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SYMMETRIC POSITIVE SOLUTIONS

OF FOURTH ORDER BOUNDARY VALUE PROBLEMS

ON TIME SCALES

Ilkay Yaslan Karaca and Aycan Sinanoğlu

Abstract. The aim of this article is to investigate the existence of symmetric
positive solutions for a class of fourth-order boundary value problem. Some
sufficient conditions for the existence of multiple positive solutions are obtained
by using fixed point index theorem. An example which supports our theoretical

results is also indicated.

1. Introduction

Calculus on time scales was introduced by Hilger [13] as a theory which
includes both differential and difference calculus as special cases. In the past few
years, it has found a considerable amount of interest and attracted the attention
of many researchers. Time scale calculus would allow exploration of a variety of
situations in economic, biological, heat transfer, stock market and epidemic models;
see the monographs of Aulbach and Hilger [1], Bohner and Peterson ([2, 3]), and
Lakshmikantham et al. [15] and the references therein.

There are many authors studied the existence of positive solutions fourth-order
boundary value problems ([6, 7, 8, 12, 14, 17, 21, 23, 24, 25, 26]) However,
concerning the existence of the symmetric positive solutions of fourth-order bound-
ary value problems only a small amount of work ([4, 5, 10, 11, 18, 19, 20, 22])
can be found in the literature.
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214 I. Y. KARACA AND A. SINANOĞLU

In this paper, we study existence of symmetric positive solutions of the follow-
ing fourth-order boundary value problem (BVP):

(φ(x△∇(t)))△∇ = f(t, x(t)), t ∈ (0, 1),

x(0) = x(1), x△(0)− x△(1) = αx(
1

2
), x△∇(0) = x△∇(1),

(φ(x△∇))△(0)− (φ(x△∇))△(1) = βφ(x△∇(
1

2
))

(1.1)

where 0 < α, β < 4,
1

2
∈ T.

Throughout this paper we assume that following conditions hold:

(H1) f ∈ C([0, 1]×[0,∞), [0,∞)) is symmetric on [0,1], (i.e., f(t, x) = f(1−t, x)
for t ∈ [0, 1]);

(H2) φ : R → R is increasing homeomorphism and homomorphism. Also,
φ(0) = 0 and φ(−x) = −φ(x).

A projection φ : R → R is called an increasing homeomorphism and homomorphism
if the following conditions are satisfied:

(i) If x 6 y then φ(x) 6 φ(y) for all x, y ∈ R;
(ii) φ is continuous, bijection and its inverse mapping is also continuous;
(iii) φ(xy) = φ(x)φ(y) for all x, y ∈ R.
In this paper, a symmetric positive solution x of (1.1) means a solution of (1.1)

satisfying x > 0 and x(t) = x(1− t), t ∈ [0, 1].
This paper is organized as follows:

In section 2, we give some preliminaries lemmas. In section 3, we give the proof of
necessary and sufficient conditions for existence of symmetric positive solutions of
BVP (1.1). In section 4, an example is also presented to illustrate our main results.
The results are even new for the difference equations and differential equations as
well as for dynamic equations on time scales.

2. Preliminaries

We will need the following lemmas to state the main results of this paper.

Lemma 2.1. Assume (H2) holds. Then for any y ∈ C[0, 1] the BVP{
φ(x△∇(t)) = y(t), t ∈ (0, 1),

x(0) = x(1), x△(0)− x△(1) = αx(
1

2
)

(2.1)

has unique solution x and x can be expressed in the form

x(t) = −
∫ 1

0

G(t, s)φ−1(y(s))∇s,

where

G1(t, s) =

{
t(1− s), 0 6 t 6 s 6 1,
s(1− t), 0 6 s 6 t 6 1,

(2.2)
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G2(s) =


1

α
− s

2
, 0 6 s 6 1

2
,

1

α
− 1

2
+

s

2
,
1

2
6 s 6 1,

(2.3)

G(t, s) = G1(t, s) +G2(s).(2.4)

Proof. Let x be a solution of the problem (2.1). Then

x△∇(t) = φ−1(y(t)), t ∈ (0, 1).

