BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Bull. Int. Math. Virtual Inst., Vol. 10(1)(2020), 59-67 DOI: 10.7251/BIMVI2001059R

Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

ON #g#-CLOSED SETS IN IDEAL TOPOLOGICAL SPACES

Ilangovan Rajasekaran, Ochanan Nethaji and

Rajendran Premkumar

ABSTRACT. In this paper, we introduce the notions of #g#-closed sets and $I_{\#g\#}$ -closed sets. Characterizations and properties of $I_{\#g\#}$ -closed sets and $I_{\#g\#}$ -open sets are given. A characterization of normal spaces is given in terms of $I_{\#g\#}$ -open sets.

1. Introduction

Levine [6] introduced generalized closed sets [briefly g-closed] and studied their basic properties. Veera Kumar [15] introduced $g^{\#}$ -closed sets in topological spaces and studied their properties.

The aim of this paper, we introduce the notion of #g#-closed sets and $I_{\#g\#}$ -closed sets. Characterizations and properties of $I_{\#g\#}$ -closed sets and $I_{\#g\#}$ -open sets are given. A characterization of normal spaces is given in terms of $I_{\#g\#}$ -open sets.

2. Preliminaries

DEFINITION 2.1. A subset A of a space (X, τ) is said to be

- (1) an α -open set [11] if $A \subseteq int(cl(int(A)))$;
- (2) regular open set [13] if A = int(cl(A));
- (3) semi-open set [5] if $A \subseteq cl(int(A))$;
- (4) preopen set [8] if $A \subseteq int(cl(A))$).

²⁰¹⁰ Mathematics Subject Classification. Primary 54A05; Secondary 54D15, 54D30. Key words and phrases. $g^{\#}$ -closed sets, ${}^{\#}g^{\#}$ -closed sets and $I_{\#}{}_{g}{}^{\#}$ -closed sets.

The complements of the above mentioned sets are called their respective closed sets.

The family of all α -open sets in (X, τ) , denoted by τ^{α} , is a topology on X finer than τ . The closure of A in (X, τ^{α}) is denoted by $cl_{\alpha}(A)$.

DEFINITION 2.2. A subset A of a space (X, τ) is said to be

- (1) g-closed [6] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open. The complement of q-closed set is called q-open set;
- (2) αg -closed [7] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open. The complement of αg -closed set is called αg -open set;
- (3) $g^{\#}$ -closed [15] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is αg -open. The complement of $g^{\#}$ -closed set is called $g^{\#}$ -open set.

An ideal I on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies

- (1) $A \in I$ and $B \subseteq A \Rightarrow B \in I$ and
- (2) $A \in I$ and $B \in I \Rightarrow A \cup B \in I$ [4].

Given a topological space (X, τ) with an ideal I on X and if $\wp(X)$ is the set of all subsets of X, a set operator $(.)^* : \wp(X) \to \wp(X)$, called a local function [4] of A with respect to τ and I is defined as follows: for $A \subseteq X$, $A^*(I, \tau) = \{x \in X \mid U \cap A \notin I \text{ for every } U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau \mid x \in U\}$.

We will make use of the basic facts about the local functions ([3], Theorem 2.3) without mentioning it explicitly.

A Kuratowski closure operator $cl^*(.)$ for a topology $\tau^*(I,\tau)$, called the \star -topology, finer than τ is defined by $cl^*(A) = A \cup A^*(I,\tau)$ [14]. When there is no chance for confusion, we will simply write A^* for $A^*(I,\tau)$ and τ^* for $\tau^*(I,\tau)$. If I is an ideal on X, then (X,τ,I) is called an ideal space or an ideal topological space. \mathcal{N} is the ideal of all nowhere dense subsets in (X,τ) .

DEFINITION 2.3. A subset A of an ideal space (X, τ, I) is called

- (1) \star -closed set [3] if $A^{\star} \subseteq A$ (or) $A = cl^{\star}(A)$;
- (2) \star -dense in itself [2] if $A \subseteq A^{\star}$.
- (3) I_g -closed [1] if $A^* \subseteq U$ whenever $A \subseteq U$ and U is open.

By a space, we always mean a topological space (X, τ) with no separation properties assumed. If $A \subseteq X$, cl(A) and int(A) will, respectively, denote the closure and interior of A in (X, τ) and $int^*(A)$ will denote the interior of A in (X, τ^*) .

