A NOTE ON DERIVATIONS ON PRIME GAMMA RINGS WITH CHARACTERISTIC 2

Mehmet Ali Öztürk, Hasret Durna, and Tuba Acet

Abstract. In this paper we will study the relationship between the quotient Γ-ring and the existence of certain specific types of derivation of Γ-ring with characteristic 2.

1. Introduction

In 1957, Posner introduced derivation in ring in [15]. The different definitions of derivation such as semi-derivation, orthogonal derivation, θ-derivation, (σ, τ)-derivation, symmetric bi-derivation, objects more general than derivation, were introduced by many researchers (see, for example [1, 2, 4, 5, 8, 17]).

The notion of the Γ-ring was introduced by Nobusawa in [9]. The Γ-ring is a generalization of ring. In [3], the conditions in the Γ-ring defined by Nobusawa, were weakened by Barnes. In [11], [12] and [14], Öztürk and Jun studied extended centroid of prime Γ-ring and generalized centroid of semi-prime Γ-ring. In [6], Jing defined derivation in prime Γ-rings. Let M be a Γ-ring. A map d : M → M is called a derivation if d(x + y) = d(x) + d(y) and d(xγy) = d(x)γy + xγd(y) for all x, y ∈ M and γ ∈ Γ. In [13], Öztürk, Jun and Kim investigated the relationship between the quotient Γ-ring and derivation of Γ-ring M with charM = 2. In this paper we study the relationship between the quotient Γ-ring and the existence of certain specific types of derivation of Γ-ring M with charM = 2.

Throught in this paper, M in a Γ-ring in the sense of Barnes.

2010 Mathematics Subject Classification. 16N60, 16W25, 16Y99.
Key words and phrases. Gamma ring, extended centroid, θ-derivation, (θ, ϕ)-derivation.
2. Preliminaries

Let M and Γ be (additive) abelian groups. If the following conditions are hold in M, then we say that M is a Γ-ring (in the sense of Barnes),

1. $aab \in M$,
2. $(a + b) ac = aob + aac$.
3. $a(a + \beta) b = aob + a\beta b$.
4. $aa(b + c) = aob + aac$.

for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$. The center of Γ-ring M is defined by

$$Z = \{x \in M : x\gamma m = m\gamma x \text{ for all } m \in M \text{ and } \gamma \in \Gamma\}.$$

If U is an additive subgroup of M and $U \Gamma M \subseteq U$ (resp. $MTU \subseteq U$), then U is called a right (resp. left) ideal of a Γ-ring M. If U is both a right and a left ideal, then U is called an ideal of M. Let $a \in M$. The principal right ideal generated by a is the smallest right ideal of Γ-ring M containing a. This ideal is denoted by $\langle a \rangle_r$. Similarly one define $\langle a \rangle_l$ the principal left ideal generated by a and $\langle a \rangle$ the principal two sided ideal generated by a. Let $P \neq M$ is an ideal of a Γ-ring M. For any ideals U and V of M, if $UTV \subseteq P$ implies $U \subseteq P$ or $V \subseteq P$, then P is said to be prime ideal of M. A Γ-ring M is said to be prime if the zero ideal is prime.

Theorem 2.1 ([7, Theorem 4]). If M is a Γ-ring, the following conditions are equivalent:

i) M is prime Γ-ring.
ii) If $a, b \in M$ and $a\Gamma M b = \{0\}$, then $a = 0$ or $b = 0$.
iii) If $\langle a \rangle$ and $\langle b \rangle$ are principal ideals of M such that $\langle a \rangle \Gamma \langle b \rangle = \{0\}$, then $a = 0$ or $b = 0$.
iv) If U and V are right ideals of M such that $UTV = \{0\}$, then $U = \{0\}$ or $V = \{0\}$.
v) If U and V are left ideals of M such that $UTV = \{0\}$, then $U = \{0\}$ or $V = \{0\}$.

Let M and M' be two Γ-rings. A mapping $f : M \to M'$ of Γ-rings is called a Γ-ring homomorphism if $f(x + y) = f(x) + f(y)$ and $f(xy\gamma) = f(x) \gamma f(y)$ for all $x, y \in M$ and $\gamma \in \Gamma$.

Let M be a Γ-ring and $(A, +)$ be an abelian group. A is called a left M-module over M Γ-ring with respect to a mapping $\cdot : M \times \Gamma \times A \to A$ if for all $m, m', M, x, y \in A$ and $\alpha, \beta \in \Gamma$,

1. $ma(x + y) = max + may$,
2. $(m + m') \alpha x = max + may$,
3. $ma(m'\beta x) = (mam')\beta x$.

Similarly, one can define a right M-module.

Let M be a Γ-ring and A, B be two left M-modules. A additive mapping $f : A \to B$ is called a left M-module homomorphism if $f(max) = maf(x)$ for all $m \in M, x \in A$ and $\alpha \in \Gamma$.

