BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Bull. Int. Math. Virtual Inst., Vol. **10**(1)(2020), 95-104 DOI: 10.7251/BIMVI2001095A

> Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

NEW TYPE OF FUZZY SOFT HYPERIDEALS OF ORDERED Γ-HYPERSEMIGROUPS

K. Arulmozhi and V. Chinnadurai

ABSTRACT. In this paper, we introduce the concept of interval valued fuzzy soft Γ -hyperideals in ordered Γ -hypersemigroups. We define interval valued fuzzy soft left (right, bi, interior) hyperideals of ordered Γ -hypersemigroups and discuss some properties. Examples are provided illustrate our results.

1. Introduction

Zadeh [17] introduced the concept of fuzzy sets in 1965. Γ -semigroups was introduced by Sen and Saha [14]. Ordered Γ -semigroup was proposed by Keyhopulu [7]. Algebraic hyper structures represent a natural extension of classical algebraic structures, and they were originally proposed in 1934 by Marty [11]. One of the main reasons which attract researchers towards hyperstructures is its unique property that in hyperstructures composition of two elements is a set, while in classical algebraic structures the composition of two elements is an element. Soft set theory was introduced by Molodtsov [12] in 1999, and its a new mathematical model for dealing with uncertainty from a parameterization point of view. P. K. Maji, R. Biswas and R. Roy [9] studied the some new operations on fuzzy soft sets. The aim of M. Akram, J. Kavikumar and A. B. Khamis in their paper [1] was to apply the concept of fuzzy soft sets on Γ -semigroups. About gamma-semigroups and their phase-aspect, an interested reader can look, for example, in the following texts [14, 4]. K. Arulmozhi and V. Chinnadurai [3] discussed new type of fuzzy soft hyperideals and homomorphism of Γ -hypersemigroups. Characterization of fuzzy ideals in ordered gamma semigroups discussed by V. Chinnadurai and K. Arulmozhi [5]. In this paper, we define a new notion of interval valued fuzzy soft ordered Γ - hypersemigroups and investigate some of its properties with examples.

²⁰¹⁰ Mathematics Subject Classification. 08A72, 06F05.

Key words and phrases. Homomorphisms, Γ -hypersemigroup, hyperideals.

2. Preliminaries

DEFINITION 2.1. ([14]) Let $S = \{a, b, c, ...\}$ and $\Gamma = \{\alpha, \beta, \gamma, ...\}$ be two nonempty sets. Then S is called a Γ -semigroup if it satisfies the conditions

(i) $a\alpha b \in S$,

(ii) $(a\beta b)\gamma c = a\beta(b\gamma c) \ \forall \ a, b, c \in S \text{ and } \alpha, \beta, \gamma \in \Gamma.$

DEFINITION 2.2. ([14]) An ordered Γ -semigroup (shortly po- Γ -semigroup) is a Γ -semigroup S together with an order relation \leq such that $a \leq b$ implies $a\gamma c \leq b\gamma c$ and $c\gamma a \leq c\gamma b$ for all $c \in S$ and $\gamma \in \Gamma$.

DEFINITION 2.3. ([14]) Let A and B be two non empty subsets of a Γ - semigroup S. We denote

(i) $(A] = \{t \in S \mid t \leq h \text{ for some } h \in A\},\$

- (ii) $A\Gamma B = \{a\alpha b : a \in A, b \in B \text{ and } \alpha \in \Gamma\},\$
- (iii) $A_x = \{(y, z) \in S \times S \mid x \leq y\alpha z\}.$

DEFINITION 2.4. A map $\circ : H \times H \to P^*(H)$ is called a hyper operation or join operation on the set H, where H is a non-empty set and $P^*(H) = P(H) \setminus \{\phi\}$ denotes the set of all non-empty subset of H. A hyper groupoid is a set H together with a (binary) hyper operation.

DEFINITION 2.5. ([6]) A hypergroupoid (H, \circ) , which is associative, that is $x \circ (y \circ z) = (x \circ y) \circ z$ for all $x, y, z \in H$, is called a hyper semigroup. Let A and B be two non-empty subsets of H. Then we define

$$A \circ B = \begin{cases} \bigcup_{a \in A, b \in B} a \circ b, & a \circ B = \{a\} \circ B\\ A \circ b = A \circ \{b\} \end{cases}$$

DEFINITION 2.6. ([2]) Let S and Γ be two non-empty sets. S is called a Γ -hypersemigroup if every $\gamma \in \Gamma$ is a hyperoperation on S that is $x\gamma y \subseteq S$ for every $x, y \in S$, and for every $\alpha, \beta \in \Gamma$ and $x, y, z \in H$ we have $x\alpha(y\beta z) = (x\alpha y)\beta z$. If every $\gamma \in \Gamma$ is a hyper operation, then S is a Γ -semigroup. If (S, γ) is a hypergroup for every $\gamma \in \Gamma$, then S is called a Γ -hypergroup. Let A and B be two non-empty subsets of S and $\gamma \in \Gamma$. We define

$$A\gamma B = \bigcup \{a\gamma b | a \in A, b \in B \text{ and } \gamma \in \Gamma \}.$$

Also

$$A\Gamma B = \bigcup \{a\gamma b | a \in A, b \in B \text{ and } \gamma \in \Gamma \} = \bigcup_{A\gamma B}.$$

DEFINITION 2.7. ([12]) Let U be an universal set and E be the set of parameters. P(U) denote the power set of U. Let A be a non empty subset of E then the pair (F, A) is called a soft set over U, where F is a mapping given by $F : A \to P(U)$.

DEFINITION 2.8. ([10]) Let (F, A) and (G, B) be two soft sets then (F, A) AND (G, B) denoted by $(F, A) \land (G, B)$ is defined as $(F, A) \land (G, B) = (H, A \times B)$ where $H(\alpha, \beta) = F(\alpha) \cap G(\beta)$, for all $(\alpha, \beta) \in A \times B$.

