BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Bull. Int. Math. Virtual Inst., Vol. **10**(2)(2020), 201-212 DOI: 10.7251/BIMVI2002201Ö

> Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

A NOTE ON DERIVATIONS ON PRIME GAMMA RINGS WITH CHARACTERISTIC 2

Mehmet Ali Öztürk, Hasret Durna, and Tuba Acet

ABSTRACT. In this paper we will study the relationship between the quotient Γ -ring and the existence of certain specific types of derivation of Γ -ring with characteristic 2.

1. Introduction

In 1957, Posner introduced derivation in ring in [15]. The different definitions of derivation such as semi-derivation, orthogonal derivation, θ -derivation, (σ, τ) -derivation, symmetric bi-derivation, objects more general than derivation, were introduced by many researchers (see, for example [1, 2, 4, 5, 8, 17]).

The notion of the Γ -ring was introduced by Nobusawa in [9]. The Γ -ring is a generalization of ring. In [3], the conditions in the Γ -ring defined by Nobusawa, were weakened by Barnes. In [11], [12] and [14], Öztürk and Jun studied extended centroid of prime Γ -ring and generalized centroid of semi-prime Γ -ring. In [6], Jing defined derivation in prime Γ -rings. Let M be a Γ -ring. A map $d: M \to M$ is called a derivation if d(x + y) = d(x) + d(y) and $d(x\gamma y) = d(x)\gamma y + x\gamma d(y)$ for all $x, y \in M$ and $\gamma \in \Gamma$. In [13], Öztürk, Jun and Kim investigated the relationship between the quotient Γ -ring and derivation of Γ -ring M with charM = 2. In this paper we study the relationship between the quotient Γ -ring M with charM = 2.

Throught in this paper, M in a Γ -ring in the sense of Barnes.

²⁰¹⁰ Mathematics Subject Classification. 16N60, 16W25, 16Y99.

Key words and phrases. Gamma ring, extended centroid, θ -derivation, (θ, φ) -derivation.

2. Preliminaries

Let M and Γ be (additive) abelian groups. If the following conditions are hold in M, then we say that M is a Γ -ring (in the sense of Barnes),

(1) $a\alpha b \in M$, (2) $(a+b)\alpha c = a\alpha b + a\alpha c$. $a(\alpha+\beta)b = a\alpha b + a\beta b$. $a\alpha (b+c) = a\alpha b + a\alpha c$. (3) $(a\alpha b)\beta c = a\alpha (b\beta c)$.

for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$. The center of Γ -ring M is defined by

 $Z = \{ x \in M : x\gamma m = m\gamma x \text{ for all } m \in M \text{ and } \gamma \in \Gamma \}.$

If U is an additive subgroup of M and $U\Gamma M \subseteq U$ (resp. $M\Gamma U \subseteq U$), then U is called a right (resp. left) ideal of a Γ -ring M. If U is both a right and a left ideal, then U is called an *ideal* of M. Let $a \in M$. The principal right ideal generated by a is the smallest right ideal of Γ -ring M containing a. This ideal is denoted by $\langle a \rangle_r$. Similarly one define $\langle a \rangle_l$ the principal left ideal generated by a and $\langle a \rangle$ the principal two sided ideal generated by a. Let $P \neq M$ is an ideal of a Γ -ring M. For any ideals U and V of M, if $U\Gamma V \subseteq P$ implies $U \subseteq P$ or $V \subseteq P$, then P is said to be prime ideal of M. A Γ -ring M is said to be prime if the zero ideal is prime.

THEOREM 2.1 ([7, Theorem 4]). If M is a Γ -ring, the following conditions are equivalent:

i) M is prime Γ -ring.

ii) If $a, b \in M$ and $a\Gamma M \Gamma b = \langle 0 \rangle$, then a = 0 or b = 0.

iii) If $\langle a \rangle$ and $\langle b \rangle$ are principal ideals of M such that $\langle a \rangle \Gamma \langle b \rangle = \langle 0 \rangle$, then a = 0 or b = 0.

iv) If U and V are right ideals of M such that $U\Gamma V = \langle 0 \rangle$, then $U = \langle 0 \rangle$ or $V = \langle 0 \rangle$.

v) If U and V are left ideals of M such that $U\Gamma V = \langle 0 \rangle$, then $U = \langle 0 \rangle$ or $V = \langle 0 \rangle$.

Let M and M' be two Γ -rings. A mapping $f : M \to M'$ of Γ -rings is called a Γ -ring homomorphism if f(x+y) = f(x) + f(y) and $f(x\gamma y) = f(x)\gamma f(y)$ for all $x, y \in M$ and $\gamma \in \Gamma$.

Let M be a Γ -ring and (A, +) be an abelian group. A is called a left M-module over M Γ -ring with respect to a mapping $\cdot : M \times \Gamma \times A \to A$ if for all $m, m' \in M$, $x, y \in A$ and $\alpha, \beta \in \Gamma$,

(i) $m\alpha (x+y) = m\alpha x + m\alpha y$,

 $(ii) (m+m')\alpha x = m\alpha x + m\alpha y,$

(*iii*) $m\alpha (m'\beta x) = (m\alpha m')\beta x$.

Similarly, one can define a right M-module.

Let M be a Γ -ring and A, B be two left M-modules. A additive mapping $f: A \to B$ is called a left M-module homomorphism if $f(m\alpha x) = m\alpha f(x)$ for all $m \in M, x \in A$ and $\alpha \in \Gamma$.