An integration from 0 to t of both sides of the above equality yields

x△(t) = x△(0) +

∫ t

0

φ−1(y(s))∇s. (2.5)

We integrate both sides of the (2.5) to get

x(t) = x(0) + tx△(0) +

∫ t

0

(t− s)φ−1(y(s))∇s. (2.6)

If we let t = 1 in (2.6), then we have

x△(0) = −
∫ 1

0

(1− s)φ−1(y(s))∇s (2.7)

By using (2.5)− (2.7) and the equality x△(0)− x△(1) = αx( 12 ), we get

x(0) =

∫ 1
2

0

(
s

2
− 1

α
)φ−1(y(s))∇s+

∫ 1

1
2

(
1

2
− s

2
− 1

α
)φ−1(y(s))∇s

= −
∫ 1

0

G2(s)φ
−1(y(s))∇s (2.8)

where G2(s) is defined in (2.3).
Subsituting (2.7) and (2.8) to (2.6), we have

x(t) = −
∫ 1

0

G2(s)φ
−1(y(s))∇s−

∫ 1

0

G1(t, s)φ
−1(y(s))∇s

= −
∫ 1

0

G(t, s)φ−1(y(s))∇s

where G1(t, s) and G(t, s) are given in (2.2) and (2.4) respectively. The proof is
complete. �

Lemma 2.2. Assume that (H1)− (H2) hold. Then
(φ(x△∇(t)))△∇ = f(t, x(t)), t ∈ (0, 1),

x(0) = x(1), x△(0)− x△(1) = αx(
1

2
), x△∇(0) = x△∇(1),

(φ(x△∇))△(0)− (φ(x△∇))△(1) = βφ(x△∇(
1

2
))
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has a unique solution x and x can be expressed in the form

x(t) = −
∫ 1

0

G(t, s)φ−1(−
∫ 1

0

H(s, τ)f(τ, x(τ))∇τ)∇s (2.9)

where
H(t, s) = G1(t, s) +G3(s), (2.10)

G3(s) =


1

β
− s

2
, 0 6 s 6 1

2
,

1

β
− 1

2
+

s

2
, 0 6 s 6 1,

and G1(t, s) is as in (2.2).

Proof. Let us consider the following BVP:{
y△∇(t) = f(t, x(t)), t ∈ (0, 1),
y(0) = y(1), y∆(0)− y∆(1) = βy( 12 ).

(2.11)

The BVP (2.11) has a unique solution

y(t) = −
∫ 1

0

H(t, s)f(s, x(s))∇s,

where H(t, s) is as in (2.10). This completes the proof. �

Lemma 2.3. Assume that (H1) holds. Then we have for s, t ∈ [0, 1]

(i) G(t, s) > 0, H(t, s) > 0,
(ii) G(t, s) = G(1− t, 1− s), H(t, s) = H(1− t, 1− s),
(iii) ΓG(s, s) 6 G(t, s) 6 G(s, s) and δH(s, s) 6 H(t, s) 6 H(s, s),

where

Γ = min{ 1
α
− 1

4
,
3

4
}, , and δ = min{ 1

β
− 1

4
,
3

4
}.

Proof. One can easily see the properties (i), (ii). We only give the proof of
(iii). By the expression of G2(s), for t ∈ [0, 1] s ∈ [0, 1

2 ],

G(t, s) = G1(t, s) +G2(s)

> G2(s)

> s(1− s)G2(s) +
3

4
G2(s)

> (
1

α
− 1

4
)s(1− s) +

3

4
G2(s)

> min{ 1
α
− 1

4
,
3

4
}G(s, s)

= ΓG(s, s).

Similarly, for t ∈ [0, 1], s ∈ [
1

2
, 1], we get G(t, s) > ΓG(s, s). Hence for t ∈

[0, 1], s ∈ [0, 1] we obtain G(t, s) > ΓG(s, s).
Similarly, it is easy to see that δH(s, s) 6 H(t, s) 6 H(s, s). �
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Lemma 2.4. max
t,s∈[0,1]

G(t, s) 6 M , where M = 2max{ 1
α
,
1

4
}.

Proof. It is obvious that for t, s ∈ [0, 1], we get max
t,s∈[0,1]

G1(t, s) =
1

4
and

max
s∈[0,1]

G2(s) =
1

α
. Hence,

max
t,s∈[0,1]

G(t, s) = max
t,s∈[0,1]

[G1(t, s) +G2(s)]

6 max
t,s∈[0,1]

G1(t, s) + max
t,s∈[0,1]

G2(s)

= 2max{ 1
α
,
1

4
}

= M.

�

Lemma 2.5. |H(t1, s)−H(t2, s)| 6 2|t1 − t2| for t1, t2 ∈ [0, 1], s ∈ [0, 1].

Proof. If we show |G1(t1, s) − G1(t2, s)| 6 2|t1 − t2|, the proof is complete.
Let t1 > t2. We divide the proof into three steps.

