
BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE
ISSN (p) 2303-4874, ISSN (o) 2303-4955
www.imvibl.org /JOURNALS / BULLETIN
Bull. Int. Math. Virtual Inst., Vol. 10(1)(2020), 59-67

DOI: 10.7251/BIMVI2001059R

Former
BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA

ISSN 0354-5792 (o), ISSN 1986-521X (p)

ON #g#-CLOSED SETS IN

IDEAL TOPOLOGICAL SPACES

Ilangovan Rajasekaran, Ochanan Nethaji and

Rajendran Premkumar

Abstract. In this paper, we introduce the notions of #g#-closed sets and
I#g# -closed sets. Characterizations and properties of I#g# -closed sets and

I#g# -open sets are given. A characterization of normal spaces is given in

terms of I#g# -open sets.

1. Introduction

Levine [6] introduced generalized closed sets [briefly g-closed] and studied their
basic properties. Veera Kumar [15] introduced g#-closed sets in topological spaces
and studied their properties.

The aim of this paper, we introduce the notion of #g#-closed sets and I#g#-
closed sets. Characterizations and properties of I#g#-closed sets and I#g#-open
sets are given. A characterization of normal spaces is given in terms of I#g#-open
sets.

2. Preliminaries

Definition 2.1. A subset A of a space (X, τ) is said to be

(1) an α-open set [11] if A ⊆ int(cl(int(A)));
(2) regular open set [13] if A = int(cl(A));
(3) semi-open set [5] if A ⊆ cl(int(A));
(4) preopen set [8] if A ⊆ int(cl(A))).
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The complements of the above mentioned sets are called their respective closed
sets.

The family of all α-open sets in (X, τ), denoted by τα, is a topology on X finer
than τ . The closure of A in (X, τα) is denoted by clα(A).

Definition 2.2. A subset A of a space (X, τ) is said to be

(1) g-closed [6] if cl(A) ⊆ U whenever A ⊆ U and U is open.
The complement of g-closed set is called g-open set;

(2) αg-closed [7] if αcl(A) ⊆ U whenever A ⊆ U and U is open.
The complement of αg-closed set is called αg-open set;

(3) g#-closed [15] if cl(A) ⊆ U whenever A ⊆ U and U is αg-open.
The complement of g#-closed set is called g#-open set.

An ideal I on a topological space (X, τ) is a nonempty collection of subsets of
X which satisfies

(1) A ∈ I and B ⊆ A ⇒ B ∈ I and
(2) A ∈ I and B ∈ I ⇒ A ∪B ∈ I [4].

Given a topological space (X, τ) with an ideal I on X and if ℘(X) is the set of all
subsets of X, a set operator (.)⋆ : ℘(X) → ℘(X), called a local function [4] of A with
respect to τ and I is defined as follows: for A ⊆ X, A⋆(I, τ) = {x ∈ X | U ∩A /∈ I
for every U ∈ τ(x)} where τ(x) = {U ∈ τ | x ∈ U}.

We will make use of the basic facts about the local functions ([3], Theorem 2.3)
without mentioning it explicitly.

A Kuratowski closure operator cl⋆(.) for a topology τ⋆(I, τ), called the ⋆-
topology, finer than τ is defined by cl⋆(A) = A ∪ A⋆(I, τ) [14]. When there is
no chance for confusion, we will simply write A⋆ for A⋆(I, τ) and τ⋆ for τ⋆(I, τ).
If I is an ideal on X, then (X, τ, I) is called an ideal space or an ideal topological
space. N is the ideal of all nowhere dense subsets in (X, τ).

Definition 2.3. A subset A of an ideal space (X, τ, I) is called

(1) ⋆-closed set [3] if A⋆ ⊆ A (or) A = cl⋆(A);
(2) ⋆-dense in itself [2] if A ⊆ A⋆.
(3) Ig-closed [1] if A⋆ ⊆ U whenever A ⊆ U and U is open.