DEFINITION 2.4. An ideal I is said to be

- (1) codense [12] or τ -boundary [10] if $\tau \cap I = \{\phi\}$,
- (2) completely codense [12] if $PO(X) \cap I = \{\phi\}$, where PO(X) is the family of all preopen sets in (X, τ) .

LEMMA 2.1 ([12]). Every completely codense ideal is codense but not conversely.

LEMMA 2.2 ([12]). Let (X, τ, I) be an ideal topological space and $A \subseteq X$. If $A \subseteq A^*$, then $A^* = cl(A^*) = cl(A) = cl^*(A)$.

LEMMA 2.3 ([12]). Let (X, τ, I) be an ideal topological space. Then I is codense if and only if $G \subseteq G^*$ for every semi-open set G in X.

LEMMA 2.4 ([12]). Let (X, τ, I) be an ideal topological space. If I is completely codense, then $\tau^* \subseteq \tau^{\alpha}$.

LEMMA 2.5 ([3]). Let (X, τ, I) be an ideal topological space and A, B subsets of X. Then the following properties hold:

(1)
$$A \subseteq B \Rightarrow A^* \subseteq B^*$$
,

(2) $A^{\star} = cl(A^{\star}) \subseteq cl(A),$

$$(3) \ (A^{\star})^{\star} \subseteq A^{\star},$$

 $(4) \quad (A \cup B)^* = A^* \cup B^*,$

(5)
$$(A \cap B)^* \subseteq A^* \cap B^*$$
.

REMARK 2.1 ([15]). For a subset of a topological space, the following properties hold:

(1) every closed set is $g^{\#}$ -closed but not conversely.

(2) every $g^{\#}$ -closed set is g-closed but not conversely.

LEMMA 2.6 ([9]). If (X, τ, I) is a T_I -space and A is an I_g -closed set, then A is a \star -closed set.

LEMMA 2.7 ([1]). Every g-closed set is I_g -closed but not conversely.

3. On ${}^{\#}g^{\#}$ -closed sets and $I_{\#g^{\#}}$ -closed sets

DEFINITION 3.1. A subset A of a topological space (X, τ) is called : ${}^{\#}g^{\#}$ -closed if $A \subseteq U, U \in g^{\#}$ -open $\implies cl(A) \subseteq U$. The complement of ${}^{\#}g^{\#}$ -closed set is called ${}^{\#}g^{\#}$ -open set.

REMARK 3.1. In a space (X, τ, I) , every closed set is ${}^{\#}g^{\#}$ -closed but not conversely.

EXAMPLE 3.1. Let $X = \{e_1, e_2, e_3\}$ be a set with the topology $\tau = \{\phi, X, \{e_1\}, \{e_1, e_2\}\}$. Then $\{e_1, e_3\}$ is #g#-closed set but not closed set.

THEOREM 3.1. In a space (X, τ, I) , every #g#-closed set is g-closed but not conversely.

PROOF. It follows from the fact that every open set is $g^{\#}$ -open.

DEFINITION 3.2. A subset A of an ideal space (X, τ, I) is called :

 $I_{\#q^{\#}}$ -closed if $A \subseteq U, U \in q^{\#}$ -open $\implies A^{\star} \subseteq U$.

The complement of $I_{\#g\#}$ -closed set is called $I_{\#g\#}$ -open set.

REMARK 3.2. If (X, τ, I) is any ideal space, then every $I_{\#g^{\#}}$ -closed set is I_g -closed but not conversely.

PROOF. It follows from the fact that every open set is $g^{\#}$ -open.

The following Theorem gives characterizations of $I_{\#_q\#}$ -closed sets.

THEOREM 3.2. If (X, τ, I) is any ideal space and $A \subseteq X$, then the following are equivalent.

(1) A is $I_{\#_q\#}$ -closed.

(2) $cl^{\star}(A) \subseteq U$ whenever $A \subseteq U$ and U is $g^{\#}$ -open in X.

(3) For all $x \in cl^{\star}(A)$, $g^{\#}cl(\{x\}) \cap A \neq \phi$.

(4) $cl^{\star}(A) - A$ contains no nonempty $g^{\#}$ -closed set.

(5) $A^* - A$ contains no nonempty $g^{\#}$ -closed set.