Let M be a prime Γ-ring such that $M \Gamma M \neq M$. Denote
$$\mathcal{M} := \{(U, f) : U (\neq 0) \text{ is an ideal of } M \text{ and } f : U \rightarrow M \text{ is a right } M\text{-module homomorphism}\}.$$ Define a relation \sim on \mathcal{M} by
$$(U, f) \sim (V, g) \Leftrightarrow \exists W (\neq 0) \subset U \cap V \text{ such that } f = g \text{ on } W.$$
Since M is prime Γ-ring, it is possible to find a non-zero W and so "\sim" is an equivalent relation. This gives a chance for us to get a partition of \mathcal{M}. We denote the equivalence class by $Cl(U, f) = f$, where
$$\hat{f} := \{ g : V \rightarrow M \mid (U, f) \sim (V, g) \},$$
and denote by Q the set of all equivalence classes. Then Q is a Γ-ring, which is called the quotient Γ-ring of M (see [11], [12], and [14]).

Let M be a Γ-ring with unity. An element u in M is called a unity of M if it has a multiplicative inverse in M. If every nonzero element of M is a unity, we say that M is a Γ-division ring. A Γ-ring M is a Γ-field if it is a commutative Γ-division ring.

Lemma 2.1 ([12, Lemma 3.3]). Let M be a prime Γ-ring such that $M \Gamma M \neq M$. Then the extended centroid C_Γ of M is a Γ-field.

Let M be a Γ-ring and A be a M-module. A subset $B = \{b_i : i \in I\}$ of A is called linearly independent, if for every distinct $b_1, b_2, ..., b_n \in B$, $m_1, m_2, ..., m_n \in M$ and $\beta_1, \beta_2, ..., \beta_n \in \Gamma$ such that $\sum_{i=0}^n m_i \beta_i b_i = 0$ implies that $m_1 = m_2 = ... = m_n = 0$.

Lemma 2.2 ([11, p. 476]). Let M be a prime Γ-ring such that $M \Gamma M \neq M$ and the extended centroid C_Γ of M. If a_i and b_i are non-zero elements of M such that $\sum a_i \gamma_i x \beta_i b_i = 0$ for all $x \in M$ and $\gamma_i, \beta_i \in \Gamma$, then the a_i's (also b_i's) are linearly independent over C_Γ. Moreover, if $a \gamma x \beta b = b \gamma x \beta a$ for all $x \in M$ and $\gamma, \beta \in \Gamma$ where $a (\neq 0)$, $b \in M$ are fixed, then there exists $\lambda \in C_\Gamma$ such that $b = \lambda a$ for all $\alpha \in \Gamma$.

Lemma 2.3 ([16, Lemma 2]). Let M be a prime Γ-ring, U a non-zero right (resp. left) ideal of M and $a \in M$. If $U \Gamma a = \{0\}$ (resp. $a \Gamma U = \{0\}$), then $a = 0$.

Lemma 2.4 ([10, Lemma 1]). Let M be a semi-prime Γ-ring and U a non-zero ideal of M. Then $Ann_U M = Ann_U U$.

Let M be a semi-prime Γ-ring and U a non-zero ideal of M. In this case, we will write $Ann_U U = Ann_U M = Ann_U$ by Lemma 2.4. Let us denote by F a set of all ideals of M which have zero annihilator in M. In this case, the set F is closed under multiplication by Lemma 2.4.

Theorem 2.2 ([14, Theorem 3.5]). Let M be a semi-prime Γ-ring and Q the quotient Γ-ring of M. Then the Γ-ring Q satisfies the following properties:

1) For any element $q \in Q$, there exists an ideal $U_q \in F$ such that $q(U_q) \subseteq M$ (or $qU_q \subseteq M$ for all $\gamma \in \Gamma$).
ii) If $q \in Q$ and $q(U) = \langle 0 \rangle$ for some $U \in F$ (or $q\gamma U_q = \langle 0 \rangle$ for some $U \in F$ and for all $\gamma \in \Gamma$), then $q = 0$.

iii) If $U \in F$ and $\Psi : U \rightarrow M$ is a right M-module homomorphism, then there exists an element $q \in Q$ such that $\Psi(u) = q(u)$ for all $u \in U$ (or $\Psi(u) = q\gamma u$ for all $u \in U$ and $\gamma \in \Gamma$).

iv) Let W be a submodule (an (M,M)-subbimodule) in Q and $\Psi : W \rightarrow Q$ a right M-module homomorphism. If W contains the ideal U ideal of the Γ-ring M such that $\Psi(U) \subseteq M$ and $\text{Ann}U = \text{Ann}W$, then there is an element $q \in Q$ such that $\Psi(b) = q(b)$ for any $b \in W$ (or $\Psi(b) = q\gamma b$ for any $b \in W$ and $\gamma \in \Gamma$) and $q(a) = 0$ for any $a \in \text{Ann}W$ (or $q\gamma a = 0$ for any $a \in \text{Ann}W$ and $\gamma \in \Gamma$).

