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ON GENERALIZATION OF

QUASI IDEALS IN SEMIRINGS

Mohammad Munir and Asghar Ali

Abstract. Ideals have played an important role in studies of semirings, and
related systems. Their generalization is in the form of one-sided ideals. One-

sided ideals are generalized to quasi ideals and quasi ideals are further gen-
eralized to bi ideals. In this article, we generalize the quasi ideals through
an index m called the m-quasi ideals, and study their important properties

in semirings. We introduce the idea of m-regular semirings and study their
important properties through m-quasi ideals.

1. Introduction and Preliminaries

A semiring is a nonempty set A together with two binary operations addition
+ and multiplication · usually denoted by an ordered triple (A,+, ·) if (A,+) is a
commutative semigroup, (A, ·) is semigroup and right and left distributive laws i.e.,
a(b + c) = ab + ac and (a + b)c = ac + bc ∀ a, b, c ∈ A, hold. A nonempty
subset H of A is called its subsemiring if it is itself a semiring under the operations
of A, that is, H2 ⊂ H. A subsemiring L/R of A is called a left-ideal/right-ideal
of A if AL ⊆ L/LA ⊆ R. A subsemiring I is called a two-sided or simply an
ideal of A if it is both a left and right ideal. By generalizing one-sided ideals, we
can define a quasi-ideal as a subsemiring Q such that QA ∩ AQ ⊆ Q. A further
generalization of quasi ideal results in defining a bi ideal as a subsemiring B of A
such that BAB ⊆ A.

All ideals and one-sided ideals are quasi ideals, but the converse is not true.
The quasi ideals are bi ideals, but the converse is not true. A detailed study of the
quasi ideals and bi ideals is found in [5] and [7].
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If X and Y are two non-empty subsets of a semiring (S,+, ·), then the sum
X+Y respectively the product XY of X and Y are defined by X+Y = {x+y : x ∈
X and y ∈ Y }, and XY = {

∑
finite

xiyi : xi ∈ X and yi ∈ Y }. The undefined

terms and notations can be followed in [4] and [3].
In this paper, we generalize quasi-ideals by an index m, where m is a positive

integer. In Section 2, we summarize some results about the m-left/ m-right ideals
and m-bi ideals from [2] and [6], and describe their properties in association with
the left and right ideals. In Section 3, we introduce the idea of the m-quasi ideal in
semirings. In Section 4, we present the new ideal of the m-regular semirings. The
conclusion of the paper is given in Section 5.

2. One-sided and m-bi ideals

Definition 2.1. For a semiring A, and a positive integer m, we have Am =
AAA...A(m-times) [6].

Now A2 = AA ⊆ A; as A is a semiring. Therefore, A3 = AAA ⊆ A2 ⊆ A, i.e.,
A3 ⊆ A2, and A3 ⊆ A. So, we conclude that As ⊆ Am for all positive integers s
and m, such that s > m. Consequently Am ⊆ A, for all m.

Definition 2.2. A subsemiring L of a semiring (A,+, ·) is called m-left ideal
of A if AmL ⊆ L, where m is a positive integer [2]. The least positive such integer
m is called the left-potency of L. Similarly, the subsemiring R of A is said to be
m-right ideal of A if RAm ⊆ R, where m is a positive integer. The least positive
such integer m is called the right-potency of R.

A subsemiring I of A is called an m-two-sided ideal or simply an m-ideal of
A if it is both m-left ideal and m-right ideal of A i.e., AmIAm ⊆ I, where m is a
positive integer. The least positive such integer m is called the potency of I.

Proposition 2.1. Every left/right ideal is an m-left / m- right ideal

Proof. Let L be a left ideal of A, then LAmL ⊆ LAL ⊆ L. That is LAmL ⊆
L. So, L is an m for any positive integer m.

The proof for right ideal R is similar. �
Corollary 2.1. Every m-left ideal (m-right ideal) of A is an n-left ideal ( n-

right ideal) of A, for all n > m

Proof. Let L be an m-left ideal of A, then LAnL ⊆ LAmL ⊆ L. This gives
that L is n-left ideal of A. The proof for m-right ideal is similar. �

Example 3.2 shows that the m-left/m-right ideals need not be the left or right
ideals.