PROOF. (1) \Rightarrow (2) If A is $I_{\#g^{\#}}$ -closed, then $A^{\star} \subseteq U$ whenever $A \subseteq U$ and U is $g^{\#}$ -open in X and so $cl^{\star}(A) = A \cup A^{\star} \subseteq U$ whenever $A \subseteq U$ and U is $g^{\#}$ -open in X. This proves (2).

 $(2) \Rightarrow (3)$ Suppose $x \in cl^{\star}(A)$. If $g^{\#}cl(\{x\}) \cap A = \phi$, then $A \subseteq X - g^{\#}cl(\{x\})$. By $(2), cl^{\star}(A) \subseteq X - g^{\#}cl(\{x\})$, a contradiction, since $x \in cl^{\star}(A)$.

 $(3) \Rightarrow (4)$ Suppose $F \subseteq cl^*(A) - A$, F is $g^{\#}$ -closed and $x \in F$. Since $F \subseteq X - A$, then $A \subseteq X - F$, $g^{\#}cl(\{x\}) \cap A = \phi$. Since $x \in cl^*(A)$ by (3), $g^{\#}cl(\{x\}) \cap A \neq \phi$. Therefore $cl^*(A) - A$ contains no nonempty $g^{\#}$ -closed set.

 $(4) \Rightarrow (5) \text{ Since } cl^{\star}(A) - A = (A \cup A^{\star}) - A = (A \cup A^{\star}) \cap A^{c} = (A \cap A^{c}) \cup (A^{\star} \cap A^{c}) = A^{\star} \cap A^{c} = A^{\star} - A, \text{ therefore } A^{\star} - A \text{ contains no nonempty } g^{\#}\text{-closed set.}$

 $(5) \Rightarrow (1)$ Let $A \subseteq U$ where U is $g^{\#}$ -open set. Therefore $X - U \subseteq X - A$ and so $A^{\star} \cap (X - U) \subseteq A^{\star} \cap (X - A) = A^{\star} - A$. Therefore $A^{\star} \cap (X - U) \subseteq A^{\star} - A$. Since A^{\star} is always closed set, so $A^{\star} \cap (X - U)$ is a $g^{\#}$ -closed set contained in $A^{\star} - A$. Therefore $A^{\star} \cap (X - U) = \phi$ and hence $A^{\star} \subseteq U$. Therefore A is $I_{\#g^{\#}}$ -closed. \Box

THEOREM 3.3. In a space (X, τ, I) , every \star -closed set is $I_{\#g^{\#}}$ -closed but not conversely.

PROOF. Let A be a *-closed, then $A^* \subseteq A$. Let $A \subseteq U$ where U is $g^{\#}$ -open. Hence $A^* \subseteq U$ whenever $A \subseteq U$ and U is $g^{\#}$ -open. Therefore A is $I_{\#g^{\#}}$ -closed. \Box

THEOREM 3.4. Let (X, τ, I) be an ideal space. For every $A \in I$, A is $I_{\#g^{\#}}$ -closed.

PROOF. Let $A \subseteq U$ where U is $g^{\#}$ -open set. Since $A^{\star} = \phi$ for every $A \in I$, then $d^{\star}(A) = A \cup A^{\star} = A \subseteq U$. Therefore, by Theorem 3.2, A is $I_{\#g^{\#}}$ -closed. \Box

THEOREM 3.5. If (X, τ, I) is an ideal space, then A^* is always $I_{\#_g \#}$ -closed for every subset A of X.

PROOF. Let $A^* \subseteq U$ where U is $g^{\#}$ -open. Since $(A^*)^* \subseteq A^*$ [3], we have $(A^*)^* \subseteq U$ whenever $A^* \subseteq U$ and U is $g^{\#}$ -open. Hence A^* is $I_{\#g^{\#}}$ -closed. \Box

THEOREM 3.6. Let (X, τ, I) be an ideal space. Then every $I_{\#g^{\#}}$ -closed, $g^{\#}$ -open set is \star -closed set.

PROOF. Since A is $I_{\#g\#}$ -closed and $g^{\#}$ -open, then $A^* \subseteq A$ whenever $A \subseteq A$ and A is $g^{\#}$ -open. Hence A is *-closed.

COROLLARY 3.1. If (X, τ, I) is a T_I ideal space and A is an $I_{\#g^{\#}}$ -closed set, then A is \star -closed set.