Step 1: 0 6 t2 6 t1 6 s 6 1.
Since G1(t1, s) = t1(1− s) and G1(t2, s) = t2(1− s), we have

|G1(t1, s)−G1(t2, s)| = |t1 − t1s− t2 + t2s|
= |s(t2 − t1)− (t2 − t1)|
= (1− s)|t2 − t1|
6 2|t2 − t1|.

Step 2: 0 6 s 6 t2 6 t1 6 1.
By G1(t1, s) = s(1− t1) and G1(t2, s) = s(1− t2), we get

|G1(t1, s)−G1(t2, s)| = |s− t1s− s+ t2s|
= |s(t2 − t1)|
= s|t2 − t1|
6 2|t2 − t1|.

Step 3 : 0 6 t2 6 s 6 t1 6 1.
By G1(t1, s) = s(1− t1) and G1(t2, s) = t2(1− s), we obtain

|G1(t1, s)−G1(t2, s)| = |s− t1s− t2 + t2s|
= |s(t2 − t1)− (s− t2)|
6 |s(t2 − t1)|+ |s− t2|
6 2|t2 − t1|.

Similarly, it can easily see that |G1(t1, s) − G1(t2, s)| 6 2|t1 − t2| for t2 > t1.
The proof is complete. �
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Let B denote the Banach space Cld[0, 1] with the norm ∥x∥ = max
t∈[0,1]

|x(t)|.

Define the cone K ⊂ B by

K = {x ∈ B : x(t) is symmetric, concave, positive on [0, 1] and min
t∈[0,1]

x(t) > Γ∥x∥},

where Γ = min{ 1
α
− 1

4
,
3

4
}. We can define the operator

Tx(t) = −
∫ 1

0

G(t, s)φ−1(−
∫ 1

0

H(s, τ)f(τ, x(τ))∇τ)∇s,

where x ∈ K. Therefore solving (1.1) in K is equivalent to finding fixed points of
the operator T .

Lemma 2.6. min
t∈[0,1]

x(t) > Γ∥x∥, where Γ = min{ 1
α
− 1

4
,
3

4
}.

Proof. If we use Lemma 2.3 (iii) and (2.9), we have

∥x∥ 6 −
∫ 1

0

G(s, s)φ−1(−
∫ 1

0

H(s, τ)f(τ, x(τ))∇τ)∇s. (2.12)

By using Lemma 2.3 (iii), (2.9) and (2.12), we obtain

x(t) = −
∫ 1

0

G(t, s)φ−1(−
∫ 1

0

H(s, τ)f(τ, x(τ))∇τ)∇s

> Γ[−
∫ 1

0

G(s, s)φ−1(−
∫ 1

0

H(s, τ)f(τ, x(τ))∇τ)∇s]

> Γ∥x∥.

�

Lemma 2.7. ∥x∥ 6 M∥x△∇∥, where M = 2max{ 1
α
,
1

4
}.

Proof. From (2.9) and Lemma 2.4, we have

|x(t)| = | −
∫ 1

0

G(t, s)φ−1(−
∫ 1

0

H(s, τ)f(τ, x(τ))∇τ∇s)|

= | −
∫ 1

0

G(t, s)x△∇(s)∇s|

6 M max
s∈[0,1]

|x△∇(s)|

= M∥x△∇∥.

So, we get ∥x∥ 6 M∥x△∇∥. The proof is complete. �

Lemma 2.8. Suppose that (H1) − (H2) hold. Then T : K → K is completely
continuous.
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Proof. For all x ∈ K, we have

(Tx)△∇(t) = φ−1(

∫ 1

0

H(t, s))f(s, x(s))∇s) 6 0

which implies Tx is concave on [0, 1]. From the definition of T, we get

Tx(1− t) = −
∫ 1

0

G(1− t, s)φ−1(−
∫ 1

0

H(s, τ)f(τ, x(τ))∇τ)∇s

= −
∫ 1

0

G(1− t, 1− s)φ−1(−
∫ 1

0

H(1− s, τ)f(τ, x(τ))∇τ)∇(1− s)

= −
∫ 1

0

G(t, s)φ−1(−
∫ 1

0

H(1− s, τ)f(τ, x(τ))∇τ)∇s

= −
∫ 1

0

G(t, s)φ−1(−
∫ 0

1

H(1− s, 1− τ)f(1− τ, x(1− τ))∇(1− τ))∇s

= −
∫ 1

0

G(t, s)φ−1(−
∫ 1

0

H(s, τ)f(τ, x(τ))∇τ)∇s

= Tx(t).