Theorem 2.3. Let A be a semiring.

(1) For an m-left ideal, Li of A, i ∈ I, we have
∩
i∈I

Li is an m-left ideal of A.

(2) Similarly, if Ri is an n-right ideal of A for any i ∈ I, then
∩
i∈I

Ri is an

n-right ideal of A.
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Proof. (1) Let {Lλ : λ ∈ ∧} be a family of m-left ideals of semiring A, then
L =

∩
λ∈∧

Lλ, being the intersection of subsemirings of A is a subsemiring of A. Since

AmλLλ ⊆ Lλ ∀ λ ∈ ∧,

and L ⊆ Lλ ∀ λ ∈ ∧, therefore

Amax{mλ:λ∈∧}L ⊆ AmλLλ ⊆ Lλ ∀ λ ∈ ∧.

That is, Amax{mλ:λ∈∧}L ⊆ Lλ ∀ λ ∈ ∧. This gives

Amax{mλ:λ∈∧}L ⊆
∩
λ∈∧

Lλ = L.

So, Amax{mλ:λ∈∧}L ⊆ L. Thus L is an m-left ideal with bipotency max{m1,m2, ...}.
(2) Analogously. �

Theorem 2.4. Let A be a semiring,

(1) The m-left ideal generated by a subsemiring H of A is H +AmH,
(2) The m-right ideal generated by a non-empty subset H of A is H +HAm.

Proof. (1) Let < H >m= H + AmH. We need to show that < H >m is
the minmal m-left ideal of A which contains H. < H >m is clearly closed under
addition. Consider, (H+AmA)(H+AmH) = H2+HAmH+AmHH+AmHAmH ⊆
H + AAmH + AmAH + AmAAmH ⊆ H + Am+1H + Am+1H + A2m+1H ⊆ H +
AH + AH + AH ⊆ H + AH. So < H >m is a subsemiring of A. Next, we need
to show that Am < H >m⊆< H >m. Consider Am < H >m= Am(H + AmH) =
AmH + AmAmH = AmH + A2mH ⊆ {0} + AmH ⊆ H + AmH. Therefore,
Am < H >m⊆< H >m. That is, Am < H >m is an m-left ideal containing
H. That is, AmH ⊆ H. To show that < H >m is the minmal m-left ideal of
A which contains H, let H ′ be any other m-left ideal of A containing H. Then
H +AmH ⊆ H ′ +AmH ′ ⊆ H ′ +H ′ ⊆ H ′. Therefore, < H >m= H +AmH ⊆ H ′.
Hence, < H >m is the minimal m-left ideal of A which contains H.

(2) Analogously. �

Now, we summarize some results about the m-bi ideals from [6].

Definition 2.5. Let (A,+, ·) be a semiring. An m-bi ideal B of A is a sub-
semiring of A such that BAmB ⊆ B where m is a least positive integer , not
necessarily 1. The least positive such integer m is called the bipotency of the bi
ideal B.

Remark 2.1. BAmB ⊆ B is called the bipotency condition. Every bi ideal of
a semiring is its 1-bi ideal(bi ideal of bipotency 1). All the so-called 1-bi ideals are
simply the bi ideals, whereas those with bipotency m > 1 are to be specified with
the value of m. For every m > 1, every bi-ideal is an m-bi ideal. Every m-bi ideal
of the semiring A is an n-bi right ideal of A, for all n > m. The converse of this
statement is not true [6]. Left ideal L and the right ideal R of the semiring A are
its 1-bi ideals.
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Proposition 2.2. The product of any number of m-bi ideals of a semiring A,
with identity e, is an m-bi ideal.

Proof. It is sufficient to prove the result for two m-bi ideals of A. Suppose
B1 and B2 be bi ideals of A with bipotencies m1 and m2 respectively, that is,
B1A

m1B1 ⊆ B1 and B2A
m1B2 ⊆ B2, m1 and m2 are any positive integers. Then

B1B2 being the finite sum of the product is obviously closed under addition. Now
we have,

(B1B2)
2 = (B1B2)(B1B2) = (B1AB1)B2 = (B1Ae...eB1)B2

⊆ (B1AA...AB1)B2 ⊆ (B1A
mB1)B2 ⊆ B1B2.

