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SPECTRA OF THE UPPER TRIANGULAR BAND

MATRIX U(r; 0; s) ON THE HAHN SPACE

Nuh Durna

Abstract. The aim of this paper is to obtain subdivision of the spectrum
which is formed point spectrum, continuous spectrum and residual spectrum

of the operator U(r; 0; s), is defined as U(r; 0; s) (xk) = (rxk + sxk+2), on the

Hahn space h of all x = (xk) null sequences such that
∞∑

k=0
k |xk+1 − xk| is

finite.

1. Introduction

Spectral theory is one of the most useful tools in science. There are many
applications in some branches of science such as control theory, matrix theory,
function theory, quantum physics, and complex analysis. For example, atomic
energy levels are determined and therefore the frequency of a laser or the spectral
signature of a star are obtained by it in quantum mechanics. The resolvent set of
the band operators is important for solving in above explanations problems. Band
matrices emerge in the applications of mathematics. Banded matrices are used
in telecommunication system analysis, finite difference methods for solving partial
differential equations, linear recurrence systems with non-constant coefficients, etc
(see [21]), so, it is natural to ask the question of whether one can obtain some
results about the spectral decomposition of U(r; 0; s) matrix.
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10 DURNA

Hahn [8] introduced the space h of all sequences x = (xk) ∈ c0 such that
∞∑
k=0

k |xk+1 − xk| is finite. The norm ∥x∥h =
∞∑
k=1

k |xk+1 − xk| + supk |xk| was de-

fined on the space h by Hahn [8]. Rao [17] defined a new norm of h given by

∥x∥h =
∞∑
k=1

k |xk+1 − xk|. The dual space of h is norm isomorphic to the Banach

space σ∞ =

{
x = (xk) ∈ w : sup

n

1
n

∣∣∣∣ n∑
k=1

xk

∣∣∣∣ < ∞
}
.

In this paper, we will calculate the point spectrum, the continuous spectrum,
and the residual spectrum of U(r; 0; s) matrix on the Hahn sequence space.

Let X and Y be the Banach spaces, and L : X → Y be a bounded linear
operator. By

R (L) = {y ∈ Y : y = Lx, x ∈ X} ,
we denote the range of L and by B(X), we show the set of all bounded linear
operators on X into itself.

Let L : D (L) → X be a linear operator, defined on D(L) ⊂ X, where D(L)
denote the domain of L and X is a complex normed space. Let Lλ := λI − L
for L ∈ B(X) and λ ∈ C where I is the identity operator. L−1

λ is known as the
resolvent operator of L.

The resolvent set of L is the set of complex numbers λ of L such that L−1
λ exists,

is bounded and, is defined on a set which is dense in X, denoted by ρ(L,X). Its
complement is given by C\ρ(L;X) is called the spectrum of L, denoted by σ(L,X).

The spectrum σ(L,X) is union of three disjoint sets as follows: The point
spectrum σp(L,X) is the set such that L−1

λ does not exist. If the operator L−1
λ is

defined on a dense subspace of X and is unbounded then λ ∈ C belongs to the
continuous spectrum σc(L,X) of L. Furthermore, we say that λ ∈ C belongs to
the residual spectrum σr(L,X) of L if the operator L−1

λ exists, but its domain of
definition (i.e. the range R(λI −L) of (λI −L) is not dense in X than in this case
L−1
λ may be bounded or unbounded. From above definitions we have

(1.1) σ(L,X) = σp(L,X) ∪ σc(L,X) ∪ σr(L,X)

and

σp(L,X) ∩ σc(L,X) = ∅, σp(L,X) ∩ σr(L,X) = ∅, σr(L,X) ∩ σc(L,X) = ∅.
By w, we denote the space of all sequences. Well-known examples of Banach

sequence spaces are the spaces ℓ∞, c, c0 and bv of bounded, convergent, null and
bounded variation sequences, respectively. Also by ℓp, bvp we denote the spaces of
all p−absolutely summable sequences and p−bounded variation sequences, respec-
tively.