Tx(t) > Γ∥Tx∥ is obvious from Lemma 2.6. Thus T (K) ⊂ K.
On the other hand, by using Lemma 2.7 and the conditions (H1)− (H2), from

the definition of T, it is clear that T : K → K is continuous.
Next, our purpose is to prove that T maps bounded sets into precompact sets

on t ∈ [0, 1]. Let Ω be a bounded subset on K. Then we have r positive real number
for x ∈ Ω such that ∥x∥ 6 r. We have

∥(Tx)△∇∥ = max
t∈[0,1]

|(Tx)△∇(t)| = max
t∈[0,1]

|φ−1(−
∫ 1

0

H(t, s)f(s, x(s))∇s)|.

Set

Sr := sup{|f(t, y)| : (t, y) ∈ [0, 1]× [0, r]}.
By using the condition (H2) and Lemma 2.3(iii), we get

∥(Tx)△∇∥ 6 |φ−1(Sr)φ
−1(

∫ 1

0

H(s, s)∇s))|.

We know that φ−1(Sr) and φ−1(

∫ 1

0

H(s, s)∇s)) are bounded. Hence, there exist a

positive number C such that ∥(Tx)△∇∥ 6 C. From Lemma 2.7, we get ∥(Tx)∥ 6
CM , so TΩ is uniformly bounded.

Finally, we show that TΩ is equicontinuous. For s, t1, t2 ∈ [0, 1], we have

|φ(Tx)△∇(t1)− φ(Tx)△∇(t2)|

= | −
∫ 1

0

H(t1, s)f(s, x(s))∇s+

∫ 1

0

H(t2, s)f(s, x(s))∇s

6
∫ 1

0

|H(t1, s)−H(t2, s)|f(s, x(s))∇s.
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From definition of Sr and Lemma 2.5, we get

|φ(Tx)△∇(t1)− φ(Tx)△∇(t2)| 6 2Sr|t1 − t2| → 0, t1 → t2.

Therefore, TΩ is equicontinuous. By Arzela-Ascoli Theorem, T : K → K is com-
pact operator. Hence, the proof is complete. �

3. Main Results

In this section, we show that BVP (1.1) has multiple symmetric positive
solutions by using fixed point index theorem which is given below.

Lemma 3.1. [9, 16] Let K be a cone in a Banach space B. Let D be an open
bounded subset of B with Dk = D∩K ̸= ∅ and Dk ̸= K. Suppose that T : Dk → K
is completely continuous map such that x ̸= Tx for all x ∈ ∂Dk. Then the following
results hold:

(i) If ∥Tx∥ 6 ∥x∥, x ∈ ∂Dk then ik(T,Dk) = 1;
(ii) If there exists x0 ∈ K r {0} such that x ̸= Tx+ λx0, for all x ∈ ∂Dk and

all λ > 0, then ik(T,Dk) = 0;
(iii) Let U be open in K such that U ⊂ Dk. If ik(T,Dk) = 1 and ik(T,Uk) = 0,

then T has a fixed point in DkrUk. The same result holds if ik(T,Dk) = 0
and ik(T,Uk) = 1.

We define Kρ = {x ∈ K : ∥x∥ < ρ}, and
Ωρ = {x ∈ K : min

t∈[0,1]
x(t) 6 Γρ} = {x ∈ K : Γ∥x∥ 6 min

t∈[0,1]
x(t) < Γρ}.

Lemma 3.2. Ωρ has the following properties:
(a) Ωρ is open relative to K.
(b) KΓρ ⊂ Ωρ ⊂ Kρ.
(c) u ∈ ∂Ωρ if and only if min

t∈[0,1]
u(t) = Γρ.

(d) If u ∈ ∂Ωρ, then Γρ 6 u(t) 6 ρ for t ∈ [0, 1].

Now for convenience we introduce the following notations:

fρ
Γρ = min{ min

t∈[0,1]

f(t, x)

φ(ρ)
: x ∈ [Γρ, ρ]}, fρ

0 = max{max
t∈[0,1]

f(t, x)

φ(ρ)
: x ∈ [0, ρ]},

A = [

∫ 1

0

G(s, s)φ−1(

∫ 1

0

H(τ, τ)∇τ)△s]−1,

B = [Γ

∫ 1

0

G(s, s)φ−1(

∫ 1

0

δH(τ, τ)∇τ)△s]−1.

Now we give our results on existence of multiple positive solutions of BVP(1.1).

