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IDEALS IN ALMOST LATTICES

G. Nanaji Rao and Habtamu Tiruneh Alemu

Abstract. The concepts of an initial segment and an ideal in an Almost
Lattice AL are introduced and proved that the set of all initial segments of an
AL L with 0 form a complete lattice with respect to set inclusion. Described

the smallest ideal containing a given nonempty subset of an AL L. Also,
proved that the set of all ideals I(L) of an AL L form a lattice with respect
to set inclusion and the set PI(L) of all principal ideals of L is a sublattice of
the lattice I(L). A set of identities for I(L) to become a complete lattice is

established. Moreover, the concept of a prime ideal in an AL L is introduced
and a necessary and sufficient condition for a proper ideal to become a prime
ideal is obtained. An isomorphism between the lattice of all ideals I(L) of an
AL L and the lattice of all ideals I(PI(L)) of the lattice PI(L) is obtained and

a one-to-one correspondence between prime ideals of L and those of PI(L) is
established. Further, an isomorphism between amicable sets M (as a lattice)
of an AL L and the lattice PI(L) of all principal ideals of an AL L is derived.

1. Introduction

Ideals were first studied by Dedekind, who defined the concept for rings of
algebraic integers. Later the concept of ideal was extended to rings in general. M.
H. Stone investigated ideals in Boolean rings, which are lattice of a special kind.
There is already a well-developed theory of ideals in lattice. There are only one
reasonable way of defining what is to be meant by an ideal in a lattice. Recall that
Dedekind’s definition of an ideal in a ring R is that it is a collection J of elements
of R which (1) contains the difference a− b, and hence the sum a+ b, of any two of
its elements a and b of J, and (2) contains all multiples such as ax or ya of any of
x, y ∈ R and a ∈ J . By analogy, a collection J of elements of a lattice L is called
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an ideal if (1) it contains the lattice sum a ∨ b of any two of its elements a and
b, and (2) it contains all multiples a ∧ x of any x ∈ L and a ∈ J . The analogy
is that the greatest lower bound, or lattice meet a ∧ b corresponds to product in
a ring, and the least upper bound, or lattice join a ∨ b corresponds to the sum of
two elements in a ring. The concept of Almost Lattice (AL) was introduced by G.
Nanaji Rao and Habtamu Tiruneh Alemu [3] as a common abstraction of almost all
lattice theoretic generalizations of Boolean algebra like distributive lattices, almost
distributive lattices and lattices and established necessary and sufficient conditions
for an AL L to become a lattice. Also, the concept of amicable sets in almost
lattices (AL) [4] was introduced by G. Nanaji Rao, Habtamu Tiruneh Alemu and
Terefe Getachew Beyene and proved that every maximal set in L is embedded in
an amicable set in L and also proved that every amicable set in L is embedded in
a maximal set with unielement.

In this paper, the concept of an initial segment in an AL L is introduced and
proved that the set of all initial segments of L with 0 form a complete lattice with
respect to set inclusion. Also, the concept of an ideal in an AL L is introduced and
described the smallest ideal containing a given nonempty subset of an AL L. Also,
proved that the set of all ideals I(L) of an AL L form a lattice and derived a set
of identities that the lattice I(L) to become a complete lattice. We proved that
the set PI(L) of all principal ideals of an AL L is a sublattice of the lattice I(L).
Further, the concept of a prime ideal in an AL L is introduced and a necessary and
sufficient condition for a proper ideal to become prime ideal is established. Also, an
isomorphism between the lattice of all ideals I(L) of an AL L and the lattice of all
ideals I(PI(L)) of the lattice PI(L) is obtained and a one-to-one correspondence
between prime ideals of L and those of PI(L) is established. Finally, an isomor-
phism between amicable sets M (as a lattice) of an AL L and the lattice PI(L) of
all principal ideals of an AL L is derived.

2. Preliminaries

In the text, we are using the two references [3] and [4] most frequently, that
was published by us (the authors of this article). Also, the major work of the text
is based on these two papers. But, the other reference ([1, 2, 5, 6, 7]) are used as
a basic foundation for the text.

In this section, we collect a few important definitions and results which are
already known and which will be used more frequently in the text.

Definition 2.1. An algebra (L,∨,∧) of type (2, 2) is called an Almost Lat-
tice(AL) if it satisfies the following axioms. For any a, b, c ∈ L:

A1. (a ∧ b) ∧ c = (b ∧ a) ∧ c
A2. (a ∨ b) ∧ c = (b ∨ a) ∧ c
A3. (a ∧ b) ∧ c = a ∧ (b ∧ c)
A4. (a ∨ b) ∨ c = a ∨ (b ∨ c)
A5. a ∧ (a ∨ b) = a
A6. a ∨ (a ∧ b) = a
A7 (a ∧ b) ∨ b = b
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Lemma 2.1. Let L be an AL. Then for any a, b ∈ L we have the following:

(1) a ∨ a = a
(2) a ∧ a = a
(3) a ∧ b = a if and only if a ∨ b = b

Definition 2.2. Let L be an AL and a, b ∈ L. Then we say that a is less than
or equal to b and write as a 6 b if and only if a ∧ b = a or, equivalently a ∨ b = b.