By a space, we always mean a topological space (X, τ) with no separation
properties assumed. If A ⊆ X, cl(A) and int(A) will, respectively, denote the
closure and interior of A in (X, τ) and int⋆(A) will denote the interior of A in (X,
τ⋆).

Definition 2.4. An ideal I is said to be

(1) codense [12] or τ -boundary [10] if τ ∩ I = {ϕ},
(2) completely codense [12] if PO(X) ∩ I = {ϕ}, where PO(X) is the family

of all preopen sets in (X, τ).

Lemma 2.1 ([12]). Every completely codense ideal is codense but not conversely.

Lemma 2.2 ([12]). Let (X, τ, I) be an ideal topological space and A ⊆ X. If
A ⊆ A⋆, then A⋆ = cl(A⋆) = cl(A) = cl⋆(A).
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Lemma 2.3 ([12]). Let (X, τ, I) be an ideal topological space. Then I is codense
if and only if G ⊆ G⋆ for every semi-open set G in X.

Lemma 2.4 ([12]). Let (X, τ, I) be an ideal topological space. If I is completely
codense, then τ⋆ ⊆ τα.

Lemma 2.5 ([3]). Let (X, τ, I) be an ideal topological space and A, B subsets
of X. Then the following properties hold:

(1) A ⊆ B ⇒ A⋆ ⊆ B⋆,
(2) A⋆ = cl(A⋆) ⊆ cl(A),
(3) (A⋆)⋆ ⊆ A⋆,
(4) (A ∪B)⋆ = A⋆ ∪B⋆,
(5) (A ∩B)⋆ ⊆ A⋆ ∩B⋆.

Remark 2.1 ([15]). For a subset of a topological space, the following properties
hold:

(1) every closed set is g#-closed but not conversely.
(2) every g#-closed set is g-closed but not conversely.

Lemma 2.6 ([9]). If (X, τ , I) is a TI-space and A is an Ig-closed set, then A
is a ⋆-closed set.

Lemma 2.7 ([1]). Every g-closed set is Ig-closed but not conversely.

3. On #g#-closed sets and I#g#-closed sets

Definition 3.1. A subset A of a topological space (X, τ) is called :
#g#-closed if A ⊆ U, U ∈ g#-open =⇒ cl(A) ⊆ U .

The complement of #g#-closed set is called #g#-open set.

Remark 3.1. In a space (X, τ, I), every closed set is #g#-closed but not con-
versely.

Example 3.1. Let X = {e1, e2, e3} be a set with the topology τ = {ϕ, X,
{e1}, {e1, e2}}. Then {e1, e3} is #g#-closed set but not closed set.

Theorem 3.1. In a space (X, τ, I), every #g#-closed set is g-closed but not
conversely.

Proof. It follows from the fact that every open set is g#-open. �

Definition 3.2. A subset A of an ideal space (X, τ, I) is called :
I#g#-closed if A ⊆ U, U ∈ g#-open =⇒ A⋆ ⊆ U .

The complement of I#g# -closed set is called I#g# -open set.

Remark 3.2. If (X, τ, I) is any ideal space, then every I#g#-closed set is Ig-
closed but not conversely.

Proof. It follows from the fact that every open set is g#-open. �

The following Theorem gives characterizations of I#g#-closed sets.
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Theorem 3.2. If (X, τ, I) is any ideal space and A ⊆ X, then the following
are equivalent.

(1) A is I#g#-closed.

(2) cl⋆(A) ⊆ U whenever A ⊆ U and U is g#-open in X.
(3) For all x ∈ cl⋆(A), g#cl({x}) ∩A ̸= ϕ.
(4) cl⋆(A)−A contains no nonempty g#-closed set.
(5) A⋆ −A contains no nonempty g#-closed set.