Theorem 3.1. Suppose (H1)−(H2) and one of the following conditions holds;

(H3) There exist ρ1, ρ2, ρ3 ∈ (0,∞) with ρ1 < Γρ2 and ρ2 < ρ3 such that
fρ1

0 < φ(A), fρ2

Γρ2
> φ(BΓ), fρ3

0 < φ(A).

(H4) There exist ρ1, ρ2, ρ3 ∈ (0,∞) with ρ1 < ρ2 < ρ3 such that fρ1

Γρ1
> φ(BΓ),

fρ2

0 < φ(A), fρ3

Γρ1
> φ(BΓ).
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Then problem (1.1) has at least two positive solutions x1, x2 with x1 ∈ Ωρ2 rKρ1 ,

x2 ∈ Kρ3 r Ωρ2 .

Proof. We only consider the condition (H3). If (H4) holds, then the proof is
similar to that of the case when (H3) holds.

Firstly, we show that ik(T,Kρ1) = 1. By using the condition (H3) and Lemma
2.3 (iii), we obtain∫ 1

0

H(s, τ)f(τ, x(τ))∇τ) 6 φ(A)φ(ρ1)

∫ 1

0

H(τ, τ)∇τ.

By performing above both side φ−1, we have

−φ−1(−
∫ 1

0

H(s, τ)f(τ, x(τ))∇τ) 6 Aρ1φ
−1(−

∫ 1

0

H(τ, τ)∇τ).

If we use the condition (H3) and Lemma 2.3 (iii), we get

Tx(t) = −
∫ 1

0

G(t, s)φ−1(−
∫ 1

0

H(s, τ)f(τ, x(τ))∇τ)∇s

6 Aρ1

∫ 1

0

G(t, s)φ−1(

∫ 1

0

H(τ, τ)∇τ)∇s

6 Aρ1

∫ 1

0

G(s, s)φ−1(

∫ 1

0

H(τ, τ)∇τ)∇s

= ρ1 = ∥x∥.

Thus we have Tx(t) 6 ∥x∥, which means ∥Tx(t)∥ 6 ∥x∥ for x ∈ ∂Kρ1 . By Lemma
3.1 (i), we have ik(T,Kρ1

) = 1.
Secondly, we show that ik(T,Ωρ2) = 0. Let e(t) = 1 for ∀t ∈ [0, 1], then

e ∈ ∂K1. We claim that x ̸= Tx + λe for λ > 0, x ∈ ∂Ωρ2 . In fact, if not, there
exist x0 ∈ ∂Ωρ2 and λ0 > 0 such that x0 = Tx0 + λ0e.
If we use the condition (H3) and Lemma 2.3 (iii), we obtain∫ 1

0

H(s, τ)f(τ, x0(τ))∇τ > φ(ρ2)φ(BΓ)

∫ 1

0

δH(τ, τ)∇τ.

By performing above both side φ−1, we have

−φ−1(−
∫ 1

0

H(s, τ)f(τ, x0(τ))∇τ) > ρ2BΓφ−1(

∫ 1

0

δH(τ, τ)∇τ).

Hence,

x0(t) = Tx0(t) + λ0e(t)

= −
∫ 1

0

G(t, s)φ−1(−
∫ 1

0

H(s, τ)f(τ, x0(τ))∇τ)∇s+ λ0e(t)
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and
x0(t) = Tx0(t) + λ0e(t)

> ρ2BΓ

∫ 1

0

G(t, s)φ−1(

∫ 1

0

δH(τ, τ)∇τ)∇s+ λ01

> ρ2BΓ2

∫ 1

0

G(s, s)φ−1(

∫ 1

0

δH(τ, τ)∇τ)∇s+ λ0

= ρ2Γ + λ0.

So, we get ρ2Γ > x0(t) > ρ2Γ + λ0 which is a contradiction. Hence by Lemma
3.1 (ii), it follows that ik(T,Ωρ2) = 0. By Lemma 3.2 (b) and ρ1 < Γρ2, we have

Kρ1
⊂ KΓρ2

⊂ Ωρ2
. It follows from Lemma 3.1 (iii) that T has a fixed point x1 in

Ωρ2 rKρ1 .
Finally, similar to proof of ik(T,Ωρ1) = 1, we can prove that ik(T,Ωρ3) = 1.