COROLLARY 3.2. Let (X, τ, I) be an ideal space and A be an $I_{\#g^{\#}}$ -closed set. Then the following are equivalent.

(1) A is a \star -closed set.

(2) $cl^{\star}(A) - A$ is a $g^{\#}$ -closed set.

(3) $A^* - A$ is a $g^{\#}$ -closed set.

PROOF. (1) \Rightarrow (2) If A is *-closed, then $A^* \subseteq A$ and so $cl^*(A) - A = (A \cup A^*) - A = \phi$. Hence $cl^*(A) - A$ is $g^{\#}$ -closed set.

(2) \Rightarrow (3) Since $cl^{\star}(A) - A = A^{\star} - A$ and so $A^{\star} - A$ is $g^{\#}$ -closed set.

(3) \Rightarrow (1) If $A^* - A$ is a $g^{\#}$ -closed set, since A is $I_{\#g^{\#}}$ -closed set, by Theorem 3.2, $A^* - A = \phi$ and so A is *-closed.

THEOREM 3.7. Let (X, τ, I) be an ideal space. Then every #g#-closed set is an $I_{\#g\#}$ -closed set but not conversely.

PROOF. Let A be a #g#-closed set. Then $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g#-open. We have $cl^*(A) \subseteq cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g#-open. Hence A is $I_{\#g\#}$ -closed.

THEOREM 3.8. If (X, τ, I) is an ideal space and A is a \star -dense in itself, $I_{\#g\#}$ closed subset of X, then A is $\#g^{\#}$ -closed.

PROOF. Suppose A is a \star -dense in itself, $I_{\#g\#}$ -closed subset of X. Let $A \subseteq U$ where U is $g^{\#}$ -open. Then by Theorem 3.2(2), $cl^{\star}(A) \subseteq U$ whenever $A \subseteq U$ and U is $g^{\#}$ -open. Since A is \star -dense in itself, by Lemma 2.2, $cl(A) = cl^{\star}(A)$. Therefore $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $g^{\#}$ -open. Hence A is $\#g^{\#}$ -closed. \Box

COROLLARY 3.3. If (X, τ, I) is any ideal space where $I = \{\phi\}$, then A is $I_{\#g^{\#}}$ -closed if and only if A is $\#g^{\#}$ -closed.

PROOF. From the fact that for $I = \{\phi\}$, $A^* = cl(A) \supseteq A$. Therefore A is *-dense in itself. Since A is $I_{\#g\#}$ -closed, by Theorem 3.8, A is #g#-closed. Conversely, by Theorem 3.7, every #g#-closed set is $I_{\#g\#}$ -closed set. \Box

COROLLARY 3.4. If (X, τ, I) is any ideal space where I is codense and A is a semi-open, $I_{\#_{q}\#}$ -closed subset of X, then A is $\#_{g}\#$ -closed.

PROOF. By Lemma 2.3, A is \star -dense in itself. By Theorem 3.8, A is #g#-closed.

REMARK 3.3. We have the following implications for the subsets stated above.

THEOREM 3.9. Let (X, τ, I) be an ideal space and $A \subseteq X$. Then A is $I_{\#g^{\#}}$ closed if and only if A = F - N where F is \star -closed and \mathcal{N} contains no nonempty $g^{\#}$ -closed set. PROOF. If A is $I_{\#g\#}$ -closed, then by Theorem 3.2 (5), $\mathcal{N} = A^* - A$ contains no nonempty $g^{\#}$ -closed set. If $F = cl^*(A)$, then F is \star -closed such that $F - N = (A \cup A^*) - (A^* - A) = (A \cup A^*) \cap (A^* \cap A^c)^c = (A \cup A^*) \cap ((A^*)^c \cup A) = (A \cup A^*) \cap (A \cup (A^*)^c) = A \cup (A^* \cap (A^*)^c) = A$.