Lemma 2.5 ([16, Lemma 1]). Let M be a prime Γ-ring and Z the center of M. If $a, b, c \in M$ and $\beta, \gamma \in \Gamma$, then

$$[a\gamma b, c]_\beta = a\gamma [b, c]_\beta + [a, c]_\beta \gamma b + a\gamma (c\beta b) - a\beta (c\gamma b)$$

where $[a, b]_\gamma$ is a γ-ring epimorphism and d be a θ-derivation if $d(x\gamma y) = d(x)\alpha\theta(y) + x\alpha d(y)$ for all $x, y \in M$ and $\alpha \in \Gamma$.

Definition 2.1. Let M be a Γ-ring and $\theta : M \rightarrow M$ be a function. An additive mapping $\phi : M \rightarrow M$ is called θ-derivation if $\phi(a\gamma b) = \phi(a)\theta(b)$ for all $a, b \in M$ and $\gamma \in \Gamma$.

Definition 2.2. Let M be a Γ-ring, $\theta : M \rightarrow M$ and $\varphi : M \rightarrow M$ be functions. An additive mapping $d : M \rightarrow M$ is called (θ, φ)-derivation if $d(x\gamma y) = d(x)\alpha\theta(y) + \varphi(x)d(y)$ for all $x, y \in M$ and $\alpha \in \Gamma$.

3. θ-derivation on prime Γ-ring

In this section, M is a prime Γ-ring such that $M\Gamma M \neq M$, Z is the center of M, C_Γ is the extended centroid of M and $[a, b]_\gamma = a\gamma b - b\gamma a$ for all $a, b \in M$ and $\gamma \in \Gamma$.

Lemma 3.1. Let M be a prime Γ-ring, U be a non-zero ideal of M, $\theta : M \rightarrow M$ be a Γ-ring epimorph and d be a θ-derivation of M. If $a\Gamma d(U) = \langle 0 \rangle$ ($d(U)\Gamma a = \langle 0 \rangle$) for all $a \in M$, then $a = 0$ or $d = 0$.

Proof. Let $a\Gamma d(U) = \langle 0 \rangle$. For all $u \in U$, $x \in M$ and $\alpha, \beta \in \Gamma$, we get

$$0 = a\alpha d(u\beta x) = d(u\alpha x)\beta \theta(x) + a\alpha \beta d(x)$$

$$= a\alpha \beta d(x).$$

From Lemma 2.3, we obtain that $a = 0$ or $d = 0$, since M is a prime Γ-ring. \Box

Lemma 3.2. Let M be a prime Γ-ring, U be a non-zero ideal of M, $\theta, \varphi : M \rightarrow M$ be Γ-ring epimorphisms and d be a (θ, φ)-derivation of M. If $a\Gamma d(U) = \langle 0 \rangle$ ($d(U)\Gamma a = \langle 0 \rangle$) for all $a \in M$, then $a = 0$ or $d = 0$.

Proof. Let $a\Gamma d(U) = \langle 0 \rangle$. For all $u \in U$, $x \in M$ and $\alpha, \beta \in \Gamma$, we get

$$0 = a\alpha d(u\beta x) = d(u\alpha x)\beta \theta(x) + a\alpha \varphi(u) d(x)$$

$$= a\alpha \varphi(u) d(x).$$
From Lemma 2.3, we obtain that $a = 0$ or $d = 0$, since M is a prime Γ-ring and φ is a Γ-ring epimorphism.

Theorem 3.1. Let M be a prime Γ-ring with $\text{char} M = 2$, $\theta : M \to M$ be a Γ-ring epimorphism and $0 \neq d_1, d_2$ be θ-derivations on M such that $d_1 \theta = \theta d_1$ and $d_2 \theta = \theta d_2$. If for all $x \in M$,

$$d_1 d_2 (x) = 0$$

then there exists $\lambda \in C_\Gamma$ such that $d_2 (x) = \lambda \alpha d_1 (x)$ for all $x \in M$ and $\alpha \in \Gamma$.

Proof. Let $\alpha \in \Gamma$ and $x, y \in M$. Replacing x by $x \circ y$ in (3.1) and using (3.1), we get

$$0 = d_2 (x) \alpha d_1 (\theta (y)) + d_1 (x) \alpha d_2 (\theta (y)),$$

since $\text{char} M = 2$ and $d_2 \theta = \theta d_2$.