Let M be a prime Γ -ring such that $M\Gamma M \neq M$. Denote

$$\mathcal{M} := \{(U, f) : U \ (\neq 0) \text{ is an ideal of } M \text{ and} \}$$

 $f: U \to M$ is a right *M*-module homomorphism}.

Define a relation \sim on \mathcal{M} by

$$(U, f) \sim (V, g) \Leftrightarrow \exists W \ (\neq 0) \subset U \cap V \text{ such that } f = g \text{ on } W.$$

Since M is prime Γ -ring, it is possible to find a non-zero W and so "~" is an equivalent relation. This gives a chance for us to get a partition of \mathcal{M} . We denote the equivalence class by $Cl(U, f) = \hat{f}$, where

$$\widehat{f} := \left\{ g: V \to M | \quad (U, f) \sim (V, g) \right\},$$

and denote by Q the set of all equivalence classes. Then Q is a Γ -ring, which is called the quotient Γ -ring of M (see [11], [12], and [14]).

Let M be a Γ -ring with unity. An element u in M is called a *unity* of M if it has a multiplicative inverse in M. If every nonzero element of M is a unity, we say that M is a Γ -division ring. A Γ -ring M is a Γ -field if it is a commutative Γ -division ring.

LEMMA 2.1 ([12, Lemma 3.3]). Let M be a prime Γ -ring such that $M\Gamma M \neq M$. Then the extended centroid C_{Γ} of M is a Γ -field.

Let M be a Γ -ring and A be a M-module. A subset $B = \{b_i : i \in I\}$ of A is called linearly independent, if for every distinct $b_1, b_2, ..., b_n \in B, m_1, m_2, ..., m_n \in M$ and $\beta_1, \beta_2, ..., \beta_n \in \Gamma$ such that $\sum_{i=0}^n m_i \beta_i b_i = 0$ implies that $m_1 = m_2 = ... = m_n = 0$.

LEMMA 2.2 ([11, p. 476]). Let M be a prime Γ -ring such that $M\Gamma M \neq M$ and the extended centroid C_{Γ} of M. If a_i and b_i are non-zero elements of M such that $\sum a_i \gamma_i x \beta_i b_i = 0$ for all $x \in M$ and $\gamma_i, \beta_i \in \Gamma$, then the a_i 's (also b_i 's) are linearly dependent over C_{Γ} . Moreover, if $a\gamma x\beta b = b\gamma x\beta a$ for all $x \in M$ and $\gamma, \beta \in \Gamma$ where $a (\neq 0), b \in M$ are fixed, then there exists $\lambda \in C_{\Gamma}$ such that $b = \lambda \alpha a$ for all $\alpha \in \Gamma$.

LEMMA 2.3 ([16, Lemma 2]). Let M be a prime Γ -ring, U a non-zero right (resp. left) ideal of M and $a \in M$. If $U\Gamma a = \langle 0 \rangle$ (resp. $a\Gamma U = \langle 0 \rangle$), then a = 0.

LEMMA 2.4 ([10, Lemma 1]). Let M be a semi-prime Γ -ring and U a non-zero ideal of M. Then $Ann_l U = Ann_r U$.

Let M be a semi-prime Γ -ring and U a non-zero ideal of M. In this case, we will write $Ann_l U = Ann_r U = AnnU$ by Lemma 2.4. Let us denote by F a set of all ideals of M which have zero annihilator in M. In this case, the set F is closed under multiplication by Lemma 2.4.

THEOREM 2.2 ([14, Theorem 3.5]). Let M be a semi-prime Γ -ring and Q the quotient Γ -ring of M. Then the Γ -ring Q satisfies the following properties:

i) For any element $q \in Q$, there exists an ideal $U_q \in F$ such that $q(U_q) \subseteq M$ (or $q \Gamma U_q \subseteq M$ for all $\gamma \in \Gamma$). ii) If $q \in Q$ and $q(U) = \langle 0 \rangle$ for some $U \in F$ (or $q\gamma U_q = \langle 0 \rangle$ for some $U \in F$ and for all $\gamma \in \Gamma$), then q = 0.

iii) If $U \in F$ and $\Psi : U \to M$ is a right M-module homomorphism, then there exists an element $q \in Q$ such that $\Psi(u) = q(u)$ for all $u \in U$ (or $\Psi(u) = q\gamma u$ for all $u \in U$ and $\gamma \in \Gamma$).

iv) Let W be a submodule (an (M, M)-subbimodule) in Q and $\Psi: W \to Q$ a right M-module homomorphism. If W contains the ideal U ideal of the Γ -ring M such that $\Psi(U) \subseteq M$ and $AnnU = Ann_rW$, then there is an element $q \in Q$ such that $\Psi(b) = q(b)$ for any $b \in W$ (or $\Psi(b) = q\gamma b$ for any $b \in W$ and $\gamma \in \Gamma$) and q(a) = 0 for any $a \in Ann_rW$ (or $q\gamma a = 0$ for any $a \in Ann_rW$ and $\gamma \in \Gamma$).

LEMMA 2.5 ([16, Lemma 1]). Let M be a prime Γ -ring and Z the center of M. If $a, b, c \in M$ and $\beta, \gamma \in \Gamma$, then

$$[a\gamma b, c]_{\beta} = a\gamma [b, c]_{\beta} + [a, c]_{\beta} \gamma b + a\gamma (c\beta b) - a\beta (c\gamma b)$$

where $[a,b]_{\gamma}$ is $a\gamma b - b\gamma a$ for all $a, b \in M$ and $\gamma \in \Gamma$.