DEFINITION 2.9. ([10]) Let (F, A) and (G, B) be two soft sets then (F, A) OR (G, B) denoted by $(F, A) \lor (G, B)$ is defined as $(F, A) \lor (G, B) = (H, A \times B)$ where $H(\alpha, \beta) = F(\alpha) \cup G(\beta)$, for all $(\alpha, \beta) \in A \times B$.

DEFINITION 2.10. Let X be a non-empty set. A mapping $\tilde{\mu} : X \to D[0, 1]$ is called an interval valued fuzzy subsets of X. D[0, 1] denotes the set of all closed subintervals of [0, 1]. For any $x \in X$, $\tilde{\mu}(x) = [\mu^{-}(x), \mu^{+}(x)]$, where μ^{-} and μ^{+} are fuzzy subsets of X such that $\mu^{-}(x) \leq \mu^{+}(x)$.

DEFINITION 2.11. ([15]) By an interval number \tilde{a} , we mean an interval $[a^-, a^+]$ such that $0 \leq a^- \leq a^+ \leq 1$, where a^- and a^+ are the lower and upper limits of \tilde{a} respectively. We also identify the interval [a, a] by the number $a \in [0, 1]$. For any interval numbers $\tilde{a}_j = [a_j^-, a_j^+], \tilde{b}_j = [b_j^-, b_j^+] \in D[0, 1], j \in \Omega$ where Ω is an index set.

$$\max^{i} \left\{ \widetilde{a}_{j}, \widetilde{b}_{j} \right\} = \left[\max \left\{ a_{j}^{-}, b_{j}^{-} \right\}, \max \left\{ a_{j}^{+}, b_{j}^{+} \right\} \right],$$
$$\min^{i} \left\{ \widetilde{a}_{j}, \widetilde{b}_{j} \right\} = \left[\min \left\{ a_{j}^{-}, b_{j}^{-} \right\}, \min \left\{ a_{j}^{+}, b_{j}^{+} \right\} \right],$$
$$\inf \widetilde{a}_{j} = \left[\bigcap_{j \in \Omega} a_{j}^{-}, \bigcap_{j \in \Omega} a_{j}^{+} \right], \sup \widetilde{a}_{j} = \left[\bigcup_{j \in \Omega} a_{j}^{-}, \bigcup_{i \in \Omega} a_{j}^{+} \right].$$

Let

 $\begin{array}{l} \text{(i)} \ \widetilde{a}\leqslant \widetilde{b} \Longleftrightarrow a^-\leqslant b^- \ \text{and} \ a^+\leqslant b^+, \\ \text{(ii)} \ \widetilde{a}=\widetilde{b} \Longleftrightarrow a^-=b^- \ \text{and} \ a^+=b^+. \\ \text{(iii)} \ \widetilde{a}< \widetilde{b} \Longleftrightarrow \widetilde{a}\leqslant \widetilde{b} \ \text{and} \ \widetilde{a}\neq \widetilde{b}, \\ \text{(iv)} \ k\widetilde{a}=[ka^-,ka^+], \ \text{whenever} \ 0\leqslant k\leqslant 1. \end{array}$

DEFINITION 2.12. ([8]) Let $\phi : H_1 \to H_2$ and $h : E_1 \to E_2$ be two maps, $A \subseteq E_1$ and $B \subseteq E_2$, where E_1 and E_2 are sets of parameters viewed on H_1 and H_2 , respectively. The pair (ϕ, h) is called a fuzzy soft map from H_1 to H_2 . If ϕ is a hypergroup homomorphism, then (ϕ, h) is called a fuzzy soft homomorphism from H_1 to H_2 .

3. IVFS ordered Γ -hyperideals

In this section, S denotes ordered Γ - hypersemigroups.

DEFINITION 3.1. ([16]) Let U be an initial universe and E a set of parameters. P(U) denotes the set of all interval valued fuzzy sets of U. Let $A \subseteq E$. A pair (\tilde{F}, A) is an interval valued fuzzy soft set over U, where \tilde{F} is a mapping given by $\tilde{F}: A \to \tilde{P}(U)$.

The symbol $\vartheta_{\tilde{F}(a)}(x)$ is called the membership degree of x in the interval valued fuzzy soft set (\tilde{F}, A) and $\inf_{x \in y\alpha z} \vartheta_{\tilde{F}(a)}(x)$ is called the infimum of the membership function $\vartheta_{\tilde{F}(a)}(x)$.

DEFINITION 3.2. Let (F, A) be a soft set and (\tilde{F}, A) be a interval valued fuzzy soft(briefly IVFS) subset of S for $x, y, z \in S$, $\alpha, \beta \in \Gamma, a \in A$ and $x \leq y \Rightarrow \vartheta_{\tilde{F}(a)}(x) \geq \vartheta_{\tilde{F}(a)}(y)$.

- (i) (\tilde{F}, A) is called a IVFS Γ -hyper subsemigroup of S if $\inf_{x \in y \alpha z} \vartheta_{\tilde{F}(a)}(x) \ge \min\{\vartheta_{\tilde{F}(a)}(y), \vartheta_{\tilde{F}(a)}(z)\}.$
- (ii) (\tilde{F}, A) is called a IVFS Γ -hyper left ideal of S if $\inf_{x \in y\alpha z} \vartheta_{\tilde{F}(a)}(x) \ge \vartheta_{\tilde{F}(a)}(z)$.
- (iii) (\tilde{F}, A) is called a IVFS Γ -hyper right ideal of S if $\inf_{x \in y\alpha z} \vartheta_{\tilde{F}(a)}(x) \ge \vartheta_{\tilde{F}(a)}(y)$.
- (iv) (\tilde{F}, A) is called a IVFS Γ -hyperideal of S if

$$\inf_{x \in y\alpha z} \vartheta_{\tilde{F}(a)}(x) \ge \max\{\vartheta_{\tilde{F}(a)}(y), \vartheta_{\tilde{F}(a)}(z)\}.$$