Replacing x by $x \beta z$ in (3.2) and using (3.2), we get

$$d_2 (x) \beta \theta (z) \alpha d_1 (\theta (y)) = d_1 (x) \beta \theta (z) \alpha d_2 (\theta (y)),$$

for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$. Since θ is Γ-ring epimorphism, for all $x, w, m \in M$ and $\alpha, \beta \in \Gamma$, we get

$$d_2 (x) \beta m \alpha d_1 (w) = d_1 (x) \beta m \alpha d_2 (w).$$

Now if we replace w by x in (3.4), then we obtain

$$d_2 (x) \beta m \alpha d_1 (x) = d_1 (x) \beta m \alpha d_2 (x),$$

for all $x, m \in M$ and $\beta, \alpha \in \Gamma$. If $d_1 (x) \neq 0$, then there exists $\lambda (x) \in C_\Gamma$, such that $d_2 (x) = \lambda (x) \gamma d_1 (x)$ for all $x \in M$ and $\gamma \in \Gamma$. Thus, if $d_1 (x) \neq 0 \neq d_1 (w)$, then (3.4) implies that

$$(\lambda (y) - \lambda (x)) \gamma d_1 (x) \beta m \alpha d_1 (w) = 0.$$

Since M is a prime Γ-ring, we conclude by using Lemma 3.1 that $\lambda (y) = \lambda (x)$ for all $x, y \in M$. Hence we prove that there exists $\lambda \in C_\Gamma$ such that $d_2 (x) = \lambda \gamma d_1 (x)$ for all $x \in M$ and $\gamma \in \Gamma$ with $d_1 (x) \neq 0$. On the other hand, if $d_1 (x) = 0$, then $d_2 (x) = 0$ as well. Therefore, $d_2 (x) = \lambda \gamma d_1 (x)$ for all $x \in M$ and $\gamma \in \Gamma$. This completes the proof. \hfill \Box

Proposition 3.1. Let M be a prime Γ-ring with $\text{char} M = 2$, $\theta : M \to M$ be a Γ-ring epimorphism and $0 \neq d$ be a θ-derivation of M such that $d \theta = \theta d$. If for all $x \in M$,

$$d (x) \in Z,$$

then there exists $\lambda (m) \in C_\Gamma$ such that $d (m) = \lambda (m) \alpha d (z)$ for all $m, z \in M$ and $\alpha \in \Gamma$ or M is commutative.

Proof. From (3.7), we have

$$[d (x), y]_\beta = 0,$$

for all $x, y \in M$ and $\beta \in \Gamma$.

A NOTE ON DERIVATIONS ON PRIME GAMMA RINGS WITH CHARACTERISTIC 2 205
Replacing x by $x\gamma z$ in (3.8), we get

$$d(x\gamma z), y, \beta = d(x) \gamma (\beta y) + x\gamma d(z) \beta y - y\beta d(x) \gamma \theta (z) - y\beta x y d(z).$$

(3.9)

Since θ is Γ-ring epimorphism, we get

$$d(x) \gamma [m, y, \beta] + d(z) \gamma [x, y, \beta],$$

(3.10)

for all $x, y, z, m \in M$ and $\gamma, \beta \in \Gamma$. Replacing x by $d(x)$ in (3.10), we get

$$0 = d^2(x) \gamma [m, y, \beta] + d(z) \gamma [d(x), y, \beta],$$

(3.11)

for all $x, y, z, m \in M$. Using (3.8) in (3.11), we get

$$d^2(x) \gamma [m, y, \beta] = 0,$$

(3.12)

for all $x, y, z, m \in M$ and $\gamma, \beta \in \Gamma$.

Now, substituting $x\alpha z$ for x in (3.12), it follows from $\text{char} M = 2$ that

$$0 = d^2(x) \alpha \theta^2(z) \gamma [m, y, \beta],$$

(3.13)

for all $x, y, z, m \in M$ and $\gamma, \beta \in \Gamma$. Since M is prime Γ-ring and θ is Γ-ring epimorphism, we obtain

$$d^2(x) = 0 \text{ for all } x \in M \text{ or } [m, y, \beta] = 0 \text{ for all } y, m \in M \text{ and } \beta \in \Gamma.$$

From (3.14), if $d^2(x) = 0$ for all $x \in M$, then replacing x by $x\gamma y$ in this last relation, it follows from $d(x) \in Z$ that

$$d(x) \gamma d(m) = d(m) \gamma d(x) \text{ for all } x, m \in M \text{ and } \gamma \in \Gamma.$$

(3.15)

Replacing x by $x\alpha z$ in (3.15), it follows from (3.15) that for all $x, z, m \in M$ and $\alpha \in \Gamma$,

$$d(x) \alpha \gamma d(m) = d(m) \alpha y d(x),$$

since θ is Γ-ring epimorphism.

If $d(m) \neq 0$, then there exists $\lambda (m) \in C_T$ such that $d(x) = \lambda (x) \alpha d(m)$ for all $x, m \in M$ and $\alpha \in \Gamma$ by Lemma 2.2. On the other hand, it follows from (3.14) that if $[m, y, \beta] = 0$ for all $y, m \in M$ and $\beta \in \Gamma$, then M is commutative. This completes the proof.