DEFINITION 2.1. Let M be a Γ -ring and $\theta : M \to M$ be a function. An additive mapping $d : M \to M$ is called θ -derivation if $d(x\alpha y) = d(x) \alpha \theta(y) + x \alpha d(y)$ for all $x, y \in M$ and $\alpha \in \Gamma$.

DEFINITION 2.2. Let M be a Γ -ring, $\theta : M \to M$ and $\varphi : M \to M$ be functions. An additive mapping $d : M \to M$ is called (θ, φ) -derivation if $d(x\alpha y) = d(x) \alpha \theta(y) + \varphi(x) \alpha d(y)$ for all $x, y \in M$ and $\alpha \in \Gamma$.

3. θ -derivation on prime Γ -ring

In this section, M is a prime Γ -ring such that $M\Gamma M \neq M$, Z is the center of M, C_{Γ} is the extended centroid of M and $[a,b]_{\gamma} = a\gamma b - b\gamma a$ for all $a, b \in M$ and $\gamma \in \Gamma$.

LEMMA 3.1. Let M be a prime Γ -ring, U be a non-zero ideal of M, $\theta : M \to M$ be a Γ -ring epimorphism and d be a θ -derivation of M. If $a\Gamma d(U) = \langle 0 \rangle (d(U) \Gamma a = \langle 0 \rangle)$ for all $a \in M$, then a = 0 or d = 0.

PROOF. Let $a\Gamma d(U) = \langle 0 \rangle$. For all $u \in U$, $x \in M$ and $\alpha, \beta \in \Gamma$, we get $0 = a \alpha d(u \beta x) = a \alpha d(u) \beta \theta(x) + a \alpha u \beta d(x)$

$$0 = a\alpha d (u\beta x) = a\alpha d (u) \beta \theta (x) + a\alpha u\beta d (x)$$
$$= a\alpha u\beta d (x).$$

From Lemma 2.3, we obtain that a = 0 or d = 0, since M is a prime Γ -ring. \Box

LEMMA 3.2. Let M be a prime Γ -ring, U be a non-zero ideal of M, $\theta, \varphi : M \to M$ be Γ -ring epimorphisms and d be a (θ, φ) -derivation of M. If $a\Gamma d(U) = \langle 0 \rangle$ $(d(U)\Gamma a = \langle 0 \rangle)$ for all $a \in M$, then a = 0 or d = 0.

PROOF. Let $a\Gamma d(U) = \langle 0 \rangle$. For all $u \in U$, $x \in M$ and $\alpha, \beta \in \Gamma$, we get $0 = a\alpha d(u\beta x) = a\alpha d(u)\beta \theta(x) + a\alpha \varphi(u)\beta d(x)$

$$=a\alpha\varphi\left(u\right) \beta d\left(x\right) .$$

From Lemma 2.3, we obtain that a = 0 or d = 0, since M is a prime Γ -ring and φ is a Γ -ring epimorphism.

THEOREM 3.1. Let M be a prime Γ -ring with charM = 2, $\theta : M \to M$ be a Γ -ring epimorphism and $0 \neq d_1, d_2$ be θ -derivation on M such that $d_1\theta = \theta d_1$ and $d_2\theta = \theta d_2$. If for all $x \in M$,

(3.1)
$$d_1 d_2 (x) = 0$$

then there exists $\lambda \in C_{\Gamma}$ such that $d_2(x) = \lambda \alpha d_1(x)$ for all $x \in M$ and $\alpha \in \Gamma$.

PROOF. Let $\alpha \in \Gamma$ and $x, y \in M$. Replacing x by $x \alpha y$ in (3.1) and using (3.1), we get

(3.2)
$$0 = d_2(x) \alpha d_1(\theta(y)) + d_1(x) \alpha d_2(\theta(y)),$$

since charM = 2 and $d_2\theta = \theta d_2$.

Replacing x by $x\beta z$ in (3.2) and using (3.2), we get

(3.3)
$$d_2(x) \beta \theta(z) \alpha d_1(\theta(y)) = d_1(x) \beta \theta(z) \alpha d_2(\theta(y)),$$

for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$. Since θ is Γ -ring epimorphism, for all $x, w, m \in M$ and $\alpha, \beta \in \Gamma$, we get

(3.4)
$$d_2(x)\beta m\alpha d_1(w) = d_1(x)\beta m\alpha d_2(w).$$

Now if we replace w by x in (3.4), then we obtain

(3.5)
$$d_2(x) \beta m \alpha d_1(x) = d_1(x) \beta m \alpha d_2(x),$$

for all $x, m \in M$ and $\beta, \alpha \in \Gamma$. If $d_1(x) \neq 0$, then there exists $\lambda(x) \in C_{\Gamma}$ such that $d_2(x) = \lambda(x) \gamma d_1(x)$ for all $x \in M$ and $\gamma \in \Gamma$. Thus, if $d_1(x) \neq 0 \neq d_1(w)$, then (3.4) implies that

(3.6)
$$(\lambda(y) - \lambda(x)) \gamma d_1(x) \beta m \alpha d_1(w) = 0.$$

Since M is a prime Γ -ring, we conclude by using Lemma 3.1 that $\lambda(y) = \lambda(x)$ for all $x, y \in M$. Hence we prove that there exists $\lambda \in C_{\Gamma}$ such that $d_2(x) = \lambda \gamma d_1(x)$ for all $x \in M$ and $\gamma \in \Gamma$ with $d_1(x) \neq 0$. On the other hand, if $d_1(x) = 0$, then $d_2(x) = 0$ as well. Therefore, $d_2(x) = \lambda \gamma d_1(x)$ for all $x \in M$ and $\gamma \in \Gamma$. This completes the proof.