(v) (\tilde{F}, A) is called a IVFS Γ -hyperbi-ideal of S if

$$\inf_{p \in x \alpha y \beta z} \vartheta_{\tilde{F}(a)}(p) \ge \min\{\vartheta_{\tilde{F}(a)}(x), \vartheta_{\tilde{F}(a)}(z)\}.$$

(vi) (\tilde{F}, A) is called a IVFS Γ -hyper interior ideal of S if

$$\inf_{p \in x \alpha y \beta z} \vartheta_{\tilde{F}(a)}(p) \ge \vartheta_{\tilde{F}(a)}(y)$$

THEOREM 3.1. Let (\tilde{F}_1, A) and (\tilde{F}_2, B) be two IVFS ordered Γ -hypersub- semigroups of S, then $(\tilde{F}_1, A) \land (\tilde{F}_2, B)$ and $(\tilde{F}_1, A) \lor (\tilde{F}_2, B)$ are IVFS Γ - hypersubsemigroup of S.

PROOF. Let (\tilde{F}_1, A) and (\tilde{F}_2, B) be two IVFS ordered Γ -hypersubsemigroups of S defined as $(\tilde{F}_1, A) \land (\tilde{F}_2, B)$, where $C = A \times B$ and $\tilde{M}(a, b) = \tilde{F}_1(a) \cap \tilde{F}_2(b)$, for all $(a, b) \in C = A \times B, x, y, z \in S$ and $\gamma \in \Gamma$.

$$\begin{split} \inf_{z \in x \gamma y} \{ \vartheta_{\tilde{M}(a,b)}(z) \} &= \inf_{z \in x \gamma y} \{ \min\{\vartheta_{\tilde{F}_{1}(a)}(z), \vartheta_{\tilde{F}_{2}(b)}(z) \} \} \\ &= \min\{ \inf_{z \in x \gamma y} \vartheta_{\tilde{F}_{1}(a)}(z), \inf_{z \in x \gamma y} \vartheta_{\tilde{F}_{2}(b)}(z) \} \\ &\geqslant \min\{\min\{\vartheta_{\tilde{F}_{1}(a)}(x), \vartheta_{\tilde{F}_{1}(a)}(y) \}, \min\{\vartheta_{\tilde{F}_{2}(b)}(x), \vartheta_{\tilde{F}_{2}(b)}(y) \} \} \\ &= \min\{(\vartheta_{\tilde{F}_{1}(a)} \cap \vartheta_{\tilde{F}_{2}(b)})(x), (\vartheta_{\tilde{F}_{1}(a)} \cap \vartheta_{\tilde{F}_{2}(b)})(y) \} \\ &= \min\{\vartheta_{\tilde{M}(a,b)}(x), \vartheta_{\tilde{M}(a,b)}(y) \}. \end{split}$$

Similarly $(\tilde{F}_1, A) \lor (\tilde{F}_2, B)$ is a IVFS ordered Γ -hypersubsemigroup of S.

THEOREM 3.2. Let (\tilde{F}_1, A) and (\tilde{F}_2, B) be two IVFS ordered Γ -hyperleft (right) ideals of S, then $(\tilde{F}_1, A) \wedge (\tilde{F}_2, B)$ and $(\tilde{F}_1, A) \vee (\tilde{F}_2, B)$ is IVFS ordered Γ -hyperleft (right) ideal of S.

PROOF. Let (\tilde{F}_1, A) and (\tilde{F}_2, B) be two IVFS ordered Γ -hyperleftideals of S defined as $(\tilde{F}_1, A) \wedge (\tilde{F}_2, B)$ where $C = A \times B$ and $\tilde{M}(a, b) = \tilde{F}_1(a) \cap \tilde{F}_2(b)$, for all $(a, b) \in C = A \times B$. For $x, y, z \in S$ and $\gamma \in \Gamma$.

$$\inf_{z \in x \gamma y} \{ \vartheta_{\tilde{M}(a,b)}(z) \} = \inf_{z \in x \gamma y} \{ \min\{\vartheta_{\tilde{F}_{1}(a)}(z), \vartheta_{\tilde{F}_{2}(b)}(z) \} \} \\
= \min\{ \inf_{z \in x \gamma y} \vartheta_{\tilde{F}_{1}(a)}(z), \inf_{z \in x \gamma y} \vartheta_{\tilde{F}_{2}(b)}(z) \} \\
= \min\{ \min\{\vartheta_{\tilde{F}_{1}(a)}(y), \vartheta_{\tilde{F}_{2}(b)}(y) \} \} \\
= \vartheta_{\tilde{M}(a,b)}(y).$$

Similarly $(\tilde{F}_1, A) \lor (\tilde{F}_2, B)$ are IVFS ordered Γ -left hyperideals of S.

THEOREM 3.3. Let (\tilde{F}_1, A) and (\tilde{F}_2, B) be two IVFS ordered Γ -hyperbi-ideals of S, then $(\tilde{F}_1, A) \wedge (\tilde{F}_2, B)$ is IVFS ordered Γ -hyperbi-ideal of S.

