, 0) (0, b1) (0, b2) (a, 0) (a, b1) (a, b2)
(0, 0) (0, 0) (0, b1) (0, b2) (a, 0) (a, b1) (a, b2)
(0, b1) (0, b1) (0, b1) (0, b1) (a, b1) (a, b1) (a, b1)
(0, b2) (0, b2) (0, b2) (0, b2) (a, b2) (a, b2) (a, b2)
(a, 0) (a, 0) (a, b1) (a, b2) (a, 0) (a, b1) (a, b2)
(a, b1) (a, b1) (a, b1) (a, b1) (a, b1) (a, b1) (a, b1)
(a, b2) (a, b2) (a, b2) (a, b2) (a, b2) (a, b2) (a, b2)

and

∧ (0, 0) (0, b1) (0, b2) (a, 0) (a, b1) (a, b2)
(0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(0, b1) (0, 0) (0, b1) (0, b2) (0, 0) (0, b1) (0, b2)
(0, b2) (0, 0) (0, b1) (0, b2) (0, 0) (0, b1) (0, b2)
(a, 0) (0, 0) (0, 0) (0, 0) (a, 0) (a, 0) (a, 0)
(a, b1) (0, 0) (0, b1) (0, b2) (a, 0) (a, b1) (a, b2)
(a, b2) (0, 0) (0, b1) (0, b2) (a, 0) (a, b1) (a, b2)

Then clearly, (L,∨,∧, (0, 0)) is a 0−distributive AL with (0, 0) as its zero element.

Example 4.2. Let L = {0, a, b, c} and define operations ∨ and ∧ on L as fol-
lows:
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∨ 0 a b c
0 0 a b c
a a a b c
b b b b c
c c c c c

and

∧ 0 a b c
0 0 0 0 0
a 0 a a a
b 0 a b b
c 0 a b c

Then clearly (L,∨,∧, 0) is a 0−distributive AL.

Now, we prove the following theorem which characterize 0−distributive AL, in
terms of annihilators.

Theorem 4.1. Let L be an AL with 0. Then L is 0−distributive if and only if
for any nonempty subset A of L, A∗ is an ideal of L.

Proof. Clearly 0 ∈ A∗ and hence A∗ is a nonempty subset of L. Let x, y ∈ A∗.
Then x∧a = 0, y∧a = 0 for all a ∈ A. Let t ∈ A. Then t∧x = 0 and t∧y = 0. Since
L is 0−distributive, (x∨y)∧ t = 0. Hence x∨y ∈ A∗. Again, let x ∈ A∗ and r ∈ L.
Then x∧a = 0 for all a ∈ L. For any t ∈ A, we have t∧(x∧r) = (t∧x)∧r = 0∧r = 0.
Hence x∧ r ∈ A∗. Therefore A∗ is an ideal of L. Conversely, assume the condition.
Now, we shall prove that L is 0-distributive. Let a, b, c ∈ L such that a∧ b = 0 and
a ∧ c = 0. Then b, c ∈ [a]∗. Since {a} is nonempty, by assumption, [a]∗ is an ideal.
Therefore b ∨ c ∈ [a]∗. Hence (b ∨ c) ∧ a = 0. Thus L is 0-distributive. �

Corollary 4.1. Let L be an AL with 0 and let a ∈ L. Then L is 0−distributive
if and only if [a]∗ is an ideal of L.

Recall that the set I(L) of all ideals in an AL L is a lattice with respect to set
inclusion where for any I, J ∈ I(L), I∧J = I∩J and I∨J = {x ∈ L : (a∨b)∧x = x
for some a ∈ I and b ∈ J}. In the following we give necessary and sufficient
condition for an AL with 0 to become 0-distributive AL in terms of ideal.

In many of the following statements, such as Theorem 4.2, Corollary 4.3, and
Theorem 4.4, the evidence is based on the proven results in article [3], although
this is not explicitly stated.

Theorem 4.2. Let L be an AL with 0. Then L is 0−distributive if and only if
the lattice I(L) is a 0−distributive.