Proof. (1) ⇒ (2) If A is I#g#-closed, then A⋆ ⊆ U whenever A ⊆ U and U is

g#-open in X and so cl⋆(A) = A ∪ A⋆ ⊆ U whenever A ⊆ U and U is g#-open in
X. This proves (2).

(2) ⇒ (3) Suppose x ∈ cl⋆(A). If g#cl({x})∩A = ϕ, then A ⊆ X − g#cl({x}).
By (2), cl⋆(A) ⊆ X − g#cl({x}), a contradiction, since x ∈ cl⋆(A).

(3) ⇒ (4) Suppose F ⊆ cl⋆(A)−A, F is g#-closed and x ∈ F . Since F ⊆ X−A,
then A ⊆ X − F , g#cl({x}) ∩A = ϕ. Since x ∈ cl⋆(A) by (3), g#cl({x}) ∩A ̸= ϕ.
Therefore cl⋆(A)−A contains no nonempty g#-closed set.

(4) ⇒ (5) Since cl⋆(A)−A = (A∪A⋆)−A = (A∪A⋆)∩Ac = (A∩Ac)∪(A⋆∩Ac) =
A⋆ ∩Ac = A⋆ −A, therefore A⋆ −A contains no nonempty g#-closed set.

(5) ⇒ (1) Let A ⊆ U where U is g#-open set. Therefore X − U ⊆ X − A and
so A⋆∩(X−U) ⊆ A⋆∩(X−A) = A⋆−A. Therefore A⋆∩(X−U) ⊆ A⋆−A. Since
A⋆ is always closed set, so A⋆ ∩ (X − U) is a g#-closed set contained in A⋆ − A.
Therefore A⋆ ∩ (X − U) = ϕ and hence A⋆ ⊆ U . Therefore A is I#g#-closed. �

Theorem 3.3. In a space (X, τ, I), every ⋆-closed set is I#g#-closed but not
conversely.

Proof. Let A be a ⋆-closed, then A⋆ ⊆ A. Let A ⊆ U where U is g#-open.
Hence A⋆ ⊆ U whenever A ⊆ U and U is g#-open. Therefore A is I#g#-closed. �

Theorem 3.4. Let (X, τ, I) be an ideal space. For every A ∈ I, A is I#g#-
closed.

Proof. Let A ⊆ U where U is g#-open set. Since A⋆ = ϕ for every A ∈ I,
then cl⋆(A) = A ∪A⋆ = A ⊆ U . Therefore, by Theorem 3.2, A is I#g# -closed. �

Theorem 3.5. If (X, τ, I) is an ideal space, then A⋆ is always I#g#-closed for
every subset A of X.

Proof. Let A⋆ ⊆ U where U is g#-open. Since (A⋆)⋆ ⊆ A⋆ [3], we have
(A⋆)⋆ ⊆ U whenever A⋆ ⊆ U and U is g#-open. Hence A⋆ is I#g#-closed. �

Theorem 3.6. Let (X, τ, I) be an ideal space. Then every I#g#-closed, g#-open
set is ⋆-closed set.

Proof. Since A is I#g#-closed and g#-open, then A⋆ ⊆ A whenever A ⊆ A

and A is g#-open. Hence A is ⋆-closed. �

Corollary 3.1. If (X, τ, I) is a TI ideal space and A is an I#g#-closed set,
then A is ⋆-closed set.
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Corollary 3.2. Let (X, τ, I) be an ideal space and A be an I#g#-closed set.
Then the following are equivalent.

(1) A is a ⋆-closed set.
(2) cl⋆(A)−A is a g#-closed set.
(3) A⋆ −A is a g#-closed set.

Proof. (1) ⇒ (2) If A is ⋆-closed, then A⋆ ⊆ A and so cl⋆(A) − A = (A ∪
A⋆)−A = ϕ. Hence cl⋆(A)−A is g#-closed set.