PROPOSITION 3.1. Let M be a prime Γ -ring with charM = 2, $\theta : M \to M$ be a Γ -ring epimorphism and $0 \neq d$ be a θ -derivation of M such that $d\theta = \theta d$. If for all $x \in M$,

$$(3.7) d(x) \in Z,$$

then there exists $\lambda(m) \in C_{\Gamma}$ such that $d(m) = \lambda(m) \alpha d(z)$ for all $m, z \in M$ and $\alpha \in \Gamma$ or M is commutative.

PROOF. From (3.7), we have

$$[d(x), y]_{\beta} = 0,$$

for all $x, y \in M$ and $\beta \in \Gamma$.

Replacing x by $x\gamma z$ in (3.8), we get

$$[d(x\gamma z), y]_{\beta} = d(x)\gamma\theta(z)\beta y + x\gamma d(z)\beta y - y\beta d(x)\gamma\theta(z) - y\beta x\gamma d(z).$$

Since θ is Γ -ring epimorphism, we get

(3.10)
$$0 = d(x)\gamma(m\beta y - y\beta m) + d(z)\gamma(x\beta y - y\beta x)$$
$$= d(x)\gamma[m, y]_{\beta} + d(z)\gamma[x, y]_{\beta},$$

for all $x, y, z, m \in M$ and $\gamma, \beta \in \Gamma$. Replacing x by d(x) in (3.10), we get

(3.11)
$$0 = d^{2}(x) \gamma [m, y]_{\beta} + d(z) \gamma [d(x), y]_{\beta},$$

for all $x, y, z, m \in M$. Using (3.8) in (3.11), we get

$$(3.12) d2(x) \gamma [m, y]_{\beta} = 0$$

for all $x, y, m \in M$ and $\gamma, \beta \in \Gamma$.

Now, substituting $x\alpha z$ for x in (3.12), it follows from charM = 2 that

(3.13)
$$0 = d^2(x) \alpha \theta^2(z) \gamma [m, y]_{\beta},$$

for all $x, y, z, m \in M$ and $\gamma, \beta \in \Gamma$. Since M is prime Γ -ring and θ is Γ -ring epimorphism, we obtain

(3.14)
$$d^2(x) = 0$$
 for all $x \in M$ or $[m, y]_{\beta} = 0$ for all $y, m \in M$ and $\beta \in \Gamma$.

From (3.14), if $d^2(x) = 0$ for all $x \in M$, then replacing x by $x\gamma y$ in this last relation, it follows from $d(x) \in Z$ that

(3.15)
$$d(x) \gamma d(m) = d(m) \gamma d(x) \text{ for all } x, m \in M \text{ and } \gamma \in \Gamma.$$

Replacing x by $x\alpha z$ in (3.15), it follows from (3.15) that for all $x, z, m \in M$ and $\alpha \in \Gamma$,

$$d(x) \alpha y \gamma d(m) = d(m) \alpha y \gamma d(x)$$

since θ is Γ -ring epimorphism.

If $d(m) \neq 0$, then there exists $\lambda(m) \in C_{\Gamma}$ such that $d(x) = \lambda(x) \alpha d(m)$ for all $x, m \in M$ and $\alpha \in \Gamma$ by Lemma 2.2. On the other hand, it follows from (3.14) that if $[m, y]_{\beta} = 0$ for all $y, m \in M$ and $\beta \in \Gamma$, then M is commutative. This completes the proof.

THEOREM 3.2. Let M be a prime Γ -ring with charM = 2, U be a non-zero ideal of M, $\theta : M \to M$ be a Γ -ring epimorphism and $0 \neq d_1, d_2$ be θ -derivation on M such that $d_1\theta = \theta d_1$ and $d_2\theta = \theta d_2$. If $d_2(U) \subseteq U$ and for all $u \in U$,

$$(3.16) d_1 d_2 (u) = 0$$

then there exists $\lambda \in C_{\Gamma}$ such that $d_2(x) = \lambda \alpha d_1(x)$ for all $x \in M$ and $\alpha \in \Gamma$.

PROOF. Let $\gamma \in \Gamma$ and $u, v \in U$. Replacing u by $d_2(u) \gamma v$ in (3.16) and using hypothesis, we have

(3.17)
$$d_2^2(u) \gamma d_1(w) = 0,$$

for all $u \in U$, $w \in M$ and $\gamma \in \Gamma$. Since $d_1 \neq 0$, for all $u \in U$, $d_2^2(u) = 0$ from Lemma 3.1. Replacing u by $u\gamma x$ in (3.16) and using hypothesis, we get

$$(3.18) 0 = d_2(u) \gamma d_1(\theta(x)) + d_1(u) \gamma \theta(d_2(x)) + u \gamma d_1(d_2(x)),$$

for all $u \in U$, $x \in M$ and $\gamma \in \Gamma$. Replacing u by $d_2(u)$ in (3.18) and using (3.17), we get

$$d_2(u) \gamma d_1(d_2(x)) = 0.$$

Since $d_2 \neq 0$, $d_1(d_2(x)) = 0$ for all $x \in M$ from Lemma 3.1. From here, there exists $\lambda \in C_{\Gamma}$ such that $d_2(x) = \lambda \alpha d_1(x)$ for all $x \in M$ and $\alpha \in \Gamma$.