Conversely, suppose $A = F - \mathcal{N}$ where F is \star -closed and \mathcal{N} contains no nonempty $g^{\#}$ -closed set. Let U be a $g^{\#}$ -open set such that $A \subseteq U$. Then $F - \mathcal{N} \subseteq U$ and $F \cap (X - U) \subseteq \mathcal{N}$. Now $A \subseteq F$ and $F^{\star} \subseteq F$ then $A^{\star} \subseteq F^{\star}$ and so $A^{\star} \cap (X - U) \subseteq F^{\star} \cap (X - U) \subseteq F \cap (X - U) \subseteq \mathcal{N}$. By hypothesis, since $A^{\star} \cap (X - U)$ is $g^{\#}$ -closed, $A^{\star} \cap (X - U) = \phi$ and so $A^{\star} \subseteq$ U. Hence A is $I_{\#g^{\#}}$ -closed.

THEOREM 3.10. Let (X, τ, I) be an ideal space and $A \subseteq X$. If $A \subseteq B \subseteq A^*$, then $A^* = B^*$ and B is *-dense in itself.

PROOF. Since $A \subseteq B$, then $A^* \subseteq B^*$ and since $B \subseteq A^*$, then $B^* \subseteq (A^*)^* \subseteq A^*$. Therefore $A^* = B^*$ and $B \subseteq A^* \subseteq B^*$. Hence proved.

THEOREM 3.11. Let (X, τ, I) be an ideal space. If A and B are subsets of X such that $A \subseteq B \subseteq cl^*(A)$ and A is $I_{\#_q\#}$ -closed, then B is $I_{\#_q\#}$ -closed.

PROOF. Since A is $I_{\#g^{\#}}$ -closed, then by Theorem 3.2(4), $cl^{*}(A) - A$ contains no nonempty $g^{\#}$ -closed set. Since $cl^{*}(B) - B \subseteq cl^{*}(A) - A$ and so $cl^{*}(B) - B$ contains no nonempty $g^{\#}$ -closed set. Hence B is $I_{\#g^{\#}}$ -closed. \Box

COROLLARY 3.5. Let (X, τ, I) be an ideal space. If A and B are subsets of X such that $A \subseteq B \subseteq A^*$ and A is $I_{\#g^{\#}}$ -closed, then A and B are $\#g^{\#}$ -closed sets.

PROOF. Let A and B be subsets of X such that $A \subseteq B \subseteq A^* \Rightarrow A \subseteq B \subseteq A^* \subseteq Cl^*(A)$ and A is $I_{\#g\#}$ -closed. By the above Theorem, B is $I_{\#g\#}$ -closed. Since $A \subseteq B \subseteq A^*$, then $A^* = B^*$ and so A and B are *-dense in itself. By Theorem 3.8, A and B are #g#-closed.

The following Theorem gives a characterization of $I_{\#_{q}\#}$ -open sets.

THEOREM 3.12. Let (X, τ, I) be an ideal space and $A \subseteq X$. Then A is $I_{\#g^{\#}}$ open if and only if $F \subseteq int^{*}(A)$ whenever F is $g^{\#}$ -closed and $F \subseteq A$.

PROOF. Suppose A is $I_{\#g\#}$ -open. If F is $g^{\#}$ -closed and $F \subseteq A$, then $X - A \subseteq X - F$ and so $cl^{*}(X - A) \subseteq X - F$ by Theorem 3.2 (2). Therefore $F \subseteq X - cl^{*}(X - A) = int^{*}(A)$. Hence $F \subseteq int^{*}(A)$.

Conversely, suppose the condition holds. Let U be a $g^{\#}$ -open set such that $X - A \subseteq U$. Then $X - U \subseteq A$ and so $X - U \subseteq int^{*}(A)$. Therefore $cl^{*}(X - A) \subseteq U$. By Theorem 3.2 (2), X - A is $I_{\#g^{\#}}$ -closed. Hence A is $I_{\#g^{\#}}$ -open.

COROLLARY 3.6. Let (X, τ, I) be an ideal space and $A \subseteq X$. If A is $I_{\#_g \#}$ -open, then $F \subseteq int^*(A)$ whenever F is closed and $F \subseteq A$.

THEOREM 3.13. Let (X, τ, I) be an ideal space and $A \subseteq X$. If A is $I_{\#_g \#}$ -open and $int^*(A) \subseteq B \subseteq A$, then B is $I_{\#_g \#}$ -open.