(2) ⇒ (3) Since cl⋆(A)−A = A⋆ −A and so A⋆ −A is g#-closed set.
(3) ⇒ (1) If A⋆ −A is a g#-closed set, since A is I#g#-closed set, by Theorem

3.2, A⋆ −A = ϕ and so A is ⋆-closed. �
Theorem 3.7. Let (X, τ, I) be an ideal space. Then every #g#-closed set is

an I#g#-closed set but not conversely.

Proof. Let A be a #g#-closed set. Then cl(A) ⊆ U whenever A ⊆ U and
U is g#-open. We have cl⋆(A) ⊆ cl(A) ⊆ U whenever A ⊆ U and U is g#-open.
Hence A is I#g#-closed. �

Theorem 3.8. If (X, τ, I) is an ideal space and A is a ⋆-dense in itself, I#g#-

closed subset of X, then A is #g#-closed.

Proof. Suppose A is a ⋆-dense in itself, I#g#-closed subset of X. Let A ⊆ U

where U is g#-open. Then by Theorem 3.2(2), cl⋆(A) ⊆ U whenever A ⊆ U and U
is g#-open. Since A is ⋆-dense in itself, by Lemma 2.2, cl(A) = cl⋆(A). Therefore
cl(A) ⊆ U whenever A ⊆ U and U is g#-open. Hence A is #g#-closed. �

Corollary 3.3. If (X, τ, I) is any ideal space where I = {ϕ}, then A is I#g#-

closed if and only if A is #g#-closed.

Proof. From the fact that for I={ϕ}, A⋆=cl(A) ⊇ A. Therefore A is ⋆-dense
in itself. Since A is I#g# -closed, by Theorem 3.8, A is #g#-closed. Conversely, by

Theorem 3.7, every #g#-closed set is I#g#-closed set. �
Corollary 3.4. If (X, τ, I) is any ideal space where I is codense and A is a

semi-open, I#g#-closed subset of X, then A is #g#-closed.

Proof. By Lemma 2.3, A is ⋆-dense in itself. By Theorem 3.8, A is #g#-
closed. �

Remark 3.3. We have the following implications for the subsets stated above.

closed −−−−→ #g#-closed −−−−→ g-closedy y y
⋆-closed −−−−→ I#g#-closed −−−−→ Ig-closed

Theorem 3.9. Let (X, τ, I) be an ideal space and A ⊆ X. Then A is I#g#-
closed if and only if A = F −N where F is ⋆-closed and N contains no nonempty
g#-closed set.
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Proof. If A is I#g#-closed, then by Theorem 3.2 (5), N = A⋆ − A contains

no nonempty g#-closed set. If F = cl⋆(A), then F is ⋆-closed such that F −N =
(A∪A⋆)− (A⋆−A) = (A∪A⋆)∩ (A⋆ ∩Ac)c = (A∪A⋆)∩ ((A⋆)c ∪A) = (A∪A⋆)∩
(A ∪ (A⋆)c) = A ∪ (A⋆ ∩ (A⋆)c) = A.

Conversely, suppose A = F − N where F is ⋆-closed and N contains no
nonempty g#-closed set. Let U be a g#-open set such that A ⊆ U . Then
F − N ⊆ U and F ∩ (X − U) ⊆ N . Now A ⊆ F and F ⋆ ⊆ F then A⋆ ⊆ F ⋆

and so A⋆ ∩ (X − U) ⊆ F ⋆ ∩ (X − U) ⊆ F ∩ (X − U) ⊆ N . By hypothesis,
since A⋆ ∩ (X − U) is g#-closed, A⋆ ∩ (X − U) = ϕ and so A⋆ ⊆ U. Hence A is
I#g#-closed. �

Theorem 3.10. Let (X, τ, I) be an ideal space and A ⊆ X. If A ⊆ B ⊆ A⋆,
then A⋆ = B⋆ and B is ⋆-dense in itself.