Theorem 3.2. Let M be a prime Γ-ring with $\text{char} M = 2$, U be a non-zero ideal of M, $\theta : M \rightarrow M$ be a Γ-ring epimorphism and $0 \neq d_1, d_2$ be θ-derivation on M such that $d_1 \theta = \theta d_1$ and $d_2 \theta = \theta d_2$. If $d_2(U) \subseteq U$ and for all $u \in U$,

$$d_1 d_2 (u) = 0$$

(3.16)

then there exists $\lambda \in C_T$ such that $d_2(x) = \lambda \alpha d_1(x)$ for all $x \in M$ and $\alpha \in \Gamma$.

Proof. Let $\gamma \in \Gamma$ and $u, v \in U$. Replacing u by $d_2(u) \gamma v$ in (3.16) and using hypothesis, we have

$$d_2^2 (u) \gamma d_1 (w) = 0,$$

(3.17)
Also, replacing y for all (3.22) which implies from Lemma 2.3 that

$$d_2(u) \gamma d_1(d_2(x)) = 0.$$

Since $d_2 \neq 0$, $d_1(d_2(x)) = 0$ for all $x \in M$ from Lemma 3.1. From here, there exists $\lambda \in C_\Gamma$ such that $d_2(x) = \lambda a d_1(x)$ for all $x \in M$ and $\alpha \in \Gamma$. \hfill \square

Theorem 3.3. Let M be a prime Γ-ring, U be a non-zero right ideal of M, $\theta : M \to M$ be Γ-ring epimorphism and $0 \neq d$ be a θ-derivation of M such that $d\theta = \theta d$. If

$$d(u) \gamma a = 0 \text{ for all } u \in U \text{ and } \gamma \in \Gamma,$$

where a is a fixed element of M, then there exists an element of Q such that $q\gamma a = 0$ implies $q\gamma u = 0$ for all $u \in U$ and $\gamma \in \Gamma$.

Proof. Let $u \in U$, $x \in M$ and $\beta \in \Gamma$. Since U is a right ideal of M, we have $u\beta x \in U$. Replacing u by $u\beta x$ in (3.19), we get

$$d(u) \beta \theta(x) \gamma a + u\beta d(x) \gamma a = 0$$

for all $u \in U$, $x \in M$ and $\gamma, \beta \in \Gamma$. And so,

$$d(u) \beta \left(\sum \theta(x) \gamma a m \right) = - \left(u\beta \left(\sum d(x) \gamma a m \right) \right)$$

for all $m \in M$, $\alpha \in \Gamma$. Therefore, for any $v \in V = M\Gamma a \Gamma M$ which is a non-zero ideal of M, we have

$$d(u) \beta v = u\beta f(v)$$

for all $u \in U$. $f(v)$ is independent of u but it is dependent on v. Since M is a prime Γ-ring, $f(v)$ is well-defined. Note that $v a y \in V$ for any $y \in M$, $v \in V$ and $\alpha \in \Gamma$. Replacing v by $v a y$ in (3.21), we get

$$d(u) \beta v a y = u\beta f(v a y),$$

$$u\beta f(v) a y = u\beta f(v a y)$$

$$u\beta (f(v) a y - f(v a y)) = 0$$

which implies from Lemma 2.3 that

$$f(v) a y = f(v a y)$$

for all $y \in M$, $v \in V$ and $\alpha \in \Gamma$. It follows from (3.22) that $f : V \to M$ is a right M-module homomorphism. In this case, $q = Cl(V,f) \in Q$. Moreover, $f(v) = q\beta v$ for all $v \in V$ and $\alpha \in \Gamma$ by Theorem 2.2. Let $x \in M$, $v \in V$, $u \in U$ and $\gamma, \beta \in \Gamma$. Replacing v by $\theta(x) \gamma v$ in (3.21), we get

$$d(u) \beta \theta(x) \gamma v = u\beta f(\theta(x) \gamma v) = u\beta q\beta \theta(x) \gamma v. $$

Also, replacing u by $u\gamma x$ in (3.21), we get

$$d(u\gamma x) \beta v = u\gamma x \beta f(v)$$
which yields prime-ring, replacing and so we have
\[u \beta q \gamma \theta (x) \gamma v = u \beta x \gamma q \gamma v - u \beta d (x) \gamma v \]
for all \(x \in M, v \in V, u \in U \) and \(\gamma, \beta \in \Gamma \). Hence \(d (x) = x \gamma q - q \beta \theta (x) \) for all \(x \in M \) and \(\gamma, \beta \in \Gamma \) by Lemma 2.3. Let \(u \in U \) and \(x \in M \), \(d (u) = q \alpha u - \theta (u) \beta q \) and \(d (x) = q \beta x - \theta (x) \alpha q \). Then we have
\[0 = d (u \beta x) \gamma a = (q \alpha (u \beta x) - \theta (u \beta x) \beta q) \gamma a. \]
Thus, \(q \alpha u \beta x \gamma a = \theta (u \beta x) \beta q a \). If \(q \gamma a = 0 \), then \(q \alpha u \beta x \gamma a = 0 \), and so since \(M \) is prime \(\Gamma \)-ring, we get \(q \alpha U = \{0\} \).