Many researchers investigated the spectrum and the fine spectrum of linear
operators defined by some determined matrices over certain sequence spaces. For
instance, in 2010, fine spectra of upper triangular double-band matrices were stud-
ied by Karakaya and Altun ([9]). In 2013, the spectrum of the Cesàro matrix
considered as a bounded operator on bv0 ∩ ℓ∞ were studied by Tripathy and
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Saikia ([13]), and Tripathy and Paul ([14]) examined the spectra of the opera-
tor D(r, 0, 0, s) on sequence spaces c0 and c. Also in [11], they investigated the
spectrum of the operator D(r, 0, 0, s) over the sequence spaces ℓp and bvp. In 2014,

the spectrum of the Rhaly operator on the sequence space bv0∩ ℓ∞ was determined
by Tripathy and Das ([15]). In 2015, Tripathy and Das determined the spectrum
and fine spectrum of the upper triangular matrix U(r, s) on the sequence space
cs = {x = (xn) ∈ w : limn→∞

∑n
i=0 xi exists} . Also they determined the subdivi-

sions of the spectrum of the operator U(r, s) on the same space and, Paul and
Tripathy ([12]) investigated the fine spectrum of the operator D(r, 0, 0, s) over a
sequence space bv0. In 2016, Das and Tripathy ([1]) studied the spectra and fine
spectra of the matrix B (r, s, t) on the sequence space cs, and Yeşilkayagil and
Kirişci calculated the fine spectrum of the forward difference operator on the Hahn
space in [18]. In 2017, Yildirim and Durna ([19]) examined the spectrum and
some subdivisions of the spectrum of discrete generalized Cesàro operators on ℓp,
(1 < p < ∞), El-Shabrawy and Abu-Janah ([6]) determined spectra and the fine
spectra of generalized difference operator B (r, s) on the sequence spaces bv0 and h,
Durna ([3]) studied subdivision of the spectra for the generalized difference oper-
ator ∆a,b on the sequence space ℓp (1 < p < ∞), Karakaya et al. ([10]) examined
the fine spectra and subspectrum of operator with periodic coefficients, and the
fine spectrum of the lower triangular matrix B(r, s) over the Hahn sequence space
was investigated by Das ([2]). In 2018, Durna et al. ([4]) studied partition of the
spectra for the generalized difference operator B(r, s) on the sequence space cs,
Durna ([5]) studied subdivision of spectra for some lower triangular doule-band
matrices as operators on c0 and Yildirim et al. ([20] ) studied the spectrum and
fine spectrum of generalized Rhaly-Cesàro matrices on c0 and c.

2. Spectrum and Fine Spectrum of U(r; 0; s)

The operator U(r; 0; s) is defined as U(r; 0; s) (xk) = (rxk + sxk+2) and its
matrix representation is upper triangular matrix U(r; 0; s) is an infinite matrix
with the non-zero diagonals are the entries of an oscillatory sequence of form

(2.1) U(r; 0; s) =


r 0 s 0 0 0 0 · · ·
0 r 0 s 0 0 0 · · ·
0 0 r 0 s 0 0 · · ·
0 0 0 r 0 s 0 · · ·
...

...
...

...
...

...
...

. . .

 (s ̸= 0).

In this paper, we will calculate spectral decomposition of above matrix.

Lemma 2.1 (Rao [17], Proposition 10). The matrix A = (ank) gives rise to a
bounded linear operator T ∈ B(h) from h to itself if and only if

(i)
∞∑

n=1
n |ank − an+1,k| converges, for each k,

(ii) supk
1
k

∞∑
n=1

n

∣∣∣∣ k∑
v=1

(anv − an+1,v)

∣∣∣∣ < ∞,
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(iii) lim
n→∞

ank = 0, for each k.

Theorem 2.1. U(r; 0; s) : h → h is a bounded linear operator.

Proof. Let us use Lemma 2.1 for proof.

(i)
∞∑

n=1
n |ank − an+1,k| =

 |r| , k = 1
3 |r| , k = 2

(2k − 1) |r|+ (2k − 5) |s| , k > 3
is conver-

gent.

(ii)

∞∑
n=1

n

∣∣∣∣∣
k∑

v=1

(anv − an+1,v)

∣∣∣∣∣ =
{

(k − 2) |s|+ k |r| , k > 2
|r| , k = 1

.

Therefore 1
k

∞∑
n=1

n

∣∣∣∣ k∑
v=1

(anv − an+1,v)

∣∣∣∣ is convergent.
(iii) For each k, it is clear that lim

n→∞
ank = 0.

Thus the Lemma 2.1’s assertion is hold. �
Lemma 2.2 (Golberg [7, p.59]). T has a dense range if and only if T ∗ is 1-1.

Lemma 2.3 (Golberg [7, p.60]). T has a bounded inverse if and only if T ∗ is
onto.

Theorem 2.2. σp(U(r; 0; s), h) = {λ ∈ C : |λ− r| < |s|} .
Proof. Let U(r; 0; s)x = λx for x ̸= θ = (0, 0, 0, ...) in h. That is, let λ be an

eigenvalue of the operator U(r; 0; s). Then we have{
x2n =

(
λ−r
s

)n
x0

x2n+1 =
(
λ−r
s

)n
x1

, n = 0, 1, 2, . . . .