Proof. SinceA ⊆ B, thenA⋆ ⊆ B⋆ and sinceB ⊆ A⋆, thenB⋆ ⊆ (A⋆)⋆ ⊆ A⋆.
Therefore A⋆ = B⋆ and B ⊆ A⋆ ⊆ B⋆. Hence proved. �

Theorem 3.11. Let (X, τ, I) be an ideal space. If A and B are subsets of X
such that A ⊆ B ⊆ cl⋆(A) and A is I#g#-closed, then B is I#g#-closed.

Proof. Since A is I#g#-closed, then by Theorem 3.2(4), cl⋆(A)− A contains

no nonempty g#-closed set. Since cl⋆(B) − B ⊆ cl⋆(A) − A and so cl⋆(B) − B
contains no nonempty g#-closed set. Hence B is I#g# -closed. �

Corollary 3.5. Let (X, τ, I) be an ideal space. If A and B are subsets of X
such that A ⊆ B ⊆ A⋆ and A is I#g#-closed, then A and B are #g#-closed sets.

Proof. Let A and B be subsets of X such that A ⊆ B ⊆ A⋆ ⇒ A ⊆ B ⊆
A⋆ ⊆ cl⋆(A) and A is I#g#-closed. By the above Theorem, B is I#g# -closed. Since
A ⊆ B ⊆ A⋆, then A⋆ = B⋆ and so A and B are ⋆-dense in itself. By Theorem 3.8,
A and B are #g#-closed. �

The following Theorem gives a characterization of I#g# -open sets.

Theorem 3.12. Let (X, τ, I) be an ideal space and A ⊆ X. Then A is I#g#-

open if and only if F ⊆ int⋆(A) whenever F is g#-closed and F ⊆ A.

Proof. Suppose A is I#g#-open. If F is g#-closed and F ⊆ A, then X −A ⊆
X−F and so cl⋆(X−A) ⊆ X−F by Theorem 3.2 (2). Therefore F ⊆ X−cl⋆(X−
A) = int⋆(A). Hence F ⊆ int⋆(A).

Conversely, suppose the condition holds. Let U be a g#-open set such that
X−A ⊆ U . Then X−U ⊆ A and so X−U ⊆ int⋆(A). Therefore cl⋆(X−A) ⊆ U .
By Theorem 3.2 (2), X −A is I#g#-closed. Hence A is I#g#-open. �

Corollary 3.6. Let (X, τ, I) be an ideal space and A ⊆ X. If A is I#g#-open,
then F ⊆ int⋆(A) whenever F is closed and F ⊆ A.

Theorem 3.13. Let (X, τ, I) be an ideal space and A ⊆ X. If A is I#g#-open
and int⋆(A) ⊆ B ⊆ A, then B is I#g#-open.



ON #g#-CLOSED SETS IN IDEAL TOPOLOGICAL SPACES 65

Proof. Since A is I#g#-open, then X−A is I#g#-closed. By Theorem 3.2 (4),

cl⋆(X−A)−(X−A) contains no nonempty g#-closed set. Since int⋆(A) ⊆ int⋆(B)
which implies that cl⋆(X − B) ⊆ cl⋆(X − A) and so cl⋆(X − B) − (X − B) ⊆
cl⋆(X −A)− (X −A). Hence B is I#g#-open. �

The following Theorem gives a characterization of I#g# -closed sets in terms of
I#g#-open sets.

Theorem 3.14. Let (X, τ, I) be an ideal space and A ⊆ X. Then the following
are equivalent.

(1) A is I#g#-closed.
(2) A ∪ (X −A⋆) is I#g#-closed.
(3) A⋆ −A is I#g#-open.

Proof. (1) ⇒ (2) Suppose A is I#g#-closed. If U is any g#-open set such that
A∪(X−A⋆) ⊆ U , then X−U ⊆ X−(A∪(X−A⋆)) = X∩(A∪(A⋆)c)c = A⋆∩Ac =
A⋆−A. Since A is I#g#-closed, by Theorem 3.2 (5), it follows that X −U = ϕ and
so X = U . Now A∪ (X −A⋆) ⊆ X and so (A∪ (X −A⋆))⋆ ⊆ X⋆ ⊆ X = U . Hence
A ∪ (X −A⋆) is I#g# -closed.