That is, (B1B2)
2 ⊆ B1B2. So, B1B2 is closed under multiplication. B1B2 is a

subsemiring of A. Moreover,

B1B2(A
max(m1,m2))B1B2 ⊆ B1AAmax(m1,m2)B1B2

= B1A
1+max(m1,m2)B1B2 ⊆ B1A

m1B1B2 ⊆ B1B2.

We used the result A1+max(m1,m2) ⊆ Am1 as is evident by Definition 2.1. So,
B1B2(A

max(m1,m2))B1B2 ⊆ B1B2. Thus, B1B2 is m-bi ideal of A with bipotency
max(m1,m2). �

Proposition 2.3. Let T be an arbitrary subset of a semiring A with identity
e, and B be an m- bi ideal of A, m not necessarily 1. Then the product BT is also
m-bi ideal of A.

Proof. The product BT as defined in Section 1 is closed under addition.
Next, (BT )2 = (BT )(BT ) = (BTB)T ⊆ (BAB) ⊆ BAe...eB ⊆ BAA...AB ⊆
(BAmB)T ⊆ BT . So, BT 2 ⊆ BT making it a subsemiring of A. Moreover,
BT (Am)BT ⊆ BAAmBT ⊆ BA1+mBT ⊆ BAmBT ⊆ BT. Therefore BT is a bi
ideal of A with bipotency m. �

Similarly, we can prove that TB is also m-bi ideal of A.

Proposition 2.4. The intersection of a family of bi ideals of semiring A with
bipotencies m1,m2, ..., is also a bi ideal with bipotency max{m1,m2, ...}.

Proof. See [6]. �

Sum of two m-bi ideals of a semiring is not an m-bi ideals. See example in
[6]. The following theorem tells about the intersection of m-left and right ideal of
a semiring A.

Theorem 2.6. Let L(R) be an m-left ideal(n-right ideal) of a semiring A, then
their intersection, L ∩R, is a t-bi ideal of A, where t = max(m,n).

Proof. L ∩ R is clearly a subsemiring of A. Since L is m-bi ideal and R is
n-bi ideals of A, their intersection becomes max(m,n)-bi ideals from the result
2.4. Similarly, we can show that L ∩ R(Amax{m,n})L ∩ R ⊆ R. Consequently,
L ∩RAmax{m,n}L ∩R ⊆ L ∩R �
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Remark 2.2. The integer m for any ideal specifies the number of times of pre
or post-multiplication of the semiring A with a subsemiring H so that it becomes
an ideal. A right/left ideal is the 1-left/1-right ideals because one needs to multiply
A on right/left side of H to make it right/left ideal. Similarly, a bi ideal B is a 1-bi
ideal, and a quasi ideal is a 1-quasi ideal in the sense that BAB = BA1B ⊆ B and
QA1 ∩A1Q = QA ∩AQ ⊆ Q respectively.

3. m-quasi ideals

Moin et al., gave the idea of (m,n)-quasi ideals in semigroups [1]. In this
section, we generalize the quasi ideals, through a single index m, in semirings,
where m is a positive integer.

Definition 3.1. A subsemiring Q of a semiring (A,+, ·) is called m-quasi ideal
of A if QAm ∩AmQ ⊆ Q, where m is a positive integer called the quasi-potency of
Q.

Proposition 3.1. For any m > 1, a quasi ideal is an m-quasi ideal.

Proof. If Q is a quasi ideal of A, then QAm ∩ AmQ ⊆ QA ∩ AQ ⊆ Q. That
is QAm ∩AmQ ⊆ Q. So, Q is m-ideal. �

Corollary 3.1. Every m-quasi ideal of A is an n-quasi ideal of A, for all
n > m

Proof. For an m-quasi ideal Q, we have QAn ∩ AnQ ⊆ QAm ∩ AmQ ⊆ Q.
That is QAn ∩AnQ ⊆ Q. So, Q is n-quasi ideal. �

Every m-quasi ideal is not a quasi ideal. This is evident from the following
example.