PROOF. Let (\tilde{F}_1, A) and (\tilde{F}_2, B) be two IVFS of S defined as $(\tilde{F}_1, A) \land (\tilde{F}_2, B)$ where $C = A \times B$, $\tilde{M}(a, b) = \tilde{F}_1(a) \cap \tilde{F}_2(b)$, where $(a, b) \in C = A \times B$, $p, x, y, z \in S$ and $\alpha, \beta \in \Gamma$.

$$\inf_{p \in x \alpha y \beta z} \{ \vartheta_{\tilde{M}(a,b)}(z) \} = \inf_{p \in x \alpha y \beta z} \{ \min\{\vartheta_{\tilde{F}_{1}(a)}(p), \vartheta_{\tilde{F}_{2}(b)}(p) \} \} \\
= \min\{ \inf_{p \in x \alpha y \beta z} \vartheta_{\tilde{F}_{1}(a)}(p), \inf_{p \in x \alpha y \beta z} \vartheta_{\tilde{F}_{2}(b)}(p) \} \\
\geqslant \min\{\min\{\vartheta_{\tilde{F}_{1}(a)}(x), \vartheta_{\tilde{F}_{1}(a)}(z) \}, \min\{\vartheta_{\tilde{F}_{2}(b)}(x), \vartheta_{\tilde{F}_{2}(b)}(z) \} \} \\
= \min\{(\vartheta_{\tilde{F}_{1}(a)} \cap \vartheta_{\tilde{F}_{2}(b)})(x), (\vartheta_{\tilde{F}_{1}(a)} \cap \vartheta_{\tilde{F}_{2}(b)})(z) \} \\
= \min\{\vartheta_{\tilde{M}(a,b)}(x), \vartheta_{\tilde{M}(a,b)}(z) \}.$$

Hence $(\tilde{F}_1, A) \wedge (\tilde{F}_2, B)$ is a IVFS ordered Γ -hyperbi-ideal of S.

THEOREM 3.4. Let (\tilde{F}_1, A) and (\tilde{F}_2, B) be two IVFS ordered Γ -hypersubsemigroup (ideal, interior-ideal) of S, then $(\tilde{F}_1, A) \cap_{\epsilon} (\tilde{F}_2, B)[(\tilde{F}_1, A) \cup_{\epsilon} (\tilde{F}_2, B)]$ is a IVFS ordered Γ -hypersubsemigroup (ideal, interior-ideal) of S.

PROOF. Let (\tilde{F}_1, A) and (\tilde{F}_2, B) be two IVFS ordered Γ -hypersubsemigroup of S as defined $(\tilde{F}_1, A) \cap_{\epsilon} (\tilde{F}_2, B) = (\tilde{M}, C)$ where $C = A \cup B$.

$$\tilde{M}(c) = \begin{cases} \tilde{F}_1(c) & \text{if } c \in A \smallsetminus B \\ \tilde{F}_2(c) & \text{if } c \in B \smallsetminus A \\ \tilde{F}_1(c) \cap \tilde{F}_2(c) & \text{if } c \in A \cap B. \end{cases}$$

 $\begin{aligned} \mathbf{Case} \ (\mathbf{i}) \ \mathrm{Let} \ c \in A \smallsetminus B \ \mathrm{and} \ \gamma \in \Gamma, \ \inf_{z \in x \gamma y} \{ \vartheta_{\tilde{M}(c)}(z) \} \geqslant \min\{\vartheta_{\tilde{M}(c)}(x), \vartheta_{\tilde{M}(c)}(y) \}. \\ \mathbf{Case} \ (\mathbf{ii}) \ \mathrm{Let} \ c \in B \smallsetminus A \ \mathrm{and} \ \gamma \in \Gamma, \ \inf_{z \in x \gamma y} \{ \vartheta_{\tilde{M}(c)}(z) \} \geqslant \min\{\vartheta_{\tilde{M}(c)}(x), \vartheta_{\tilde{M}(c)}(y) \}. \\ \mathbf{Case} \ (\mathbf{iii}) \ \mathrm{Let} \ c \in A \cap B, \ \gamma \in \Gamma \ \mathrm{and} \ \tilde{M}(c) = \tilde{F}_1(c) \cap \tilde{F}_2(c). \ \mathrm{By} \ \mathrm{Theorem} \ 3.1, \\ \inf_{z \in x \gamma y} \{ \vartheta_{\tilde{M}(c)}(z) \} \geqslant \inf_{z \in x \gamma y} \{ \vartheta_{\tilde{M}(c)}(x), \vartheta_{\tilde{M}(c)}(y) \} = \min\{\vartheta_{\tilde{M}(c)}(x), \vartheta_{\tilde{M}(c)}(y) \}. \end{aligned}$

THEOREM 3.5. Let (\tilde{F}_1, A) and (\tilde{F}_2, B) be two IVFS ordered Γ - hypersubsemigroup(ideal, interior-ideal) of S, then $(\tilde{F}_1, A) \cap_R (\tilde{F}_2, B)[(\tilde{F}_1, A) \cup_R (\tilde{F}_2, B)]$ is a IVFS ordered Γ - hypersubsemigroup (ideal, interior-ideal) of S.

PROOF. Let (\tilde{F}_1, A) and (\tilde{F}_2, B) be two IVFS ordered Γ - hypersubsemigroup of S, then $(\tilde{F}_1, A) \cap_R (\tilde{F}_2, B) = (\tilde{M}, C)$ where $C = A \cap B$ and $\tilde{M}(c) = \tilde{F}_1(c) \cap \tilde{F}_2(c)$ for all $c \in C$.

$$\begin{split} \inf_{z \in x \gamma y} \vartheta_{\tilde{M}(c)}(z) &= \inf_{z \in x \gamma y} \{ \min\{\vartheta_{\tilde{F}_{1}(c)}(z), \vartheta_{\tilde{F}_{2}(c)}(z)\} \} \\ &= \min\{ \inf_{z \in x \gamma y} \vartheta_{\tilde{F}_{1}(c)}(z), \inf_{z \in x \gamma y} \vartheta_{\tilde{F}_{2}(c)}(z) \} \\ &\geqslant \min\{ \min\{\vartheta_{\tilde{F}_{1}(c)}(x), \vartheta_{\tilde{F}_{1}(c)}(y)\}, \min\{\vartheta_{\tilde{F}_{2}(c)}(x), \vartheta_{\tilde{F}_{2}(c)}(y)\} \} \\ &= \min\{(\vartheta_{\tilde{F}_{1}(c)} \cap \vartheta_{\tilde{F}_{2}(c)})(x), (\vartheta_{\tilde{F}_{1}(c)} \cap \vartheta_{\tilde{F}_{2}(c)})(y) \} \\ &= \min\{\vartheta_{\tilde{M}(c)}(x), \vartheta_{\tilde{M}(c)}(y)\}. \end{split}$$

Hence $(\tilde{F}_1, A) \cap_R (\tilde{F}_2, B)$ is a IVFS ordered Γ - hypersubsemigroup of S.