(2) ⇒ (1) Suppose A ∪ (X − A⋆) is I#g#-closed. If F is any g#-closed set
such that F ⊆ A⋆ − A, then F ⊆ A⋆ and F * A. Hence X − A⋆ ⊆ X − F and
A ⊆ X − F . Therefore A ∪ (X − A⋆) ⊆ A ∪ (X − F ) = X − F and X − F is
g#-open. Since (A ∪ (X − A⋆))⋆ ⊆ X − F ⇒ A⋆ ∪ (X − A⋆)⋆ ⊆ X − F and so
A⋆ ⊆ X − F ⇒ F ⊆ X − A⋆. Since F ⊆ A⋆, it follows that F = ϕ. Hence A is
I#g#-closed.

(2) ⇔ (3) Since X − (A⋆ − A) = X ∩ (A⋆ ∩ Ac)c = X ∩ ((A⋆)c ∪ A) =
(X ∩ (A⋆)c) ∪ (X ∩A) = A ∪ (X −A⋆), it is obvious. �

Theorem 3.15. Let (X, τ, I) be an ideal space. Then every subset of X is
I#g#-closed if and only if every g#-open set is ⋆-closed.

Proof. Suppose every subset of X is I#g#-closed. If U ⊆ X is g#-open, then
U is I#g#-closed and so U⋆ ⊆ U . Hence U is ⋆-closed. Conversely, suppose that

every g#-open set is ⋆-closed. If U is g#-open set such that A ⊆ U ⊆ X, then
A⋆ ⊆ U⋆ ⊆ U and so A is I#g#-closed. �

The following Theorem gives a characterization of normal spaces in terms of
I#g#-open sets.

Theorem 3.16. Let (X, τ, I) be an ideal space where I is completely codense.
Then the following are equivalent.

(1) X is normal.
(2) For any disjoint closed sets A and B, there exist disjoint I#g#-open sets

U and V such that A ⊆ U and B ⊆ V .
(3) For any closed set A and open set V containing A, there exists an I#g#-

open set U such that A ⊆ U ⊆ cl⋆(U) ⊆ V .
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Proof. (1) ⇒ (2) The proof follows from the fact that every open set is I#g#-
open.

(2) ⇒ (3) Suppose A is closed and V is an open set containing A. Since A and
X − V are disjoint closed sets, there exist disjoint I#g#-open sets U and W such

that A ⊆ U and X − V ⊆ W . Since X − V is g#-closed and W is I#g# -open,
X−V ⊆ int⋆(W ) and so X− int⋆(W ) ⊆ V . Again U ∩W = ϕ ⇒ U ∩ int⋆(W ) = ϕ
and so

U ⊆ X − int⋆(W ) ⇒ cl⋆(U) ⊆ X − int⋆(W ) ⊆ V.

U is the required I#g#-open sets with A ⊆ U ⊆ cl⋆(U) ⊆ V .
(3) ⇒ (1) Let A and B be two disjoint closed subsets of X. By hypothesis,

there exists an I#g# -open set U such that A ⊆ U ⊆ cl⋆(U) ⊆ X − B. Since U is
I#g#-open, A ⊆ int⋆(U). Since I is completely codense, by Lemma 2.4, τ⋆ ⊆ τα

and so int⋆(U) and X − cl⋆(U) are in τα. Hence

A ⊆ int⋆(U) ⊆ int(cl(int(int⋆(U)))) = G

and

B ⊆ X − cl⋆(U) ⊆ int(cl(int(X − cl⋆(U)))) = H.

G and H are the required disjoint open sets containing A and B respectively, which
proves (1). �
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