By Lemma 3.2 (b) and ρ2 < ρ3, we have Ωρ2 ⊂ Ωρ3 ⊂ Kρ3 . It follows from Lemma

3.1 (iii) that T has a fixed point x2 in Kρ3 r Ωρ2 .
Thus we can get the problem (1.1) has at least two positive solutions x1, x2

with x1 ∈ Ωρ2 rKρ1 , x2 ∈ Kρ3 r Ωρ2 of BVP (1.1). �

Next we establish the existence of symmetric positive many solutions.

Theorem 3.2. Assume (H1)− (H2) hold. Then we have the following asser-
tions.

(i) There exist {ρi}2m0+1
i=1 ⊂ (0,∞) with ρ1 < Γρ2 < ρ2 < ρ3 < Γρ4 < ... <

ρ2m0+1 such that

f
ρ2m−1

0 < φ(A), m = 1, 2...,m0 + 1, fρ2m

Γρ2m
> φ(ΓB), m = 1, 2...,m0.

Then problem (1.1) has at least 2m0 solutions in K.

(ii) There exist {ρi}2m0
i=1 ⊂ (0,∞) with ρ1 < Γρ2 < ρ2 < ρ3 < Γρ4 < ... < ρ2m0

such that

f
ρ2m−1

0 < φ(A), fρ2m

Γρ2m
> φ(ΓB), m = 1, 2, 3, ...,m0.

Then problem (1.1) has at least 2m0 − 1 solutions in K.

Theorem 3.3. Assume that (H1) − (H2) hold. Then we have the following
assertions.

(i) There exist {ρi}2m0+1
i=1 ⊂ (0,∞) with ρ1 < ρ2 < Γρ3 < ρ3 < ρ4 < ... <

ρ2m0+1 such that

fρ2m

0 < φ(A), m = 1, 2, 3, ...,m0, f
ρ2m−1

Γρ2m−1
> φ(ΓB), m = 1, 2, 3, ...,m0 + 1.

Then problem(1.1) has at least 2m0 solutions in K.

(ii) There exist {ρi}2m0
i=1 ⊂ (0,∞) with ρ1 < ρ2 < Γρ3 < ρ3 < ρ4 < ... < ρ2m0

such that

fρ2m

0 < φ(A), f
ρ2m−1

Γρ2m−1
> φ(ΓB), m = 1, 2, 3, ...,m0.

Then problem (1.1) has at least 2m0 − 1 solutions in K.
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4. Example

To illustrate how our main results can be used in practice we present an exam-
ple.

Example 4.1. Let T = [0,
1

3
] ∪ {1

2
} ∪ [

2

3
, 1]. We consider the following BVP:

(x△∇(t))△∇ = f(t, x(t)), t ∈ (0, 1)

x(0) = x(1), x△(0)− x△(1) = 2x(
1

2
), x△∇(0) = x△∇(1),

(x△∇)△(0)− (x△∇)△(1) = 3x△∇(
1

2
),

Here

f(t, x(t)) =


4.5125x(t), x ∈ [0, 0.02],

1201.2x(t)− 23.93375, x ∈ [0.02, 0.025],

51.33x(t) + 4.813, x ∈ [0.025, 0.1],

9.946, x ∈ [0.1, 2].

Since α = 2, β = 3, we obtain Γ =
1

4
, δ =

1

12
. Also, we choose φ(x) = x. It is

obvious that φ satisfies assumption (H2).
Also, we take ρ1 = 0.02, ρ2 = 0.1, ρ3 = 2. After a simple calculation, we get

A ∼= 4.987,B ∼= 234.902. Hence we have

f(t, x(t)) < 0.09025, for x ∈ [0, 0.02],

f(t, x(t)) < 9.974, for x ∈ [0.02, 0.025],

6.096 < f(t, x(t)) < 9.974, for x ∈ [0.025, 0.1],

f(t, x(t)) < 9.974, for x ∈ [0.1, 2].

Thus the condition (H3) of Theorem 3.1 is satisfied. Then by Theorem 3.1 the
problem (1.1) has at least two symmetric positive solutions x1, x2 with x1 ∈ Ωρ2 r
Kρ1 , x2 ∈ Kρ3 r Ωρ2 .
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[5] E. Çetin and F. S. Topal. Existence of three symmetric positive solutions of fourth-

order boundary value problems on symmetric time-scales. Bull. Int. Math. Virtual Inst.,
9(1)(2019), 11-23.

[6] F. T. Fen and I. Y. Karaca. Existence of positive solutions for fourth-order impulsive integral
boundary value problems on time scales. Math. Methods Appl. Sci., 40(16)(2017), 5727-5741.



224 I. Y. KARACA AND A. SINANOĞLU
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