Theorem 3.4. Let \(M \) be a prime \(\Gamma \)-ring with \(\text{char}M \neq 2 \), \(U \) a non-zero right ideal of \(M \) and \(0 \neq d \) be a \(\theta \)-derivation of \(M \) such that \(d \theta = \theta d \) and \(\theta (U) \subseteq U \). Then the subring of \(M \) generated by \(d (U) \) contains no nonzero right ideals of \(M \) if and only if \(d (U) \Gamma \theta (U) = \{0\} \).

Proof. Let \(A \) be the subring generated by \(d (U) \). Let \(S = A \cap U, u \in U, s \in S \) and \(\gamma, \alpha \in \Gamma \). Then \(d (s \gamma u) = d (s) \gamma \theta (u) + s \gamma d (u) \), and so we have \(d (s) \gamma \theta (u) \in S \). Thus \(d (S) \Gamma \theta (U) \) is a right ideal of \(M \). In this case, \(d (S) \Gamma \theta (U) = \{0\} \) by hypothesis. \(d (u \gamma a) = d (u) \gamma \theta (a) + u \gamma d (a) \in S \) and \(d (u) \gamma \theta (a) \in S \) where \(u \in U, a \in A \). Thus, we have \(u \gamma d (a) \in S \). Therefore, \(0 = d (u \gamma d (a)) \gamma \theta (u) = (d (u) \gamma \theta (d (a)) + u \gamma d^2 (a)) \gamma \theta (u) \). Since \(M \) is prime \(\Gamma \)-ring, it follows from Lemma 2.3 that
\[d (u) \gamma \theta (d (a)) + u \gamma d^2 (a) = 0 \]
for all \(u \in U, \gamma \in \Gamma \) and \(a \in A \). Replacing \(u \) by \(u \beta v \) where \(v \in U, \beta \in \Gamma \) in (3.26), we get, for all \(u, v \in U, \beta, \gamma \in \Gamma \) and \(a \in A \)
\[d (u) \beta v \gamma \theta (d (a)) = 0. \]
Since \(M \) is prime \(\Gamma \)-ring, we get \(d (U) \Gamma U = \{0\} \) or \(d (A) \Gamma U = \{0\} \). If \(d (A) \Gamma U = \{0\} \), then \(d^2 (U) \Gamma U = \{0\} \). Let \(u, v \in U \) and \(\beta \in \Gamma \). Then
\[0 = d (d (u \beta v)) = d^2 (u) \beta \theta^2 (v) + 2d (u) \beta d (\theta (v)) + u \beta d^2 (v), \]
and so we have \(d (u) \beta d (\theta (v)) = 0 \) for all \(u, v \in U \) and \(\beta \in \Gamma \) by \(\text{char}M \neq 2 \). Replacing \(u \) by \(w \gamma w \) where \(w \in U, \gamma \in \Gamma \) in last relation, we have
\[d (u) \gamma \theta (w) \beta d (\theta (v)) = 0 \]
which yields \(d (u) \gamma \theta (w) = 0 \) for all \(u, w \in U \) and \(\gamma \in \Gamma \).

Conversely, assume that \(d (U) \Gamma \theta (U) = \{0\} \). Then \(A \Gamma d (U) = \{0\} \). Since \(M \) is a prime \(\Gamma \)-ring, \(A \) contains no non-zero right ideals. \(\square \)
4. (θ, φ)-derivation on prime Γ-ring

Theorem 4.1. Let M be a prime Γ-ring with $\text{char} M = 2$, $\theta : M \to M$ and $\varphi : M \to M$ be Γ-ring epimorphisms and $0 \neq d_1, d_2$ be (θ, φ)-derivations on M such that $d\theta = \theta d_1$ and $d\varphi = \varphi d_1$, $i = 1, 2$. If for all $x \in M$,

\begin{equation}
\tag{4.1}
d_1 d_2 (x) = 0
\end{equation}

then there exists $\lambda \in C_\Gamma$ such that $d_2 (x) = \lambda ad_1 (x)$ for all $x \in M$ and $\alpha \in \Gamma$.

Proof. Let $\alpha \in \Gamma$ and $x, y \in M$. Replacing x by xy in (4.1) and using (4.1), we get

\begin{equation}
\tag{4.2}
d_2 (\varphi (x)) ad_1 (\theta (y)) = d_1 (\varphi (x)) ad_2 (\theta (y)),
\end{equation}

since $\text{char} M = 2$ and $d_1 \theta = \theta d_1$, $d_1 \varphi = \varphi d_1$ for $i = 1, 2$.