REMARK 3.1. Every IVFS ordered Γ -hyperideal is a IVFS ordered Γ - hypersubsemigroup but converse need not be true as in the exm.

EXAMPLE 3.1. Let $S = \{a, b, c, d\}$ and (S, \leq) is a ordered Γ -semihypergroup.

γ	a	b	с	d
a	a	$\{b,d\}$	с	d
b	${b,d}$	b	${b,d}$	d
с	с	${b,d}$	a	d
d	d	d	d	d

 $\leqslant: \{(a,a), (b,b), (c,c), (d,d), (b,d)\}. \text{ The covering relation is given by } \prec= \{(b,d)\}.$ Let $E = \{x, y, u, v\}$ and $A = \{x, y\}.$ Define the IVFS set $(\tilde{F}, A) = \{\tilde{F}(x), \tilde{F}(y)\},$ where

$$\begin{split} \tilde{F}(x) &= \left\{ \frac{a}{[0.5, 0.7]}, \frac{b}{[0.7, 0.8]}, \frac{c}{[0.3, 0.5]}, \frac{d}{[0.7, 0.9]} \right\}, \\ \tilde{F}(y) &= \left\{ \frac{a}{[0.4, 0.6]}, \frac{b}{[0.6, 0.7]}, \frac{c}{[0.1, 0.5]}, \frac{d}{[0.6, 0.8]} \right\} \end{split}$$

Hence (\tilde{F}, A) is a IVFS sub Γ - hypersemigroups but not a IVFS hyperideal, since

$$\inf_{x \in a\gamma c} \vartheta_{\tilde{F}(e)}(x) = \inf_{x \in a\gamma c} \vartheta_{\tilde{F}(e)}(c) = [0.3, 0.5] \ngeq [0.5, 0.7]$$
$$= \max\{[0.5, 0.7], [0.3, 0.5]\} = \max\{\vartheta_{\tilde{F}(e)}(a), \vartheta_{\tilde{F}(e)}(c)\}$$

REMARK 3.2. Every IVFS ordered Γ -hyperideal is IVFS ordered Γ -hyperbiideals but converse need not be true as in the exm.

EXAMPLE 3.2. Let $S = \{a, b, c, d\}$ and $\Gamma = \{\alpha, \beta\}$ then S is Γ -hypersemigroup.

α	a	b	с	d	β	a	b	с	d
a	a	$\{a,b\}$	$\{c, d\}$	d	a	a	$\{a,b\}$	$\{c, d\}$	d
b	$\{a, b\}$	b	$\{c, d\}$	d	b	{a, b}	$\{a, b\}$	$\{c, d\}$	d
c	$\{c, d\}$	$\{c, d\}$	c	d	c		$\{c, d\}$		d
d	d	d	d	d	d	d	d	d	d

 $\leq: \{(a, a), (a, b), (b, b), (c, b), (c, c), (c, d), (d, b), (d, d)\}$. The covering relation is given by $\prec = \{(a, b), (c, d), (d, b)\}$. Let $E = \{x, y, u, v\}$ and $A = \{x, y\}$. Define the IVFS set (\tilde{F}, A) , where

$$\begin{split} \tilde{F}(x) &= \left\{ \frac{a}{[0.2, 0.4]}, \frac{b}{[0.2, 0.5]}, \frac{c}{[0.6, 0.8]}, \frac{d}{[0.5, 0.7]} \right\}, \\ \tilde{F}(y) &= \left\{ \frac{a}{[0.4, 0.6]}, \frac{b}{[0.4, 0.7]}, \frac{c}{[0.8, 0.9]}, \frac{d}{[0.7, 0.8]} \right\} \end{split}$$

Hence (\tilde{F},A) is a IVFS ordered $\Gamma\text{-hyperbi-ideal}$ but not a IVFS ordered $\Gamma\text{-hyperideal}.$ Since

$$\inf_{x \in b\alpha c} \vartheta_{\tilde{F}(e)}(x) = \inf_{x \in b\alpha c} \vartheta_{\tilde{F}(e)}(d) = [0.5, 0.7] \not\geq [0.6, 0.8]$$
$$= \max\{[0.2, 0.5], [0.6, 0.8]\} = \max\{\vartheta_{\tilde{F}(e)}(b), \vartheta_{\tilde{F}(e)}(c)\}$$

REMARK 3.3. Every IVFS Γ -hyperideal is IVFS Γ - hyper interior-ideal but converse not true.