Example 3.2. Let

A =



0 l m n
0 0 o p
0 0 0 q
0 0 0 0

 : l,m, n, o, p, q are any positive real numbers


and

A0 = A ∪


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

,
then (A,+, ·) is a semiring under the usual operations of addition + and multipli-
cation · of matrices. Let

H =



0 l 0 0
0 0 0 0
0 0 0 q
0 0 0 0

 : l, q are any positive real numbers

 ∪


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

.



88 M. MUNIR AND A. ALI

In this case, H is not a quasi ideal of A, but it is a 3-quasi ideal of A as A3H∩HA3 ⊆
H. Moreover, H is 3-left ideal of A as A3H ⊆ H, but it is not a left ideal of A
because AH ̸⊆ H. H is a 3-right ideal of A, but not a right ideal of A.

Proposition 3.2. Every m-left ideal/m-right ideal and hence every m-ideal is
a quasi ideal with quasi-potency m.

Proof. Let L be an m-left ideal. Then LAm ∩ AmL ⊆ L ∩ L ⊆ L. So,
LAm ∩AmL ⊆ L. Thus L is m-quasi ideal. �

The converse of the above theorem is not true. That is, every m-quasi ideal is
not always m-right/m-left ideals.

Example 3.3. Let A be the semiring as given in Example 3.2, and

T =



l 0 0 0
0 0 0 q
0 0 0 0
0 0 0 0

 : l, q are any positive real numbers

 ∪


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

.
In this case, T is a 2-quasi ideal of A as A2T ∩ TA2 ⊆ T , but T is not a 2-right
ideal of A because TA2 ̸⊆ T .

Proposition 3.3. The intersection of any family of m-quasi ideals of a semir-
ing A is its m-quasi ideal.

Proof. Let {Qλ : λ ∈ I} be a family of m-quasi ideals of a semiring A, then

Am

( ∩
λ∈I

Qλ

)∩( ∩
λ∈I

Qλ

)
Am ⊆ Qλ for all λ ∈ I.

This gives

Am

(∩
λ∈I

Qλ

)∩(∩
λ∈I

Qλ

)
Am ⊆

∩
λ∈I

Qλ.

Thus
∩
λ∈I

Qλ is an m-quasi ideal of A. �

Corollary 3.2. For an m-right ideal R and an m-left ideal L of a semiring
A, their intersection is an m-quasi ideal of A.

Proof. L and R being the m-left and m-ideals of A are also its m-quasi ideals,
so by above theorem, the intersection, L ∩R, is m-quasi ideal of A. �

The m-quasi Q has m-intersection property if Q is the intersection of an m-left
ideal and an m-right ideal of A. In this case, every m-left ideal and every m-
right ideal have the m intersection property. The following theorem characterizes
m-quasi ideals having the m-intersection property.

Theorem 3.4. A m-quasi ideal Q of a semiring A has the m-intersection
property if and only if

(Q+AmQ) ∩ (Q+QAm) = Q.
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Proof. (i) ⇒ (ii). Let Q has the m-intersection property. Now we show that

(Q+AmQ) ∩ (Q+QAm) = Q.

It is very obvious that

Q ⊆ (Q+AmQ) ∩ (Q+QAm).

Since Q has the m- intersection property, so we write Q = L ∩ R for some m-left
ideal L and some m-right ideal R of A. Thus Q ⊆ L and Q ⊆ R. Moreover,
AmQ ⊆ AmL ⊆ L, and QAm ⊆ RAm ⊆ R. This implies that Q + QAm ⊆ R and
Q+AmQ ⊆ L. Therefore,

(Q+QAm) ∩ (Q+AmQ) ⊆ Q.

Consequently,

(Q+QAm) ∩ (Q+AmQ) = Q.

Next we show that (ii) ⇒ (i). Consider,

(Q+QAm) ∩ (Q+AmQ) = Q.

Since it is clear that both (Q + QAm) and (Q + AmQ) are respectively m-right
and m-left ideals of A as AmQ and QAm both are m-right and m-left ideals of A.
Therefore, Q has m-intersection property. �

Theorem 3.5. For m-quasi-ideal Q of A, if AmQ ⊆ QAm or QAm ⊆ AmQ,
then Q has m-intersection property.