Thus we get
∞∑

n=1

n |xn − xn+1| =

∞∑
k=1

(2k − 1) |x2k−1 − x2k|+
∞∑
k=1

2k |x2k − x2k+1|

=

∣∣∣∣x1 −
λ− r

s
x0

∣∣∣∣ ∞∑
k=1

(2k − 1)

∣∣∣∣λ− r

s

∣∣∣∣k−1

+ |x0 − x1|
∞∑
k=1

2k

∣∣∣∣λ− r

s

∣∣∣∣k
Since

lim
k→∞

(2k + 2)
∣∣λ−r

s

∣∣k ∣∣λ−r
s

∣∣
2k
∣∣λ−r

s

∣∣k =

∣∣∣∣λ− r

s

∣∣∣∣
from D’Alembert’s ratio test, the series

∞∑
k=1

(2k − 1)
∣∣λ−r

s

∣∣k−1
is convergent if and

only if
∣∣λ−r

s

∣∣ < 1 and hence, x = (xn) ∈ h if and only if |λ− r| < |s|. Therefore,
σp(U(r; 0; s), h) = {λ ∈ C : |λ− r| < |s|}. �
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Let T : h 7−→ h is a bounded linear operator and A is the matrix represen-
tation of T . Then we know that the transpose At of the matrix A is the matrix
representation of adjoint operator T ∗ : h∗ 7−→ h∗.

We noticed that the dual space h∗ of h is isometrically isomorphic to the Banach
space

σ∞ =

{
x = (xk) ∈ w : sup

n

1

n

∣∣∣∣∣
n∑

k=1

xk

∣∣∣∣∣ < ∞

}
.

Theorem 2.3. σp(U(r; 0; s)∗, h∗=̃σ∞) = ∅.

Proof. Then there exists x ̸= θ = (0, 0, 0, ...) in σ∞ such that U(r; 0; s)∗x =
λx if λ is an eigenvalue of the operator U(r; 0; s)∗.
Then, we have

(2.2) rx0 = λx0

(2.3) rx1 = λx1

(2.4) sxk + rxk+2 = λxk+2, k = 0, 1, 2, . . .

Let x0 ̸= 0 then we obtain that λ = r from (2.2). Then we have sx0 + rx2 = rx2

for k = 0 from (2.4). Since s ̸= 0, we get x0 = 0. This is a contradiction.
Let x0 = 0 and x1 ̸= 0 then we obtain that λ = r from (2.3). Then sx1+rx3 =

rx3 for k = 1 from (2.4). Since s ̸= 0, we get x1 = 0. This is a contradiction.
Let x0 = 0, x1 = 0 and x2 ̸= 0 then we obtain that sx0 + rx2 = λx2 for k = 0

from (2.4). Hence we get λ = r. Then sx2 + rx4 = rx4 for k = 2 from (2.4). Since
s ̸= 0, we get x2 = 0. This is a contradiction.

Finally, let xk be the first non-zero term of the sequence (xn). Then we obtain
that sxk−2 + rxk = λxk for k − 2 from (2.4 ). Hence we get λ = r. Then
sxk+rxk+2 = rxk+2 from (2.4 ). Since s ̸= 0, we get xk = 0. This is a contradiction.

Therefore U(r; 0; s)∗x = λx for x ∈ σ∞ implies to x = (0, 0, 0, ...). Thus,
σp(U(r; 0; s)∗, c∗0=̃ℓ1) = ∅. �

Theorem 2.4. σr(U(r; 0; s), h) = ∅.

Proof. Since, σr(U(r; 0; s), h) = σp(U
∗(r; 0; s), σ∞)\σp(U(r; 0; s), h), Theo-

rems 2.2 and 2.3 give us required result. �

Lemma 2.4.
n∑

k=1

(
k−1∑
i=0

aibki

)
=

n−1∑
i=0

ai

(
n∑

k=i+1

bki

)
where (ak) and (bnk) are real numbers.

Proof. It is clear. �

Theorem 2.5. We have

σc(U(r; 0; s), h) = {λ ∈ C : |λ− r| = |s|}
and
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σ(U(r; 0; s), h) = {λ ∈ C : |λ− r| 6 |s|} .

Proof. Let y = (yn) ∈ σ∞ be such that (U(r; 0; s) − λI)∗x = y for some
x = (xn). Then we get system of linear equations:

(r − λ)x0 = y0
(r − λ)x1 = y1

...
sxn + (r − λ)xn+2 = yn+2

...