EXAMPLE 3.3. Let $S = \{a, b, c, d, e\}$, $\Gamma = \{\alpha, \beta\}$ then S is Γ -hypersemigroup

α	a	b	c	d	е	β	a	b	с	d	e
a			c		е	a	$\{b, e\}$	e	с	$\{c, d\}$	е
b	$\{b, e\}$	e	c	$\{c, d\}$	е	b	е	e	\mathbf{c}	$\{c, d\}$	е
c	c	с	c	с	с	c	с	с	c	с	c
d	$\{c, d\}$	$\{c,d\}$	c	d	$\{c, d\}$	d	$\{c, d\}$	$\{c,d\}$	\mathbf{c}	d	$\{c, d\}$
е	e		c		е	e	е		\mathbf{c}	$\{c, d\}$	е

 $\leqslant: \{(a,a), (b,a), (b,b), (c,c), (c,e), (d,d), (e,b), (e,e)\}.$ The covering relation is given by $\prec = \{(b,a), (c,e), (e,b)\}.$ Define the IVFS set $(\tilde{F}, A) = \{\tilde{F}(w), \tilde{F}(x), \tilde{F}(y)\},$ where

 $\tilde{F}(w) = \left\{ (a, [0.2, 0.4]), (b, [0.5, 0.7]), (c, [0.8, 0.9]), (d, [0.1, 0.2]), (e, [0.7, 0.8]) \right\}$

 $\tilde{F}(x) = \left\{(a, [0.5, 0.6]), (b, [0.6, 0.7]), (c, [0.9, 1]), (d, [0.3, 0.5]), (e, [0.7, 0.8])\right\}$

 $\tilde{F}(y) = \{(a, [0.2, 0.4]), (b, [0.4, 0.6]), (c, [0.6, 0.8]), (d, [0.1, 0.3]), (e, [0.5, 0.7])\}$

Hence (\tilde{F}, A) is a IVFS Γ -hyperinterior ideal but not a IVFS Γ -hyperideal as $\inf_{x \in b\alpha d} \vartheta_{\tilde{F}(e)}(x) = \inf_{x \in b\alpha d} \vartheta_{\tilde{F}(e)}(d) = [0.3, 0.5] \ngeq [0.6, 0.7] =$

 $\max\{[0.6, 0.7], [0.3, 0.5]\} = \max\{\vartheta_{\tilde{F}(e)}(b), \vartheta_{\tilde{F}(e)}(d)\}.$

DEFINITION 3.3. Let (\tilde{F}, A) be a interval valued fuzzy soft set over S. For each $t \in [0, 1]$, the set $(\tilde{F}, A)^t$ is called an *t*-level set of (\tilde{F}, A) and is defined as $\{x \in S | \tilde{F}(e)(x) \ge t\}$ for each $e \in A$. Obviously, $(\tilde{F}, A)^t$ is a soft set over S.

THEOREM 3.6. Let (\tilde{F}, A) be a IVFS set of S, (\tilde{F}, A) is a IVFS ordered Γ -hypersemigroup if and only if $(\tilde{F}, A)^t$ is a soft ordered Γ -hypersemigroup of S for each $t \in D[0, 1]$.

PROOF. Assume that $(\tilde{F}, A)^t$ is a soft ordered Γ -hypersemigroup of S for each $t \in D[0, 1]$. For each $x_1, x_2 \in S$ and $a \in A$, let $t = \min\{\vartheta_{\tilde{F}(a)}(x_1), \vartheta_{\tilde{F}(a)}(x_2)\}$ then $x_1\gamma x_2 \in \vartheta_{\tilde{F}(a)}^t$. Since $\vartheta_{\tilde{F}(a)}^t$ is a Γ - hypersubsemigroup of S, then $x_1\gamma x_2 \in \vartheta_{\tilde{F}(a)}^t$. That is $\vartheta_{\tilde{F}(a)}(x_1\gamma x_2) \ge t = \min\{\vartheta_{\tilde{F}(a)}(x_1), \vartheta_{\tilde{F}(a)}(x_2)\}$. This shows that $\vartheta_{F(a)}$ is IVF ordered Γ -hypersubsemigroup of S. Conversely, assume that (\tilde{F}, A) is a IVFS in S. For each $a \in A, t \in D[0, 1]$ and $x_1, x_2 \in \vartheta_{\tilde{F}(a)}^t$, we have $\vartheta_{\tilde{F}(a)}(x_1) \ge$ $t, \vartheta_{\tilde{F}(a)}(x_2) \ge t$. Therefore $\vartheta_{F(a)}$ is a IVF ordered Γ -hypersubsemigroup of S. Thus $\gamma \in \Gamma$ there exists $z \in x_1 \gamma x_2$ such that $\inf_{z \in x_1 \gamma x_2} (z) \ge \min \{ \vartheta_{\tilde{F}(a)}(x_1), \vartheta_{\tilde{F}(a)}(x_2) \} \ge t$. Therefore for all $z \in x_1 \gamma x_2$ we have $z \in \vartheta_{\tilde{F}(a)}^t$, this implies that $x_1 \gamma x_2 \in \vartheta_{\tilde{F}(a)}^t$, that is $\vartheta_{\tilde{F}(a)}^t$ is hyper Γ -subsemigroup of S. Therefore $(\tilde{F}, A)^t$ is a soft ordered Γ -hypersemigroup of S for each $t \in D[0, 1]$.

THEOREM 3.7. Let (\tilde{F}, A) be a IVFS set of S, (\tilde{F}, A) is a IVFS ordered Γ -hyperleft(right, bi-ideal)ideal if and only if $(\tilde{F}, A)^t$ is a soft ordered Γ -hyper left(right, bi-ideal) ideal of S for each $t \in D[0, 1]$.

PROOF. Suppose that $(\tilde{F}, A)^t$ is a soft ordered Γ -hyper left ideal of S for each $t \in D[0, 1]$ and $a \in A, \gamma \in \Gamma$. For each $x_1 \in S$, let $t = \vartheta_{\tilde{F}(a)}(x_1)$, then $x_1 \in \vartheta_{\tilde{F}(a)}^t$. Since $\vartheta_{\tilde{F}(a)}^t$ is a Γ -hyper left ideal of S, then $x\gamma x_1 \in \vartheta_{\tilde{F}(a)}^t$, for each $x \in S$. Hence $\vartheta_{\tilde{F}(a)}(x\gamma x_1) \ge t = \vartheta_{\tilde{F}(a)}(x_1)$. This shows that $\vartheta_{F(a)}$ is IVF ordered Γ -hyper left ideal of S. Thus, (\tilde{F}, A) is a IVFS ordered Γ -hyper left ideal of S.