Proof. Without of loss of generality, suppose that AmQ ⊆ QAm , then
AmQ = AmQ ∩ QAm ⊆ Q. That is, AmQ ⊆ Q. So, Q is m-left ideal of A.
Thus, Q has the m-intersection property. �

The sum and the product of m-quasi ideals both need not be m-quasi ideal as
is evident from the following two examples.

Example 3.6. Let A be the semiring as given in Example 3.2, Q = H + T ;
H as given in Example 3.2 and T as given in Example 3.3. Then H and T are
respectively 3-quasi and 2-quasi ideals of A as explained in Examples 3.2 and 3.3,
but Q is not m-quasi ideal of A. Indeed

Q =



m l 0 0
0 0 0 p
0 0 0 q
0 0 0 0

 : m, l, p, qare any positive real numbers

 ∪


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


and even Q2 ̸⊆ Q i.e., Q is not a subsemiring of A. So, sum of m-quasi ideals is
not an m-quasi ideal.

Example 3.7. Let A be the semiring as given in Example 3.2, Q = HT ; H as
given in Example 3.2 and
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T =



0 0 m 0
0 0 0 p
0 0 0 0
q 0 0 0

 : m, p, qare any positive real numbers

 ∪


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

.
Then H and T are respectively 3-quasi and 2-quasi ideals of A, but Q is not an
m-quasi ideal of A. Actually,

Q =



0 0 0 x
0 0 0 0
0 0 0 0
0 y 0 0

 : x, y are any positive real numbers

 ∪


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


and even Q2 ̸⊆ Q i.e., Q is not a subsemiring of A. So, product of m-quasi ideals
is not an m-quasi ideal.

Proposition 3.4. Every m-quasi ideal Q of a semiring A is its m-bi ideal.

Proof. As Q is a m-quasi ideal of A, then

QAmQ ⊆ QAmA ∩AmAQ = QAm+1 ∩Am+1Q ⊆ QAm ∩AmQ ⊆ Q,

i.e., QAmQ ⊂ Q, i.e., Q is m-bi ideal of A. �

Proposition 3.5. For two m-quasi ideals of a semiring A with identity e, their
product is m-bi ideal of A.

Proof. LetQ1 andQ2 be two quasi ideals of a semiring A with quasi-potencies
m1 and m2 respectively, that is, Q1A

m1 ∩Am1Q1 ⊆ Q1 and Q2A
m1 ∩Am2Q2 ⊆ Q2,

m1 andm2 are any positive integers. ThenQ1Q2 being the finite sum of the product
is closed under addition. Using the result that every m-quasi ideal is m- bi ideal,
we have,

(Q1Q2)
2 = (Q1Q2)(Q1Q2) = (Q1AQ1)Q2 = (Q1Ae...eQ1)Q2

⊆ (Q1AA...AQ1)Q2 ⊆ (Q1A
m1Q1)Q2 ⊆ Q1Q2.

That is, (Q1Q2)
2 ⊆ Q1Q2. So, Q1Q2 is closed under multiplication. Q1Q2 is a

subsemiring of A. Moreover,

Q1Q2(A
max(m1,m2))Q1Q2 ⊆ Q1AA

max(m1,m2)Q1Q2

= Q1A
1+max(m1,m2)Q1Q2 ⊆ Q1A

m1Q1Q2 ⊆ Q1Q2.

We have used A1+max(m1,m2) ⊆ Am1 as is evident by Definition 2.1. So,

Q1Q2(A
max(m1,m2))Q1Q2 ⊆ Q1Q2.

Thus, Q1Q2 is an m-bi ideal of A with quasi-potency max(m1,m2). �

Remark 3.1. Everym-bi ideal may not be anm-quasi ideal. In Example 3.2,H
is a 2-bi ideals as HA2H ⊆ H, but H is not a 2-quasi ideal of A as HA2∩A2H ̸⊆ H.

Theorem 3.8. Suppose Q be an m-quasi ideal of A and H be a subsemiring
of A, then H ∩Q is either empty or an m-quasi ideal of H.
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Proof. If H ∩Q is not empty, then since H ∩Q ⊆ H, therefore

Hm(H ∩Q) ⊆ HmQ and (H ∩Q)Hm ⊆ QHm.

So,
Hm(H ∩Q) ∩ (H ∩Q)Hm ⊆ HmQ ∩QHm ⊆ AmQ ∩QAm ⊆ Q.