THEOREM 3.3. Let M be a prime Γ -ring, U be a non-zero right ideal of M, $\theta: M \to M$ be Γ -ring epimorphism and $0 \neq d$ be a θ -derivation of M such that $d\theta = \theta d$. If

(3.19)
$$d(u) \gamma a = 0 \text{ for all } u \in U \text{ and } \gamma \in \Gamma,$$

where a is a fixed element of M, then there exists an element of Q such that $q\gamma a = 0$ implies $q\gamma u = 0$ for all $u \in U$ and $\gamma \in \Gamma$.

PROOF. Let $u \in U$, $x \in M$ and $\beta \in \Gamma$. Since U is a right ideal of M, we have $u\beta x \in U$. Replacing u by $u\beta x$ in (3.19), we get

(3.20)
$$d(u)\beta\theta(x)\gamma a + u\beta d(x)\gamma a = 0$$

for all $u \in U$, $x \in M$ and $\gamma, \beta \in \Gamma$. And so,

$$d(u) \beta \left(\sum \theta(x) \gamma a \alpha m\right) = -\left(u \beta \left(\sum d(x) \gamma a \alpha m\right)\right)$$

for all $m \in M$, $\alpha \in \Gamma$. Therefore, for any $v \in V = M\Gamma a\Gamma M$ which is a non-zero ideal of M, we have

$$(3.21) d(u)\,\beta v = u\beta f(v)$$

for all $u \in U$. f(v) is independent of u but it is dependent on v. Since M is a prime Γ -ring, f(v) is well-defined. Note that $v\alpha y \in V$ for any $y \in M$, $v \in V$ and $\alpha \in \Gamma$. Replacing v by $v\alpha y$ in (3.21), we get

$$d(u) \beta v \alpha y = u\beta f(v\alpha y),$$

$$u\beta f(v) \alpha y = u\beta f(v\alpha y),$$

$$u\beta (f(v) \alpha y - f(v\alpha y)) = 0,$$

which implies from Lemma 2.3 that

$$(3.22) f(v) \alpha y = f(v \alpha y)$$

for all $y \in M$, $v \in V$ and $\alpha \in \Gamma$. It follows from (3.22) that $f: V \to M$ is a right M-module homomorphism. In this case, $q = Cl(V, f) \in Q$. Moreover, $f(v) = q\beta v$ for all $v \in V$ and $\alpha \in \Gamma$ by Theorem 2.2. Let $x \in M$, $v \in V$, $u \in U$ and $\gamma, \beta \in \Gamma$. Replacing v by $\theta(x) \gamma v$ in (3.21), we get

(3.23)
$$d(u) \beta \theta(x) \gamma v = u\beta f(\theta(x) \gamma v) = u\beta q\beta \theta(x) \gamma v.$$

Also, replacing u by $u\gamma x$ in (3.21), we get

$$d(u\gamma x)\beta v = u\gamma x\beta f(v)$$

M. A. ÖZTÜRK, H. DURNA, AND T. ACET

 $d(u) \gamma \theta(x) \beta v + u \gamma d(x) \beta v = u \gamma x \beta f(v)$

(3.24)
$$d(u) \gamma \theta(x) \beta v = u \gamma x \beta q \beta v - u \gamma d(x) \beta v$$

Now, replacing β by γ and replacing γ by β in (3.24), we get

$$(3.25) d(u) \beta \theta(x) \gamma v = u\beta x\gamma q\gamma v - u\beta d(x) \gamma v$$

Thus, from (3.23) and (3.25), we obtain

$$u\beta q\beta\theta (x) \gamma v = u\beta x\gamma q\gamma v - u\beta d(x) \gamma v$$

$$u\beta \left(q\beta\theta \left(x\right) - x\gamma q + d\left(x\right)\right)\gamma v = 0$$

for all $x \in M$, $v \in V$, $u \in U$ and $\gamma, \beta \in \Gamma$. Hence $d(x) = x\gamma q - q\beta\theta(x)$ for all $x \in M$ and $\gamma, \beta \in \Gamma$ by Lemma 2.3. Let $u \in U$ and $x \in M$, $d(u) = q\alpha u - \theta(u)\beta q$ and $d(x) = q\beta x - \theta(x)\alpha q$. Then we have

$$0 = d(u\beta x)\gamma a = (q\alpha(u\beta x) - \theta(u\beta x)\beta q)\gamma a.$$

Thus, $q\alpha u\beta x\gamma a = \theta(u\beta x)\beta q\gamma a$. If $q\gamma a = 0$, then $q\alpha u\beta x\gamma a = 0$, and so since M is prime Γ -ring, we get $q\Gamma U = \langle 0 \rangle$.

THEOREM 3.4. Let M be a prime Γ -ring with char $M \neq 2$, U a non-zero right ideal of M and $0 \neq d$ be a θ -derivation of M such that $d\theta = \theta d$ and $\theta(U) \subseteq U$. Then the subring of M generated by d(U) contains no nonzero right ideals of M if and only if $d(U) \Gamma \theta(U) = \langle 0 \rangle$.