PROOF. Since A is $I_{\#g\#}$ -open, then X - A is $I_{\#g\#}$ -closed. By Theorem 3.2 (4), $cl^{\star}(X-A) - (X-A)$ contains no nonempty $g^{\#}$ -closed set. Since $int^{\star}(A) \subseteq int^{\star}(B)$ which implies that $cl^{\star}(X-B) \subseteq cl^{\star}(X-A)$ and so $cl^{\star}(X-B) - (X-B) \subseteq cl^{\star}(X-A) - (X-A)$. Hence B is $I_{\#g\#}$ -open. \Box

The following Theorem gives a characterization of $I_{\#g^{\#}}$ -closed sets in terms of $I_{\#g^{\#}}$ -open sets.

THEOREM 3.14. Let (X, τ, I) be an ideal space and $A \subseteq X$. Then the following are equivalent.

(1) A is $I_{\#_g\#}$ -closed.

(2) $A \cup (X - A^*)$ is $I_{\#_q \#}$ -closed.

(3) $A^* - A$ is $I_{\#_g \#}$ -open.

PROOF. (1) \Rightarrow (2) Suppose A is $I_{\#g^{\#}}$ -closed. If U is any $g^{\#}$ -open set such that $A \cup (X - A^*) \subseteq U$, then $X - U \subseteq X - (A \cup (X - A^*)) = X \cap (A \cup (A^*)^c)^c = A^* \cap A^c = A^* - A$. Since A is $I_{\#g^{\#}}$ -closed, by Theorem 3.2 (5), it follows that $X - U = \phi$ and so X = U. Now $A \cup (X - A^*) \subseteq X$ and so $(A \cup (X - A^*))^* \subseteq X^* \subseteq X = U$. Hence $A \cup (X - A^*)$ is $I_{\#g^{\#}}$ -closed.

(2) \Rightarrow (1) Suppose $A \cup (X - A^*)$ is $I_{\#g^{\#}}$ -closed. If F is any $g^{\#}$ -closed set such that $F \subseteq A^* - A$, then $F \subseteq A^*$ and $F \nsubseteq A$. Hence $X - A^* \subseteq X - F$ and $A \subseteq X - F$. Therefore $A \cup (X - A^*) \subseteq A \cup (X - F) = X - F$ and X - F is $g^{\#}$ -open. Since $(A \cup (X - A^*))^* \subseteq X - F \Rightarrow A^* \cup (X - A^*)^* \subseteq X - F$ and so $A^* \subseteq X - F \Rightarrow F \subseteq X - A^*$. Since $F \subseteq A^*$, it follows that $F = \phi$. Hence A is $I_{\#g^{\#}}$ -closed.

 $(2) \Leftrightarrow (3) \text{ Since } X - (A^* - A) = X \cap (A^* \cap A^c)^c = X \cap ((A^*)^c \cup A) = (X \cap (A^*)^c) \cup (X \cap A) = A \cup (X - A^*), \text{ it is obvious.}$

THEOREM 3.15. Let (X, τ, I) be an ideal space. Then every subset of X is $I_{\#_{q^{\#}}}$ -closed if and only if every $g^{\#}$ -open set is \star -closed.

PROOF. Suppose every subset of X is $I_{\#g^{\#}}$ -closed. If $U \subseteq X$ is $g^{\#}$ -open, then U is $I_{\#g^{\#}}$ -closed and so $U^{\star} \subseteq U$. Hence U is \star -closed. Conversely, suppose that every $g^{\#}$ -open set is \star -closed. If U is $g^{\#}$ -open set such that $A \subseteq U \subseteq X$, then $A^{\star} \subseteq U^{\star} \subseteq U$ and so A is $I_{\#g^{\#}}$ -closed.

The following Theorem gives a characterization of normal spaces in terms of $I_{\#q^{\#}}$ -open sets.

THEOREM 3.16. Let (X, τ, I) be an ideal space where I is completely codense. Then the following are equivalent.

- (1) X is normal.
- (2) For any disjoint closed sets A and B, there exist disjoint $I_{\#_g\#}$ -open sets U and V such that $A \subseteq U$ and $B \subseteq V$.
- (3) For any closed set A and open set V containing A, there exists an $I_{\#_g\#}$ open set U such that $A \subseteq U \subseteq cl^*(U) \subseteq V$.

PROOF. (1) \Rightarrow (2) The proof follows from the fact that every open set is $I_{\#g\#}$ -open.