Proof. Suppose L is a 0−distributive AL. Let I, J,K ∈ I(L) such that I∩J =
(0] and I ∩K = (0]. We shall prove that I ∩ (J ∨K) = (0]. Let x ∈ I ∩ (J ∨K).
Then x ∈ I and x ∈ (J ∨ K). This implies x ∈ I and (a ∨ b) ∧ x = x, for some
a ∈ J and b ∈ K. Therefore x ∧ a ∈ I ∩ J and x ∧ b ∈ I ∩K. Hence x ∧ a = 0 and
x∧b = 0. Since L is 0−distributive, x∧(a∨b) = 0. It follows that x = 0. Therefore
I ∩ (J ∨K) = (0]. Thus I(L) is 0−distributive. Conversely, suppose I(L) is a 0-
distributive. Let a, b, c ∈ L such that a ∧ b = 0 and a ∧ c = 0. Then (a ∧ b] = (0]
and (a ∧ c] = (0]. This implies (a] ∩ (b] = (0] and (a] ∩ (c] = (0]. Since I(L) is a
0-distributive, (a] ∩ ((b] ∨ (c]) = (0]. Hence (a] ∩ (b ∨ c] = (0]. Then it follows that
(a ∧ (b ∨ c)] = (0]. Hence a ∧ (b ∨ c) = 0. Therefore L is 0-distributive. �

Corollary 4.2. Let L be an AL with 0. Then L is 0−distributive if and only
if PI(L) is 0−distributive.
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In the following we prove that every pseudo-complemented AL is a 0−
distributive AL.

Theorem 4.3. Every pseudo-complemented AL is a 0−distributive AL.

Proof. Suppose L is a pseudo-complemented AL. Now, we shall prove that
L is a 0− distributive. Let a, b, c ∈ L such that a ∧ b = 0 and a ∧ c = 0. Then
a∗ ∧ b = b and a∗ ∧ c = c. It follows that a∗ ∨ b = a∗ and a∗ ∨ c = a∗. Now,
a∗ = a∗ ∨ a∗ = (a∗ ∨ b) ∨ (a∗ ∨ c). This implies a∗ = (a∗ ∨ b) ∨ (a∗ ∨ c). Now,
a∗ ∧ (b ∨ c) = ((a∗ ∨ b) ∨ (a∗ ∨ c)) ∧ (b ∨ c) = ((a∗ ∨ a∗) ∨ (b ∨ c)) ∧ (b ∨ c) =
(a∗ ∨ (b ∨ c)) ∧ (b ∨ c) = b ∨ c. Therefore a∗ ∧ (b ∨ c) = b ∨ c. Now, a ∧ (b ∨ c) =
a∧ (a∗∧ (b∨ c)) = (a∧a∗)∧ (b∨ c) = 0∧ (b∨ c) = 0. Thus a∧ (b∨ c) = 0. Therefore
L is a 0−distributive AL. �

But, the converse of the above theorem is not true. For, consider the following
example.

Example 4.3. Consider the following AL, whose Hasse diagram is as follows:

Figure 1

Then clearly this is a 0−distributive AL. But, this AL is not pseudo-complemented
since the element b has no pseudo-complement.

Next, we prove that if L is a 0-distributive AL then the lattice I(L) of all ideals
of L is pseudo-complemented.

Theorem 4.4. Let L be a 0−distributive AL. Then the lattice I(L) of all ideals
of L is pseudo-complemented.

Proof. Clearly, I(L) is a lattice with respect to set inclusion, where for any
I, J ∈ I(L), I ∧ J = I ∩ J and I ∨ J = {x ∈ L : (a ∨ b) ∧ x = x for some
a ∈ I and b ∈ J}. Let I ∈ I(L). Then we have I∗ = {x ∈ L : x ∧ a = 0 for
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all a ∈ I} is an ideal of L. Clearly I ∩ I∗ = (0]. Now, let J ∈ I(L) such that
I ∩ J = (0]. Now, we shall prove that J ⊆ I∗. Let x ∈ J and a ∈ I. Then clearly
x ∧ a ∈ I ∩ J = (0]. Hence x ∧ a = 0. Therefore x ∈ I∗. Thus J ⊆ I∗. Therefore
I(L) is a Pseudo-complemented lattice. �

Finally, we derive necessary and sufficient condition for an AL with 0 to become
0-distributive in terms of pseudo-complementation. For, this we need the following.

Lemma 4.1. Let L be an AL which satisfies ascending chain condition. Then
every ideal in L is a principal ideal.