, n > 0

Solving these equations, we have

x0 = 1
r−λy0, x1 = 1

r−λy1, x2 = 1
r−λy2 −

s
(r−λ)2

y0, x3 = 1
r−λy3 −

s
(r−λ)2

y1

x4 = 1
r−λy4 −

s
(r−λ)2

y2 +
s2

(r−λ)3
y0

x5 = 1
r−λy5 −

s
(r−λ)2

y3 +
s2

(r−λ)3
y1

...

Thus we get

x2n+t =
1

r − λ

[
y2n+t +

n−1∑
k=0

(−1)n−k

(
s

r − λ

)n−k

y2k+t

]
, t = 0, 1; n = 1, 2, . . .

Therefore we have

1
2n+t

∣∣∣∣2n+t∑
k=0

xk

∣∣∣∣ = 1
2n+t |x0 + x1 + x2 + x3 + · · ·+ x2n+t|

= 1
2n+t

∣∣∣∣x0 + x1 +
n∑

k=1

x2k+t

∣∣∣∣
6 1

2n+t

∣∣∣ y0

r−λ + y1

r−λ

∣∣∣
+ 1

2n+t

∣∣∣∣ n∑
k=1

1
r−λ

[
y2k+t +

k−1∑
i=0

(−1)k−i
(

s
r−λ

)k−i

y2i+t

]∣∣∣∣
6 1

2n+t

∣∣∣ y0

r−λ + y1

r−λ

∣∣∣
+ 1

|r−λ|
1

2n+t

∣∣∣∣ n∑
k=1

y2k+t

∣∣∣∣+ 1
2n+t

∣∣∣∣ n∑
k=1

1
r−λ

k−1∑
i=0

(−1)k−i
(

s
r−λ

)k−i

y2i+t

∣∣∣∣
6 1

2n+t

∣∣∣ y0

r−λ + y1

r−λ

∣∣∣
+ 1

|r−λ|

[
1

2n+t

∣∣∣∣ n∑
k=1

y2k+t

∣∣∣∣+ 1
2n+t

∣∣∣∣ n∑
k=1

k−1∑
i=0

(−1)k−i
(

s
r−λ

)k−i

y2i+t

∣∣∣∣]
Thus
(2.5)

1

2n+ t

∣∣∣∣∣
2n+t∑
k=0

xk

∣∣∣∣∣ 6 1

|r − λ|

[
2 ∥y∥σ∞

+
1

2n+ t

∣∣∣∣∣
n∑

k=1

k−1∑
i=0

(−1)k−i

(
s

r − λ

)k−i

y2i+t

∣∣∣∣∣
]



SPECTRA OF U(r; 0; s) 15

Now, we consider the sum 1
2n+t

∣∣∣∣∣ n∑
k=1

k−1∑
i=0

(−1)k−i

(
s

r − λ

)k−i

y2i+t

∣∣∣∣∣. In Lemma 2.4

if we take ai = y2i+t and bki = (−1)k−i

(
s

r − λ

)k−i

then we have

1

2n+ t

∣∣∣∣∣
n∑

k=1

k−1∑
i=0

(−1)k−i

(
s

r − λ

)k−i

y2i+t

∣∣∣∣∣
=

1

2n+ t

∣∣∣∣∣
n−1∑
i=0

y2i+t

n∑
k=i+1

(−1)k−i

(
s

r − λ

)k−i
∣∣∣∣∣(2.6)

Hence

(2.7)

1
2n+t

∣∣∣∣ n∑
k=1

k−1∑
i=0

(−1)k−i
(

s
r−λ

)k−i

y2i+t

∣∣∣∣
= 1

2n+t

∣∣∣∣( −s
r+s−λ

) n−1∑
i=0

y2i+t

[
1−

(
−s
r−λ

)n−i
]∣∣∣∣

6
∣∣∣ s
r+s−λ

∣∣∣ (∥y∥σ∞
+
∣∣∣ s
r−λ

∣∣∣n+1
1

2n+t

∣∣∣∣n−1∑
i=0

y2i+t

(
r−λ
−s

)i∣∣∣∣)