Since φ is Γ-ring epimorphism, for all $m, y \in M$ and $\alpha \in \Gamma$, we get

\begin{equation}
\tag{4.3}
d_2 (m) ad_1 (\theta (y)) = d_1 (m) ad_2 (\theta (y)).
\end{equation}

Replacing m by $m\beta z$ in (4.2) and using (4.2), we get

\begin{equation}
\tag{4.4}
d_2 (m) \beta \theta (z) ad_1 (\theta (y)) = d_1 (m) \beta \theta (z) ad_2 (\theta (y)),
\end{equation}

for all $m, y, z \in M$ and $\alpha, \beta \in \Gamma$. Since θ is Γ-ring epimorphism, for all $m, n, k \in M$ and $\alpha, \beta \in \Gamma$, we get

\begin{equation}
\tag{4.5}
d_2 (m) \beta n ad_1 (k) = d_1 (m) \beta n ad_2 (k).
\end{equation}

Now if we replace k by m in (4.5), then we obtain

\begin{equation}
\tag{4.6}
d_2 (m) \beta n ad_1 (m) = d_1 (m) \beta n ad_2 (m),
\end{equation}

for all $n, m \in M$ and $\beta, \alpha \in \Gamma$. If $d_1 (m) \neq 0$, then there exists $\lambda (m) \in C_\Gamma$ such that $d_2 (m) = \lambda (m) \gamma d_1 (m)$ for all $x \in M$ and $\gamma \in \Gamma$. Thus, if $d_1 (m) \neq 0 \neq d_1 (k)$, then (4.5) implies that

\begin{equation}
\tag{4.7}
(\lambda (k) - \lambda (m)) \gamma d_1 (m) \beta z ad_1 (k) = 0.
\end{equation}

Since M is a prime Γ-ring, we conclude by using Lemma 2.2 that $\lambda (k) = \lambda (m)$ for all $k, m \in M$. Hence we prove that there exists $\lambda \in C_\Gamma$ such that $d_2 (m) = \lambda (m) \gamma d_1 (m)$ for all $m \in M$ and $\gamma \in \Gamma$ with $d_1 (m) \neq 0$. On the other hand, if $d_1 (m) = 0$, then $d_2 (m) = 0$ as well. Therefore, $d_2 (m) = \lambda \gamma d_1 (m)$ for all $m \in M$ and $\gamma \in \Gamma$. This completes the proof. \qed

Proposition 4.1. Let M be a prime Γ-ring with $\text{char} M = 2$, $\theta : M \to M$ and $\varphi : M \to M$ be Γ-ring epimorphisms and $0 \neq d$ be a (θ, φ)-derivation of M such that $d\theta = \theta d$, $d\varphi = \varphi d$. If for all $x \in M$,

\begin{equation}
\tag{4.8}
d (x) \in Z,
\end{equation}

then there exists $\lambda (m) \in C_\Gamma$ such that $d (m) = \lambda (m) ad (z)$ for all $m, z \in M$ and $\alpha \in \Gamma$ or M is commutative.
Proof. From (4.8), we have
\[[d(x), y]_\beta = 0, \]
for all \(x, y \in M \) and \(\beta \in \Gamma \).

Replacing \(x \) by \(x\gamma z \) in (4.9), we get
\[[d(x\gamma z, y)]_\beta = d(x) \gamma \theta(z) \beta y + \varphi(x) \gamma d(z) \beta y - y \beta d(x) \gamma \theta(z) - y \beta \varphi(x) \gamma d(z). \]

Since \(\theta \) is \(\Gamma \)-ring epimorphism, we get
\[0 = d(x) \gamma (m \beta y - y \beta m) + d(z) \gamma (\varphi(x) \beta y - y \beta \varphi(x)) \]
\[= d(x) \gamma [m, y]_\beta + d(z) \gamma [\varphi(x), y]_\beta, \]
for all \(x, y, z, m \in M \) and \(\gamma, \beta \in \Gamma \). Replacing \(x \) by \(d(x) \) in (4.11), we get
\[0 = d^2(x) \gamma [m, y]_\beta + d(z) \gamma [\varphi(d(x)), y]_\beta, \]
for all \(x, y, z, m \in M \). Since \(\varphi \) is \(\Gamma \)-ring epimorphism, we get
\[0 = d^2(x) \gamma [m, y]_\beta + d(z) \gamma [d(m), y]_\beta, \]
for all \(x, y, z, m, n \in M \) and \(\gamma, \beta \in \Gamma \).

Using (4.9) in (4.13), we get
\[d^2(x) \gamma [m, y]_\beta = 0, \]
for all \(x, y, m \in M \) and \(\gamma, \beta \in \Gamma \).

Now, substituting \(x\alpha z \) for \(x \) in (4.14), we get
\[0 = (d^2(x) \alpha \theta^2(z) + \varphi(d(x)) \alpha d(\theta(z)) + d(\varphi(x)) \alpha \theta d(z)) + \varphi^2(x) \alpha d^2(z) \gamma [m, y]_\beta, \]
for all \(x, y, z, m \in M \) and \(\alpha, \gamma, \beta \in \Gamma \).