PROOF. Let A be the subring generated by d(U). Let $S = A \cap U$, $u \in U$, $s \in S$ and $\gamma \in \Gamma$. Then $d(s\gamma u) = d(s)\gamma\theta(u) + s\gamma d(u)$, and so we have $d(s)\gamma\theta(u) \in S$. Thus $d(S)\Gamma\theta(U)$ is a right ideal of M. In this case, $d(S)\Gamma\theta(U) = \langle 0 \rangle$ by hypothesis. $d(u\gamma a) = d(u)\gamma\theta(a) + u\gamma d(a) \in S$ and $d(u)\gamma\theta(a) \in S$ where $u \in U$, $a \in A$. Thus, we have $u\gamma d(a) \in S$. Therefore, $0 = d(u\gamma d(a))\beta\theta(u) = (d(u)\gamma\theta(d(a)) + u\gamma d^2(a))\beta\theta(u)$. Since M is prime Γ -ring, it follows from Lemma 2.3 that

(3.26)
$$d(u)\gamma\theta(d(a)) + u\gamma d^{2}(a) = 0$$

for all $u \in U$, $\gamma \in \Gamma$ and $a \in A$. Replacing u by $u\beta v$ where $v \in U$, $\beta \in \Gamma$ in (3.26), we get, for all $u, v \in U$, $\beta, \gamma \in \Gamma$ and $a \in A$

$$d(u)\,\beta v\gamma\theta\left(d(a)\right)=0.$$

Since *M* is prime Γ -ring, we get $d(U) \Gamma U = \langle 0 \rangle$ or $d(A) \Gamma U = \langle 0 \rangle$. If $d(A) \Gamma U = \langle 0 \rangle$, then $d^2(U) \Gamma U = \langle 0 \rangle$. Let $u, v \in U$ and $\beta \in \Gamma$. Then

$$0 = d \left(d \left(u \beta v \right) \right) = d^2 \left(u \right) \beta \theta^2 \left(v \right) + 2d \left(u \right) \beta d \left(\theta \left(v \right) \right) + u \beta d^2 \left(v \right)$$

and so we have $d(u) \beta d(\theta(v)) = 0$ for all $u, v \in U$ and $\beta \in \Gamma$ by $charM \neq 2$. Replacing u by $u\gamma w$ where $w \in U, \gamma \in \Gamma$ in last relation, we have

$$d(u) \gamma \theta(w) \beta d(\theta(v)) = 0$$

which yields $d(u) \gamma \theta(w) = 0$ for all $u, w \in U$ and $\gamma \in \Gamma$.

Conversely, assume that $d(U) \Gamma \theta(U) = \langle 0 \rangle$. Then $A \Gamma d(U) = \langle 0 \rangle$. Since M is a prime Γ -ring, A contains no non-zero right ideals.

4. (θ, φ) -derivation on prime Γ -ring

THEOREM 4.1. Let M be a prime Γ -ring with charM = 2, $\theta : M \to M$ and $\varphi : M \to M$ be Γ -ring epimorphisms and $0 \neq d_1, d_2$ be (θ, φ) -derivations on M such that $d_i\theta = \theta d_i$ and $d_i\varphi = \varphi d_i$, i = 1, 2. If for all $x \in M$,

(4.1)
$$d_1 d_2 (x) = 0$$

then there exists $\lambda \in C_{\Gamma}$ such that $d_2(x) = \lambda \alpha d_1(x)$ for all $x \in M$ and $\alpha \in \Gamma$.

PROOF. Let $\alpha \in \Gamma$ and $x, y \in M$. Replacing x by $x \alpha y$ in (4.1) and using (4.1), we get

(4.2)
$$d_2(\varphi(x)) \alpha d_1(\theta(y)) = d_1(\varphi(x)) \alpha d_2(\theta(y)),$$

since charM = 2 and $d_i\theta = \theta d_i$, $d_i\varphi = \varphi d_i$ for i = 1, 2.

Since φ is Γ -ring epimorphism, for all $m, y \in M$ and $\alpha \in \Gamma$, we get

(4.3)
$$d_2(m) \alpha d_1(\theta(y)) = d_1(m) \alpha d_2(\theta(y)).$$

Replacing m by $m\beta z$ in (4.2) and using (4.2), we get

(4.4)
$$d_2(m) \beta \theta(z) \alpha d_1(\theta(y)) = d_1(m) \beta \theta(z) \alpha d_2(\theta(y)),$$

for all $m, y, z \in M$ and $\alpha, \beta \in \Gamma$. Since θ is Γ -ring epimorphism, for all $m, n, k \in M$ and $\alpha, \beta \in \Gamma$, we get

(4.5)
$$d_2(m)\beta n\alpha d_1(k) = d_1(m)\beta n\alpha d_2(k).$$

Now if we replace k by m in (4.5), then we obtain

(4.6)
$$d_2(m)\beta n\alpha d_1(m) = d_1(m)\beta n\alpha d_2(m)$$

for all $n, m \in M$ and $\beta, \alpha \in \Gamma$. If $d_1(m) \neq 0$, then there exists $\lambda(m) \in C_{\Gamma}$ such that $d_2(m) = \lambda(m) \gamma d_1(m)$ for all $x \in M$ and $\gamma \in \Gamma$. Thus, if $d_1(m) \neq 0 \neq d_1(k)$, then (4.5) implies that

(4.7)
$$(\lambda (k) - \lambda (m)) \gamma d_1 (m) \beta z \alpha d_1 (k) = 0$$

Since M is a prime Γ -ring, we conclude by using Lemma 2.2 that $\lambda(k) = \lambda(m)$ for all $k, m \in M$. Hence we prove that there exists $\lambda \in C_{\Gamma}$ such that $d_2(m) = \lambda \gamma d_1(m)$ for all $m \in M$ and $\gamma \in \Gamma$ with $d_1(m) \neq 0$. On the other hand, if $d_1(m) = 0$, then $d_2(m) = 0$ as well. Therefore, $d_2(m) = \lambda \gamma d_1(m)$ for all $m \in M$ and $\gamma \in \Gamma$. This completes the proof.