If we take ai = y2i+t, bi =
(

r−λ
−s

)i
and apply Abel’s partial summation formula to

sum
n−1∑
i=0

y2i+t

(
r−λ
−s

)i
, we obtain

n−1∑
i=0

y2i+t

(
r − λ

−s

)i

=

(
r − λ

−s

)n n∑
i=0

y2i+t +
s− r + λ

s

n−2∑
i=0

(
r − λ

−s

)i i∑
k=0

y2k+t

since sn =
n∑

i=0

y2i+t, ∆bi =
s−r+λ

s

(
r−λ
−s

)i
. Thus

∣∣∣ s
r−λ

∣∣∣n+1
1

2n+t

∣∣∣∣n−1∑
i=0

y2i+t

(
r−λ
−s

)i∣∣∣∣
=
∣∣∣ s
r−λ

∣∣∣n+1
1

2n+t

∣∣∣∣( r−λ
−s

)n n∑
i=0

y2i+t +
s−r+λ

s

n−2∑
i=0

(
r−λ
−s

)i i∑
k=0

y2k+t

∣∣∣∣
6
∣∣∣ s
r−λ

∣∣∣ ∥y∥σ∞
+
∣∣∣ s
r−λ

∣∣∣n+1 ∣∣ s−r+λ
s

∣∣ n−2∑
i=0

∣∣ r−λ
s

∣∣i 1
2n+t

∣∣∣∣ i∑
k=0

y2k+t

∣∣∣∣
6
[∣∣∣ s

r−λ

∣∣∣+ ∣∣∣ s
r−λ

∣∣∣n+1 ∣∣ s−r+λ
s

∣∣ n−2∑
i=0

∣∣ r−λ
s

∣∣i] ∥y∥σ∞

=

[∣∣∣ s
r−λ

∣∣∣+ ∣∣∣ s
r−λ

∣∣∣n+1 ∣∣ s−r+λ
s

∣∣ 1−| r−λ
s |n−1

1−| r−λ
s |

]
∥y∥σ∞
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and we get ∣∣∣∣ s

r − λ

∣∣∣∣n+1
1

2n+ t

∣∣∣∣∣
n−1∑
i=0

y2i+t

(
r − λ

−s

)i
∣∣∣∣∣

6
[∣∣∣∣ s

r − λ

∣∣∣∣+ |s− r + λ|
|s| − |r − λ|

(∣∣∣∣ s

r − λ

∣∣∣∣n+1

−
∣∣∣∣ s

r − λ

∣∣∣∣2
)]

∥y∥σ∞
(2.8)

Replacing (2.8) in (2.7), we have

(2.9)

1
2n+t

∣∣∣∣ n∑
k=1

k−1∑
i=0

(−1)k−i
(

s
r−λ

)k−i

y2i+t

∣∣∣∣
6
∣∣∣ s
r+s−λ

∣∣∣ [1 + ∣∣∣ s
r−λ

∣∣∣+ |s−r+λ|
|s|−|r−λ|

(∣∣∣ s
r−λ

∣∣∣n+1

−
∣∣∣ s
r−λ

∣∣∣2)] ∥y∥σ∞

Finally replacing (2.9) in (2.5), we get

1
2n+t

∣∣∣∣2n+t∑
k=0

xk

∣∣∣∣
6 1

|r−λ|

{
2
∣∣∣ s
r+s−λ

∣∣∣ [1 + ∣∣∣ s
r−λ

∣∣∣+ |s−r+λ|
|s|−|r−λ|

(∣∣∣ s
r−λ

∣∣∣n+1

−
∣∣∣ s
r−λ

∣∣∣2)]} ∥y∥σ∞
.

Since y = (yn) ∈ σ∞, x = (xn) ∈ σ∞ if

∣∣∣∣ s

r − λ

∣∣∣∣ < 1. Consequently, if for λ ∈ C,

|r − λ| > |s|, then (xn) ∈ σ∞. Therefore, the operator (U(r; 0; s) − λI)∗ is onto
if |r − λ| > |s|. Then by Lemma 2.3, U(r; 0; s) − λI has a bounded inverse if
|r − λ| > |s|. So,

σc(U(r; 0; s), h) ⊆ {λ ∈ C : |λ− r| 6 |s|} .

Since σ(L, h) is the disjoint union of σp(L, h), σr(L, h) and σc(L, h), therefore

σ(U(r; 0; s), h) ⊆ {λ ∈ C : |λ− r| 6 |s|} .

By Theorem 2.2, we get

{λ ∈ C : |λ− r| < |s|} = σp(U(r; 0; s), h) ⊂ σ(U(r; 0; s), h).

Since, σ(L, h) is closed and thus

{λ ∈ C : |λ− r| < |s|} ⊂ σ(U(r; 0; s), h) = σ(U(r; 0; s), h)

and

{λ ∈ C : |λ− r| 6 |s|} ⊂ σ(U(r; 0; s), h).

Hence,

σ(U(r; 0; s), h) = {λ ∈ C : |λ− r| 6 |s|}
and so

σc(U(r; 0; s), h) = {λ ∈ C : |λ− r| = |s|} .
�
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