Thus H ∩Q is an m-quasi ideal of H. �

4. m-Regular Semirings

An element a of a semiring A is called regular if axa = a for some x ∈ A.
Semiring A is called regular if every element of A is regular. If a is a regular element
of A, the ax and xa are idempotent; ax·ax = (axa)x = ax, xa·xa = x(axa) = xa.

Definition 4.1. An element a of a semiring A is called m-regular if aya = a
for some y ∈ Am. Semiring A is called m-regular if every element of A is m-regular.
A is m-regular if a ∈ aAma for all a ∈ A.

Remark 4.1. Every regular (1-regular) semiring is an m-regular semiring, but
the converse is not true.

Otto Steinfeld characterized the rings and semigroups through the properties
of their quasi ideals in [8]. We characterize the semirings through the properties
of the m-quasi ideals in the theorems 4.2 and 4.3 given below with the courtesy to
Otto Steinfeld.

Theorem 4.2. The following conditions for a semiring A are equivalent:

(1) A is m-regular with identity e,
(2) For every m- right ideal R and m-left ideal L, RL = R ∩ L,
(3) For every m-right ideal R and m-left ideal L,

(a) R2 = R,
(b) L2 = L,
(c) RL is a Quasi-ideal of A,

(4) The set of m-quasi ideals of A is a regular(multiplicative) semigroup,
(5) Every m-quasi ideal Q has the form QAmQ = Q.

Proof. (1) ⇒ (2): Let R and L be the m-right and the m-left ideals of A
respectively, then RL ⊆ A.e.e...eL ⊆ AmL ⊆ L. That is, RL ⊆ L. Similarly,
RL ⊆ R. Thus RL ⊆ R ∩ L. For the reverse inclusion, let x ∈ R ∩ L, then x ∈ A
and as A is m-regular, so for some y ∈ Am, we have x = xyx = (xy)x ∈ RL,
because R is m-right ideal . Thus R ∩ L = RL.

(2) ⇒ (3): Let RL = R ∩ L, then by Corollary 3.2, RL is an m-quasi ideal of
A. Now, if A is a semiring, then the m-right ideal generated by R is R+AmR, so
by (2), we have

R = R ∩ (R+AmR) = R(R+AmR) = R2 +RAmR = R2 +RR ⊆ R2 +R2 ⊆ R2.

i.e., R ⊆ R2, i.e., R2 = R. Similarly, we can prove that L2 = L.
(3) ⇒ (4): Suppose that (3) holds and let K be the set of m-quasi ideals of A,

then Q+AmQ is the m-left ideal of A generated by Q. So by (3), we have
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Q ⊆ Q+AmQ = (Q+AmQ)2 = (Q+AmQ)(Q+AmQ)

= Q2 +QAmQ+AmQQ+AmQAmQ ⊆ Ae.e...Q+Am+1Q+Am+1Q+A2m+1Q

⊆ AmQ+Am+1Q+Am+1Q+A2m+1Q ⊆ AmQ i.e., Q ⊆ AmQ.

In a similar way, we can prove that Q ⊆ QAm. So, Q ⊆ AmQ ∩QAm. Since Q is
m-quasi ideal, AmQ ∩QAm ⊆ Q i.e.,

(4.1) AmQ ∩QAm = Q

Now using 3(c) and Equation (4.1), we get

(4.2) AmRL ∩RLAm = RL

for every m-right ideal R and m-left ideal L of A. Now, we shall prove that the
product Q1Q2 of two m-quasi ideals Q1 and Q2 is an m-quasi ideal of A. By
properties 3(a) and 3(b), we have

AmQ1Q2 = (AmQ1Q2)(A
mQ1Q2) = (AmQ1Q2)(A

mAmQ1Q2)

and so Q1Q2A
m = (Q1Q2A

mAm)(Q1Q2A
m). Thus, the Equation (4.2) gives

(Q1Q2A
m) ∩ (AmQ1Q2) =

(Q1Q2A
m)(AmQ1Q2)A

m ∩Am(Q1Q2A
m)(AmQ1Q2) =

(Q1Q2A
m)(AmQ1Q2) ⊆ Q1(Q2A

mQ2) ⊆ Q1Q2.

i.e., (Q1Q2)A
m ∩ Am(Q1Q2) ⊆ Q1Q2. i.e., Q1Q2 is an m-quasi ideal of A. Since

the multiplication defined in K is associative, so K is a semigroup.
Finally, we shall show that K is a regular semigroup. If Q is an arbitrary

m-quasi ideal of A, then the properties 3(a), 3(b) and the relations (4.1) and (4.2)
imply that

Q = QAm ∩AmQ = (QAm.AmQ)Am ∩Am(QAm.AmQ) = QAm.AmQ =
QAmQ ⊆ Q.