Conversely, assume that (\tilde{F}, A) is a IVFS ordered Γ -hyper left ideal of S. For each $a \in A, t \in D[0, 1]$ and $x_1 \in \vartheta^t_{\tilde{F}(a)}$, we have $\vartheta_{\tilde{F}(a)}(x_1) \ge t$ and hence $\vartheta_{\tilde{F}(a)}$ is a IVF Γ -hyper left ideal of S. Thus for $\gamma \in \Gamma$ there exists $z \in x\gamma x_1$ such that $\inf_{z \in x\gamma x_1}(z) \ge \vartheta_{\tilde{F}(a)}(x_1) \ge t$. Therefore for all $z \in x\gamma x_1$. We have $z \in \vartheta^t_{\tilde{F}(a)}$, that is $\vartheta^t_{\tilde{F}(a)}$ is hyper ordered Γ -left ideal of S. Therefore $(\tilde{F}, A)^t$ is a soft ordered Γ -hyper left ideal of S for each $t \in D[0, 1]$. Similar proof holds for other case. \Box

THEOREM 3.8. Let (\tilde{F}, A) be a IVFS set of S, (\tilde{F}, A) is a IVFS ordered Γ -hyper ideal if and only if $(\tilde{F}, A)^t$ is a soft ordered Γ -hyper ideal of S for each $t \in D[0, 1]$.

4. IVFS image and inverse image of Γ - hypersemigroups

DEFINITION 4.1. Let $\rho : H_1 \to H_2$ and $\sigma : A \to B$ be two functions, A and B be two parameter sets for the crisp sets H_1 and H_2 , respectively. Then the pair (ρ, σ) is called a IVFS function from H_1 to H_1 .

DEFINITION 4.2. Let (\tilde{F}, A) and (\tilde{G}, B) be two IVFS sets of the sets H_1 and H_2 , respectively, and (ρ, σ) be a IVFS map from H_1 to H_2 . (i) The image of (\tilde{F}, A) under (ρ, σ) denoted by $(\rho, \sigma)(\tilde{F}, A)$, is a IVFS set of H_2 defined by $(\rho, \sigma)(\tilde{F}, A) = (\rho(F), \sigma(A))$, where for all $b \in \sigma(A)$ and for all $y \in H_2$,

$$\vartheta_{\rho_{\tilde{F}(b)}}(y) = \begin{cases} \sup_{\rho(x)=y} \sup_{\sigma(a)=b} \vartheta_{\tilde{F}(a)}(x), \ if \ \rho^{-1}(y) \neq \phi \\ 0 \quad \text{otherwise} \end{cases}$$

(ii) The inverse image of (\tilde{G}, B) under (ρ, σ) denoted by $(\rho, \sigma)^{-1}(\tilde{G}, B)$ is a IVFS set of H_1 defined by $(\rho, \sigma)^{-1}(\tilde{G}, B) = (\rho^{-1}(G), \sigma^{-1}(B))$, for all $a \in \sigma^{-1}(B)$ and $x \in H_1, \vartheta_{\rho_{\tilde{G}(a)}^{-1}}(y) = \vartheta_{\tilde{G}_{\sigma(a)}}(\rho(x))$

THEOREM 4.1. Let $\rho: H_1 \to H_2$ be a homomorphism of S. If (\tilde{G}, B) is a IVFS Γ -hypersubsemigroup of H_2 , then $(\rho, \sigma)^{-1}(\tilde{G}, B)$ is a IVFS Γ -hypersubsemigroup of H_1 .

PROOF. Let (\tilde{G}, B) is a IVFS Γ -hypersubsemigroup of H_2 . Let $x, y, z \in H_1, \alpha \in \Gamma_1$. We have

$$\inf_{z \in x \alpha y} \left\{ \vartheta_{\rho_{\tilde{G}(a)}^{-1}}(z) \right\} = \inf_{z \in x \alpha y} \left\{ \vartheta_{\tilde{g}_{\sigma(a)}}(\rho(z)) \right\}$$
$$= \inf_{\rho(z) \in \rho(x \alpha y)} \left\{ \vartheta_{\tilde{g}_{\sigma(a)}}(\rho(z)) \right\}$$
$$\geqslant \min \left\{ \vartheta_{\tilde{g}_{\sigma(a)}}\rho(x), \vartheta_{\tilde{g}_{\sigma(a)}}\rho(y) \right\}$$
$$= \min \left\{ \vartheta_{\rho_{\tilde{G}(a)}^{-1}}(x), \vartheta_{\rho_{\tilde{G}(a)}^{-1}}(y) \right\}$$

Therefore $(\rho, \sigma)^{-1}(\tilde{G}, B)$ is a IVFS Γ -hypersubsemigroup of H_1 .

THEOREM 4.2. Let $\rho : H_1 \to H_2$ be a homomorphism of S. If (\tilde{G}, B) is a *IVFS* Γ -hyperleft(right, bi-ideal, interior) of H_2 , then $(\rho, \sigma)^{-1}(\tilde{G}, B)$ is a *IVFS* Γ -hyperleft(right, bi-ideal, interior)ideal of H_1 .

THEOREM 4.3. Let $\rho: H_1 \to H_2$ be a homomorphism of S. If (\tilde{F}, A) is a IVFS Γ -hypersubsemigroup of H_1 , then $(\rho, \sigma)(\tilde{F}, A)$ is a IVFS Γ -hypersubsemigroup of H_2 .