PROPOSITION 4.1. Let M be a prime Γ -ring with char $M = 2, \theta : M \to M$ and $\varphi : M \to M$ be Γ -ring epimorphisms and $0 \neq d$ be a (θ, φ) -derivation of M such that $d\theta = \theta d$, $d\varphi = \varphi d$. If for all $x \in M$,

$$(4.8) d(x) \in Z,$$

then there exists $\lambda(m) \in C_{\Gamma}$ such that $d(m) = \lambda(m) \alpha d(z)$ for all $m, z \in M$ and $\alpha \in \Gamma$ or M is commutative.

PROOF. From (4.8), we have

$$[d\left(x\right) ,y]_{\beta }=0,$$

for all $x, y \in M$ and $\beta \in \Gamma$.

Replacing x by $x\gamma z$ in (4.9), we get (4.10)

$$\left[d\left(x\gamma z\right),y\right]_{\beta} = d\left(x\right)\gamma\theta\left(z\right)\beta y + \varphi\left(x\right)\gamma d\left(z\right)\beta y - y\beta d\left(x\right)\gamma\theta\left(z\right) - y\beta\varphi\left(x\right)\gamma d\left(z\right) + \varphi\left(x\right)\gamma d\left(z\right) + \varphi\left(x\right)\gamma$$

Since θ is Γ -ring epimorphism, we get

(4.11)
$$0 = d(x)\gamma(m\beta y - y\beta m) + d(z)\gamma(\varphi(x)\beta y - y\beta\varphi(x))$$
$$= d(x)\gamma[m, y]_{\beta} + d(z)\gamma[\varphi(x), y]_{\beta},$$

for all $x, y, z, m \in M$ and $\gamma, \beta \in \Gamma$. Replacing x by d(x) in (4.11), we get

(4.12)
$$0 = d^{2}(x) \gamma [m, y]_{\beta} + d(z) \gamma [\varphi (d(x)), y]_{\beta},$$

for all $x, y, z, m \in M$. Since φ is Γ -ring epimorphism, we get

(4.13)
$$0 = d^{2}(x) \gamma [m, y]_{\beta} + d(z) \gamma [d(n), y]_{\beta},$$

for all $x, y, z, m, n \in M$ and $\gamma, \beta \in \Gamma$.

Using (4.9) in (4.13), we get

(4.14)
$$d^{2}(x)\gamma[m,y]_{\beta}=0,$$

for all $x, y, m \in M$ and $\gamma, \beta \in \Gamma$.

Now, substituting $x\alpha z$ for x in (4.14), we get

$$\begin{array}{ll} 0 & = & \left(d^2\left(x\right)\alpha\theta^2\left(z\right) + \varphi\left(d\left(x\right)\right)\alpha d\left(\theta\left(z\right)\right) \\ & + d\left(\varphi\left(x\right)\right)\alpha\theta\left(d\left(z\right)\right) + \varphi^2\left(x\right)\alpha d^2\left(z\right)\right)\gamma\left[m,y\right]_\beta, \end{array}$$

for all $x, y, z, m \in M$ and $\alpha, \gamma, \beta \in \Gamma$. Using (4.13) in last relation, we have

(4.15)
$$0 = d^2(x) \alpha \theta^2(z) \gamma[m, y]_\beta,$$

for all $x, y, z, m \in M$ and $\alpha, \gamma, \beta \in \Gamma$. Since M is prime Γ -ring and θ is Γ -ring epimorphism, we obtain

(4.16)
$$d^2(x) = 0$$
 for all $x \in M$ or $[m, y]_{\beta} = 0$ for all $y, m \in M$ and $\beta \in \Gamma$.

From (4.16), if $d^{2}(x) = 0$ for all $x \in M$, then replacing x by $x\gamma y$ in this last relation, it follows from $d(x) \in Z$ that

(4.17)
$$d(x)\gamma d(m) = d(m)\gamma d(x) \text{ for all } x, m \in M \text{ and } \gamma \in \Gamma.$$

Replacing x by $x\alpha n$ in (4.17), it follows from (4.17) that for all $x, n, m \in M$ and $\alpha, \gamma \in \Gamma$,

(4.18)
$$d(x) \alpha \theta(n) \gamma d(m) = d(m) \gamma d(x) \alpha \theta(n)$$

Since θ is Γ -ring epimorphism, we have

 $d(x) \alpha k \gamma d(m) = d(m) \gamma d(x) \alpha k,$

for all $x, m, k \in M$ and $\alpha, \gamma \in \Gamma$

210

(4.9)

If $d(x) \neq 0$, then there exists $\lambda(m) \in C_{\Gamma}$ such that $d(x) = \lambda(x) \alpha d(m)$ for all $x, m \in M$ and $\alpha \in \Gamma$ by Lemma 2.2. On the other hand, it follows from (4.16) that if $[m, y]_{\beta} = 0$ for all $y, m \in M$ and $\beta \in \Gamma$, then M is commutative. This completes the proof.