Hence Q = QAmQ. This means that K is a regular semigroup.
(4) ⇒ (5): Let Q be an m-quasi ideal of A, then by (4) above, we can find an

m-quasi ideal X of A so that

Q = QXmQ ⊆ QAmQ ⊆ AmQ ∩QAm ⊆ Q,

i.e., Q = QAmQ.
(5) ⇒ (1): Let a ∈ A and < a >l and < a >r be the principal m-left ideal

and the principal m-right ideal of A generated by a, then by Proposition 3.2,
< a >l ∩ < a >r is an m-quasi ideal of A. So by (5), we have < a >l ∩ <
a >r= (< a >l ∩ < a >r)A

m(< a >r ∩ < a >r) ⊆< a >r Am < a >l. Since
a ∈< a >r ∩ < a >l, it follows that a ∈< a >r Am < a >l. But < a >r Am = aAm

and Am < a >l= Ama, therefore a ∈ aAm < a >l= aAma i.e., a ∈ aAma i.e., A is
m-regular. �

Theorem 4.3. Let A be a semiring, then the following assertions hold:

(1) Every m-quasi ideal Q of A can be written in the form Q = R ∩ L = RL,
where R is the m-right and L is the m-left ideal,
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(2) For an m-quasi ideal Q of A, then Q2 = Q3,
(3) Every m-bi ideal of A is its m-quasi ideal,
(4) Every m-bi ideal of any two-sided ideal of A is an m-quasi ideal of A.

Proof. (1) Since Q is an m-quasi ideal of a semiring A, therefore

R =< Q >r= Q+QAm = QAm and L =< Q >l= Q+AmQ = AQ.

Obviously

Q ⊆ R ∩ L = QAm ∩AmQ ⊆ Q

i.e., Q = R∩L. But A is a regular semiring, therefore Q = R∩L = RL by Theorem
4.2.

(2) Q3 ⊆ Q2 always holds, we have to show that Q2 ⊆ Q3. By Theorem 4.2,
Q2 is an m-quasi ideal of A. Furthermore,

Q2 = Q2AmQ2 = QQAmQQ ⊆ QQQ = Q3

i.e., Q2 ⊆ Q3.
(3) Let B be an m-bi ideal of A, then AmB is m-left ideal and BAm is an

m-right ideal of A. By Theorem 4.2, we have,

BAm ∩AmB = BAmAmB = B(A2)mB ⊆ BAmB ⊆ B

i.e., BAm ∩AmB ⊆ B i.e., B is an m-quasi ideal of A.
(4) Finally, let C be two-sided ideal of A, and B be an m-bi ideal of C. Then

obviously C is a regular subsemiring of A. By theorem (3), B is m-quasi ideal of
C. Now BAmB ⊆ BAmC and BAmB ⊆ CAmB, so

BAmB ⊆ BAmC ∩ CAmB ⊆ BC ∩ CB ⊆ B

i.e., BAmB ⊆ B i.e., B is an m-bi ideal of A. Again by (3), B is an m-quasi ideal
of A. �

5. Conclusion

We have reviewed the ideas of m-left and m-right ideals in semirings. Then,
we have introduced the idea of the m-quasi ideals in the semirings theory; of which
the already defined m-bi ideals are the generalized forms. We have studied the
important properties of m-quasi ideals from algebraic point of view, and also in
comparison with the m-left, m-right ideals and m-bi ideals. Along with the con-
cept of m-quasi ideals, we have also introduced the new idea of m-regular semirings.
With the help of these two new concepts, new dimensions of studies of semirings
have been discovered. These new concepts will have more applications in discover-
ing the hidden properties of semirings.
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