PROOF. Let (\tilde{F}, A) is a IVFS Γ -hypersubsemigroup of H_1 . Let $x_1, y_1, z_1 \in H_2, \beta \in \Gamma_2$.

$$\begin{split} \inf_{z_1 \in x_1 \beta y_1} \left\{ \vartheta_{\rho_{\tilde{F}(b)}}(z_1) \right\} &= \inf_{z_1 \in x_1 \beta y_1} \left\{ \sup_{t \in \rho^{-1}(z_1)} \sup_{\sigma(a) = b} \vartheta_{\tilde{F}(a)}(t) \right\} \\ &\geqslant \inf_{z \in x_1 \beta y_1} \left\{ \sup_{\sigma(a) = b} \vartheta_{\tilde{F}(b)}(z_1) \right\} \\ &= \inf_{\rho(z) \in \rho(x \beta y)} \left\{ \sup_{\sigma(a) = b} \vartheta_{\tilde{F}(b)}(z) \right\} \\ &\geqslant \sup_{\sigma(a) = b} \min \left\{ \vartheta_{\tilde{F}(b)}(x), \vartheta_{\tilde{F}(b)}(y) \right\} \\ &\geqslant \sup_{x \beta y \subseteq \rho^{-1}(x_1)h^{-1}(\beta)\rho^{-1}(y_1)} \left\{ \sup_{\sigma(a) = b} \min \left\{ \vartheta_{\tilde{F}(b)}(x), \vartheta_{\tilde{F}(b)}(y) \right\} \right\} \\ &= \min \left\{ \sup_{\rho(x) = y} \sup_{\sigma(a) = b} \vartheta_{\tilde{F}(a)}(x), \sup_{\rho(x) = y} \sup_{\sigma(a) = b} \vartheta_{\tilde{F}(a)}(y) \right\} \\ &\geqslant \min \left\{ \vartheta_{\rho_{\tilde{F}(b)}}(x_1), \vartheta_{\rho_{\tilde{F}(b)}}(y_1) \right\} \end{split}$$

Therefore $(\rho, \sigma)(\tilde{F}, A)$ is a IVFS Γ -hyper subsemigroup of H_2 .

THEOREM 4.4. Let $\rho : H_1 \to H_2$ be a homomorphism of S. If (\tilde{F}, A) is a IVFS Γ -hyperleft(right, bi-ideal, interior)ideal of H_1 , then $(\rho, \sigma)(\tilde{F}, A)$ is a IVFS Γ -hyperleft(right, bi-ideal, interior)ideal of H_2 .

Acknowledgement. The authors are grateful to anonymous reviewers for helpful suggestions that have significantly improved the quality of the text.

References

- M. Akram, J. Kavikumar and A. B. Khamis. Fuzzy soft Γ-semigroups. Appl. Math. Inf. Sci., 8(2)(2014), 929–934.
- [2] S. M. Anvariyeh, S. Miravakili and B. Davvaz. On Γ-hyperideals in Γ-hypersemigroups. Carpathian J. Math., 26(1)(2010), 11–23.
- [3] K. Arulmozhi and V. Chinnadurai. Bipolar fuzzy soft hyperideals and homomorphism of Gamma-hypersemigroups. International Journal of Engineering and Technology, 7(4.10) (2018), 127–132.
- [4] K. Arulmozhi, V. Chinnadurai and A. Swaminathan. Interval valued bipolar fuzzy ideals in ordered gamma-semigroups. J. Int. Math. Virtual Inst., 9(2019), 1–17.
- [5] V. Chinnadurai and K. Arulmozhi. Characterization of bipolar fuzzy ideals in ordered gamma semigroups. J. Int. Math. Virtual Inst., 8(2018), 141–156.
- [6] P. Corsini and V. Leoreanu. Applications of hyperstructure theory. Kluwer Academic Publishers, Dordrecht, Hardbound, 2003.
- [7] N. Kehayopula. On ordered Γ-semigroups. Scientiae Mathematicae Japonicae, e-2010, 37– 43.
- [8] V. Leoreanu-Fotea, F. Feng and J. Zhan. Fuzzy soft hypergroups. Int. J. Comp. Math., 89(8)(2012), 963–974.
- [9] P. K. Maji, R. Biswas and R. Roy. Fuzzy soft sets. J. Fuzzy Math. Appl., 9(3)(2001), 589–602.
- [10] P. K. Maji, R. Biswas and R. Roy. Soft set theory. Comput. Math. Appl., 45(4-5)(2003), 555-562.
- [11] F. Marty. Sur une generalization de la notion de group. in. Proc 8th Congress Mathematics Scandenaves (pp 45–49), Stockholm, Sweden, 1934.
- [12] D. Molodtsov. Soft set theory First results. Comput. Math. Appl., 37(4-5)(1999), 19–31.
- [13] V. Raju and R. Jayagopal. An arithmetric operations of icosagonal fuzzy number using alpha cut. Int. J. Pure Appl. Math., 120(8)(2018), 137–145.
- [14] M. K. Sen and N. K Saha. On Γ-semigroup. Bull. Calcutta Math. Soc., 78(3)(1986), 180–186.
- [15] N. Thillaigovindan and V. Chinnadurai. Interval valued fuzzy quasi-ideals of semigroups. East Asian Math. J., 25(4)(2009), 449–467.
- [16] X. Yang, T. Y. Lin, J. Yang, Y. Li and D. Yu. Combination of interval valued fuzzy set and soft set. Comput. Math. Appl., 58(3)(2009), 521–527.
- [17] L. A Zadeh. Fuzzy sets. Information and control, 8(3)(1965), 338–353.

Received by editors 14.03.2019; Revised version 26.06.2019; Available online 08.07.2019.

K. ARULMOZHI: DEPARTMENT OF MATHEMATICS, VELS INSTITUTE OF SCIENCE, TECHNOLOGY AND ADVANCED STUDIES (VISTAS), CHENNAI, TAMIL NADU 600117, INDIJA *E-mail address*: arulmozhiems@gmail.com

V. Chinnadurai: Department of Mathematics, Annamalai University, Annamalainagar - 608002 Tamil Nadu, India.

E-mail address: kv.chinnadurai@yahoo.com