THEOREM 4.2. Let M be a prime Γ -ring with charM = 2, U be a non-zero ideal of M, $\theta : M \to M$ and $\varphi : M \to M$ be Γ -ring epimorphisms and $0 \neq d_1, d_2$ be (θ, φ) -derivations on M such that $d_i\theta = \theta d_i$ and $d_i\varphi = \varphi d_i$, i = 1, 2. If $d_2(U) \subseteq U$ and for all $u \in U$,

$$(4.19) d_1 d_2 (u) = 0$$

then there exists $\lambda \in C_{\Gamma}$ such that $d_2(x) = \lambda \alpha d_1(x)$ for all $x \in M$ and $\alpha \in \Gamma$.

PROOF. Let $\gamma \in \Gamma$ and $u, v \in U$. Replacing u by $d_2(u) \gamma v$ in (4.19) and using hypothesis, we have

(4.20)
$$\varphi\left(d_2^2\left(u\right)\right)\gamma d_1\left(\theta\left(v\right)\right) = 0,$$

for all $u, v \in U$ and $\gamma \in \Gamma$. Since θ and φ are Γ -ring epimorphisms, we get

(4.21)
$$d_2^2(y) \gamma d_1(z) = 0$$

for all $y, z \in M$ and $\gamma \in \Gamma$. Since $d_1 \neq 0$, for all $y \in M$, $d_2^2(y) = 0$ from Lemma 3.2. Replacing u by $u\gamma x$ in (4.19) and using hypothesis, we get

(4.22)
$$0 = d_2(u) \gamma d_1(\theta(x)) + d_1(u) \gamma \theta(d_2(x)) + u\gamma d_1(d_2(x)),$$

for all $u \in U$, $x \in M$ and $\gamma \in \Gamma$. Replacing u by $d_2(u)$ in (4.22) and using (4.21), we get

$$d_2\left(u\right)\gamma d_1\left(d_2\left(x\right)\right) = 0.$$

Since $d_2 \neq 0$, $d_1(d_2(x)) = 0$ for all $x \in M$ from Lemma 3.2. From here, there exists $\lambda \in C_{\Gamma}$ such that $d_2(x) = \lambda \alpha d_1(x)$ for all $x \in M$ and $\alpha \in \Gamma$.

References

- [1] M. Ashraf and N. Rehman. On (σ, τ) -derivations in prime rings. Arch. Math., Brno , **38**(4)(2002), 259–264.
- [2] N. Aydın and K. Kaya. Some generalizations in prime rings with (σ, τ)-derivation. Turk. J. Math., 16(1992), 169–176.
- [3] W. E. Barnes. On the Γ-rings of Nobusawa. Pasific J. Math., 18(3)(1966), 411-422.
- [4] J. C. Chang. On semi-derivation on prime rings. Chin. J. Math., 12(4)(1984), 225–262.
- [5] J. C. Chang. α-derivations with invertible values. Bull. Inst. Math. Acad. Sinica, 13(4)(1985), 323–333.
- [6] F. J. Jing. On derivations of Γ-rings. Qufu Shifin Daxue Xuebeo Ziran Kexue Ban., 13(4)(1987), 159–161.
- [7] S. Kyuno. On prime gamma rings. Pasific J. Math., 75(1)(1978), 185-190.
- [8] G. Maksa. On the trace of symmetric bi-derivations. C. R. Math. Rep. Acad. Sci. Canada, 9(1987), 303–307.
- [9] N. Nobusawa. On a generalization of the ring theory. Osaka J. Math., 1(1)(1964), 81–89.
- [10] M. A. Öztürk, M. Sapanci, M. Soytürk and K. H. Kim. Symmetric bi-derivation on prime gamma rings. Sci. Math., 3(2)(2000), 273–281.
- [11] M. A. Öztürk and Y. B. Jun. On the centroid of the prime gamma rings. Comm. Korean Math. Soc., 15(3)(2000), 469–479.

- [12] M. A. Öztürk and Y. B. Jun. On the centroid of the prime gamma rings II. Turk J. Math., 25(3)(2001), 367–377.
- [13] M. A. Öztürk, Y. B. Jun and K. H. Kim. On derivations of prime gamma rings. Turk J. Math., 26(3)(2002), 317–327.
- [14] M. A. Öztürk and Y. B. Jun. Regularity of the generalized centroid of semiprime gamma rings. Comm. Korean Math. Soc., 19(2)(2004), 233–242.
- [15] E. C. Posner. Derivations in prime rings. Proc. Amer. Math. Soc., 8(6)(1957), 1093-1100.
- [16] M. Soytürk. The commutativity in prime gamma rings with derivation. Turk J. Math., 18(2)(1994), 149–155.
- [17] M. S. Yenigul and N. Argaç. On ideals and orthogonal derivations. J. of Southwest China Normal Univ., 20(2)(1995), 137–140.

Received by editors 05.03.2019; Revised version 14.09.2019; Available online 23.09.2019.

Adiyaman University, Faculty of Arts and Sciences, Department of Mathematics, 02040 Adiyaman, TURKEY

E-mail address: mehaliozturk@gmail.com

Sivas Cumhuriyet University, Faculty of Sciences, Department of Mathematics, 58140 Sivas, TURKEY

E-mail address: hyazarli@cumhuriyet.edu.tr

Adiyaman University, Faculty of Arts and Sciences, Department of Mathematics, 02040 Adiyaman, TURKEY

E-mail address: acettuba020gmail.com