Using (4.13) in last relation, we have
\[0 = d^2(x) \alpha \theta^2(z) \gamma [m, y]_\beta, \]
for all \(x, y, z, m \in M \) and \(\alpha, \gamma, \beta \in \Gamma \). Since \(M \) is prime \(\Gamma \)-ring and \(\theta \) is \(\Gamma \)-ring epimorphism, we obtain
\[d^2(x) = 0 \]
for all \(x \in M \) or \([m, y]_\beta = 0 \) for all \(y, m \in M \) and \(\beta \in \Gamma \).

From (4.16), if \(d^2(x) = 0 \) for all \(x \in M \), then replacing \(x \) by \(x\gamma y \) in this last relation, it follows from \(d(x) \in Z \) that
\[d(x) \gamma d(m) = d(m) \gamma d(x) \]
for all \(x, m \in M \) and \(\gamma \in \Gamma \).

Replacing \(x \) by \(x\alpha n \) in (4.17), it follows from (4.17) that for all \(x, n, m \in M \) and \(\alpha, \gamma \in \Gamma \),
\[d(x) \alpha \theta(n) \gamma d(m) = d(m) \gamma d(x) \alpha \theta(n). \]

Since \(\theta \) is \(\Gamma \)-ring epimorphism, we have
\[d(x) \alpha k \gamma d(m) = d(m) \gamma d(x) \alpha k, \]
for all \(x, m, k \in M \) and \(\alpha, \gamma \in \Gamma \).
If \(d(x) \neq 0 \), then there exists \(\lambda(m) \in C_\Gamma \) such that \(d(x) = \lambda(x) od(m) \) for all \(x, m \in M \) and \(\alpha \in \Gamma \) by Lemma 2.2. On the other hand, it follows from (4.16) that if \([m, y]_\beta = 0 \) for all \(y, m \in M \) and \(\beta \in \Gamma \), then \(M \) is commutative. This completes the proof.

Theorem 4.2. Let \(M \) be a prime \(\Gamma \)-ring with \(\text{char} \, M = 2 \), \(U \) be a non-zero ideal of \(M \), \(\theta : M \to M \) and \(\varphi : M \to M \) be \(\Gamma \)-ring epimorphisms and \(0 \neq d_1, d_2 \) be \((\theta, \varphi)\)-derivations on \(M \) such that \(d_i\theta = \theta d_i \) and \(d_i\varphi = \varphi d_i \), \(i = 1, 2 \). If \(d_2(U) \subseteq U \) and for all \(u \in U
\begin{align*}
(4.19) \quad d_1d_2(u) = 0
\end{align*}
then there exists \(\lambda \in C_\Gamma \) such that \(d_2(x) = \lambda od_1(x) \) for all \(x \in M \) and \(\alpha \in \Gamma \).

Proof. Let \(\gamma \in \Gamma \) and \(u, v \in U \). Replacing \(u \) by \(d_2(u) \gamma v \) in (4.19) and using hypothesis, we have
\begin{align*}
(4.20) \quad \varphi(d_1^2(u)) \gamma d_1(\theta(v)) = 0,
\end{align*}
for all \(u, v \in U \) and \(\gamma \in \Gamma \). Since \(\theta \) and \(\varphi \) are \(\Gamma \)-ring epimorphisms, we get
\begin{align*}
(4.21) \quad d_2^2(y) \gamma d_1(z) = 0,
\end{align*}
for all \(y, z \in M \) and \(\gamma \in \Gamma \). Since \(d_1 \neq 0 \), for all \(y \in M \), \(d_2^2(y) = 0 \) from Lemma 3.2. Replacing \(u \) by \(uvx \) in (4.19) and using hypothesis, we get
\begin{align*}
(4.22) \quad 0 = d_2(u) \gamma d_1(\theta(x)) + d_1(u) \gamma d_2(x) + u \gamma d_1(d_2(x)),
\end{align*}
for all \(u \in U \), \(x \in M \) and \(\gamma \in \Gamma \). Replacing \(u \) by \(d_2(u) \) in (4.22) and using (4.21), we get
\begin{align*}

\end{align*}
Since \(d_2 \neq 0 \), \(d_1(d_2(x)) = 0 \) for all \(x \in M \) from Lemma 3.2. From here, there exists \(\lambda \in C_\Gamma \) such that \(d_2(x) = \lambda od_1(x) \) for all \(x \in M \) and \(\alpha \in \Gamma \).

References

Received by editors 05.04.2019; Revised version 14.09.2019; Available online 23.09.2019.

Adıyaman University, Faculty of Arts and Sciences, Department of Mathematics, 02040 Adıyaman, TURKEY
E-mail address: mehaliiozturk@gmail.com

Sivas Cumhuriyet University, Faculty of Sciences, Department of Mathematics, 58140 Sivas, TURKEY
E-mail address: hyazarli@cumhuriyet.edu.tr

Adıyaman University, Faculty of Arts and Sciences, Department of Mathematics, 02040 Adıyaman, TURKEY
E-mail address: acettuba02@gmail.com