Proof. Suppose L satisfies ascending chain condition and suppose I is an
ideal of L. Then clearly I is nonempty. Now, choose an element a1 ∈ I. Then
clearly (a1] ⊆ I. Suppose (a1] $ I, choose x1 ∈ I such that x1 /∈ (a1]. Now,
put a2 = a1 ∨ x1. Then a2 ∈ I. Suppose a1 = a2. Then a1 = a1 ∨ x1. Thus
a1 ∧ x1 = x1 and hence x1 ∈ (a1], a contradiction to x1 /∈ (a1]. Therefore a1 ̸= a2.
Hence a1 < a2. Continuing the above process, we get strictly ascending chain
a1 < a2 < a3 < .... This chain must be terminate at some stage. Therefore there
exist a positive integer k such that ak = ak+1 = ..... Now, we shall prove that
(ak] = I. Clearly, (ak] ⊆ I, since ak ∈ I. Conversely, let x ∈ I. Then ak ∨ x ∈ I
and ak 6 ak ∨ x. It follows that ak = ak ∨ x. This implies ak ∧ x = x. Hence
x ∈ (ak]. Thus I = (ak]. Therefore I is a principal ideal. �

Lemma 4.2. Let L be a 0−distributive AL and I, J ∈ I(L). Then (I ∨ J)∗ =
I∗ ∩ J∗.

Proof. We have I, J ⊆ I∨J . Therefore (I∨J)∗ ⊆ I∗, J∗ and hence (I∨J)∗ ⊆
I∗ ∩J∗. Conversely suppose t ∈ I∗ ∩J∗ and x ∈ I ∨J . Then (a∨ b)∧x = x, where
a ∈ I and b ∈ J . Now, since t ∈ I∗ and a ∈ I, t∧ a = 0. Similarly, we get t∧ b = 0.
Hence t∧(a∨b) = 0. Therefore t∧x = t∧((a∨b)∧x) = (t∧(a∨b))∧x = 0∧x = 0.
Hence t ∈ (I ∨ J)∗. Thus I∗ ∩ J∗ ⊆ (I ∨ J)∗. Therefore (I ∨ J)∗ = I∗ ∩ J∗. �

Corollary 4.3. Let L be 0-distributive AL. Then for any x, y ∈ L, [x∨ y]∗ =
[x]∗ ∩ [y]∗.

Theorem 4.5. Let L be an AL with 0 which satisfies ascending chain condition.
Then L is 0− distributive if and only if L is pseudo-complemented.

Proof. Suppose L is 0−distributive AL. Now, we shall prove that L is pseudo-
complemented. Let a ∈ L. Then [a]∗ is an ideal. Since L satisfies ascending chain
condition, [a]∗ = (b] for some b ∈ L. Define ∗ : L → L by ∗(a) = b ∧ m where
[a]∗ = (b]. Suppose [a]∗ = (b] and [a]∗ = (c]. Then (b] = (c]. Since b ∈ (b] = (c],
b = c∧ b. This implies b∧m = (c∧ b)∧m = (b∧ c)∧m = c∧m, since c ∈ (c] = (b].
Therefore b ∧m = c ∧m. Thus ∗ is well defined.

Let x, y ∈ L such that x ∧ y = 0. Since [x]∗ is an ideal, [x]∗ = (t] for some
t ∈ L. Now, Consider x∗ ∧ y = (t ∧ m) ∧ y = (m ∧ t) ∧ y = t ∧ y. Again, since
x ∧ y = 0, y ∈ [x]∗ = (t]. Thus y ∈ (t]. Hence y = t ∧ y. Therefore x∗ ∧ y = y.
Also, x ∧ x∗ = x ∧ (t ∧ m) = (x ∧ t) ∧ m = 0 ∧ m (since t ∈ [x]∗)= 0. Therefore
x ∧ x∗ = 0.
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Finally, we shall prove that for any x, y ∈ L, (x ∨ y)∗ = x∗ ∧ y∗. Let x, y ∈ L.
Then [x]∗, [y]∗ are ideals. Therefore [x]∗, [y]∗ are principal ideals. Thus [x]∗ =
(s], [y]∗ = (t] for some s, t ∈ L. Therefore by the definition of ∗, x∗ = s ∧ m and
y∗ = t ∧ m. Now, consider [x ∨ y]∗ = [x]∗ ∩ [y]∗ = (s] ∩ (t] = (s ∧ t]. Therefore
(x ∨ y)∗ = (s ∧ t) ∧m = (s ∧m) ∧ (t ∧m) = x∗ ∧ y∗. Therefore (x ∨ y)∗ = x∗ ∧ y∗.
Therefore L is pseudo-complemented. Converse follows by Theorem 4.8. �
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