 $(2) \Rightarrow (3)$ Suppose A is closed and V is an open set containing A. Since A and X - V are disjoint closed sets, there exist disjoint $I_{\#g\#}$ -open sets U and W such that $A \subseteq U$ and $X - V \subseteq W$. Since X - V is $g^{\#}$ -closed and W is $I_{\#g\#}$ -open, $X - V \subseteq int^*(W)$ and so $X - int^*(W) \subseteq V$. Again $U \cap W = \phi \Rightarrow U \cap int^*(W) = \phi$ and so

$$U \subseteq X - int^{\star}(W) \Rightarrow cl^{\star}(U) \subseteq X - int^{\star}(W) \subseteq V.$$

U is the required $I_{\#_q \#}$ -open sets with $A \subseteq U \subseteq cl^*(U) \subseteq V$.

 $(3) \Rightarrow (1)$ Let A and B be two disjoint closed subsets of X. By hypothesis, there exists an $I_{\#g^{\#}}$ -open set U such that $A \subseteq U \subseteq cl^{*}(U) \subseteq X - B$. Since U is $I_{\#g^{\#}}$ -open, $A \subseteq int^{*}(U)$. Since I is completely codense, by Lemma 2.4, $\tau^{*} \subseteq \tau^{\alpha}$ and so $int^{*}(U)$ and $X - cl^{*}(U)$ are in τ^{α} . Hence

$$A \subseteq int^{\star}(U) \subseteq int(cl(int(int^{\star}(U)))) = G$$

and

$$B \subseteq X - cl^{\star}(U) \subseteq int(cl(int(X - cl^{\star}(U)))) = H.$$

G and H are the required disjoint open sets containing A and B respectively, which proves (1). $\hfill \Box$

References

- J. Dontchev, M. Ganster and T. Noiri. Unified operation approach of generalized closed sets via topological ideals. *Math. Japonica*, 49(3)(1999), 395–401.
- [2] E. Hayashi. Topologies defined by local properties. Math. Ann., 156(3)(1964), 205–215.
- [3] D. Janković and T. R. Hamlett. New topologies from old via ideals. Amer. Math. Monthly, 97(4)(1990), 295–310.
- [4] K. Kuratowski. Topology, Vol. 1. Academic Press, New York, 1966.
- [5] N. Levine. Semi-open sets and semi-continuity in topological spaces. Amer. Math. Monthly, 70(1)(1963), 36–41.
- [6] N. Levine. Generalized closed sets in topology. Rend. Circ. Mat. Palermo, 19(1)(1970), 89– 96.
- [7] H. Maki, R. Devi and K. Balachandran. Associated topologies of generalized α-closed sets and α-generalized closed sets. *Memoirs of the Faculty of Science, Kochi University. Series* A Mathematics, 15(1994), 51–63.
- [8] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb. On precontinuous and weak precontinuous mappings. Proc. Math. Phys. Soc. Egypt, 53(1982), 47–53.
- M. Navaneethakrishnan and J. P. Joseph. g-closed sets in ideal topological spaces. Acta Math. Hungar., 119(4)(2008), 365–371.
- [10] R. L. Newcomb. Topologies which are compact modulo an ideal. Ph.D. Dissertation, University of California, Santa Barbara, California, 1967.
- [11] O. Njåstad. On some classes of nearly open sets. Pacific J. Math., 15(3)(1965), 961–970.
- [12] V. R. Devi, D. Sivaraj and T. T. Chelvam. Codense and completely codense ideals. Acta Math. Hungar., 108(3)(2005), 197–205.
- [13] M. H. Stone. Applications of the theory of Boolean rings to general topology. Trans. Amer. Math. Soc., 41(3)(1937), 375–481.
- [14] R. Vaidyanathaswamy. The localization theory in set topology. Proc. Indian Acad. Sci., 20(1945), 51–61.
- [15] M. K. R. S. Veerakumar. g[#]-closed sets in topological spaces. Memoirs of the Faculty of Science, Kochi University. Series A Mathematics, 24(2003), 1–13.

Receibed by editors 10.04.2019; Revised version 11.06.2019; Available online 17.06.2019.

Research Scholar, Department of Mathematics, School of Mathematics, Madurai Kamaraj University, Madurai, Tamil Nadu, India. *E-mail address*: jionetha@yahoo.com.

Department of Mathematics, Senthamarai College of Arts and Science, Vadapalanji, Madurai - 21, Tamil Nadu, India.

E-mail address: prem.rpk270gmail.com.