Theorem 2.1. Let L be an AL. For any a, b, c ∈ L, we have the following.

(1) The relation 6 is a partial ordering on L and hence (L,6) is a poset.
(2) a 6 b =⇒ a ∧ b = b ∧ a
(3) a ∧ b = b ⇐⇒ a ∨ b = a

Definition 2.3. An AL L is said to be directed above if for any a, b ∈ L there
exists c ∈ L such that a 6 c and b 6 c.

Theorem 2.2. Let L be an AL. Then the following are equivalent:

(1) L is directed above.
(2) ∧ is commutative.
(3) ∨ is commutative.
(4) L is a lattice.

Definition 2.4. For any a, b ∈ L of an AL L, a is said to be compatible with
b, written as a ∼ b if and only if a ∧ b = b ∧ a or, equivalently, a ∨ b = b ∨ a.

Definition 2.5. A subset S of an AL L is said to be compatible if a ∼ b for
all a, b ∈ S.

Note that for any a in an AL L, {a} is a compatible set of L and the set F of
all compatible sets of L is a poset with respect to set inclusion.

Definition 2.6. Let L be an AL. Then by a maximal set in L is a maximal
element in the poset (F ,⊆).

Definition 2.7. An algebra (L,∨,∧, 0) of type (2, 2, 0) is called an AL with 0
if it satisfying the following axioms. For any a, b, c ∈ L:

(A1) (a ∧ b) ∧ c = (b ∧ a) ∧ c
(A2) (a ∨ b) ∧ c = (b ∨ a) ∧ c
(A3) (a ∧ b) ∧ c = a ∧ (b ∧ c)
(A4) (a ∨ b) ∨ c = a ∨ (b ∨ c)
(A5) a ∧ (a ∨ b) = a
(A6) a ∨ (a ∧ b) = a
(A7) (a ∧ b) ∨ b = b
(01) 0 ∧ a = 0

Definition 2.8. Let L be an AL. Then an element a ∈ L is maximal if for any
x ∈ L, a 6 x implies a = x.

Proposition 2.1. For any m ∈ L of an AL L, the following are equivalent:

(1) m is maximal.
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(2) m ∨ x = m, ∀x ∈ L.
(3) m ∧ x = x, ∀x ∈ L.

Theorem 2.3. Let M is a maximal set in an AL L. Then M is a lattice with
respect to induced operations.

Proposition 2.2. Let M be a maximal set of an AL L and a ∈ M . Then for
any x ∈ L, x ∧ a ∈ M .

Definition 2.9. Let M be a maximal set in an AL L. Then an element x ∈ L
is said to be M-amicable if there exists a ∈ M such that a ∧ x = x.

Theorem 2.4. Let M be a maximal set in an AL L and x ∈ L be M-amicable.
Then there is a smallest element a ∈ M with the property a ∧ x = x.

Note that such smallest element a in M is denoted by xM .

Corollary 2.1. Let M be a maximal set in an AL L and x ∈ L be M-amicable.
Then xM is the unique element of M such that xM ∧ x = x and x ∧ xM = xM .

Note that if M is a maximal set in an AL L, then we denote the set of all
M-amicable elements of L by AM (L).

Definition 2.10. A maximal set M in an AL is said to be amicable if AM (L) =
L.

Theorem 2.5. Let M be a maximal set in an AL L and x, y ∈ L be M-amicable
such that x ∼ y. Then xM = yM if and only if x = y.

3. Initial segments in ALs

In this section, we introduce the concept of an initial segment in an AL L and
prove some basic properties of an initial segment. Also, we prove that the set of all
initial segments of an AL L with 0 is a complete lattice. We describe the smallest
initial segment generated by a nonempty subset of an AL L with 0. First, we begin
with the following.

Lemma 3.1. Let L be an AL with 0 and I be a nonempty subset of L. Then the
following are equivalent to each other.

(1) If x ∈ I and a ∈ L such that a 6 x, then a ∈ I.
(2) If a ∈ L, then a ∧ x ∈ I for all x ∈ I.

Proof. (1) =⇒ (2):-Assume (1). Let x ∈ and a ∈ L. Then we have a∧x 6 x.
Therefore by (1), we get a ∧ x ∈ I.
(2) =⇒ (1):- Assume (2). Let x ∈ I and a ∈ L such that a 6 x. Then we have
a = a ∧ x. It follows by (2), a ∈ I. �

Definition 3.1. A nonempty subset I of an AL L is called an initial segment
in L if it satisfies any one of the above two condition.

Now, we prove the following.
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Theorem 3.1. Let I be a nonempty subset of an AL L such that x ∧ a ∈ I for
all x ∈ I and for all a ∈ L. Then I is an initial segment.

Proof. Let x ∈ I and a ∈ L such that a 6 x. Now, consider a = a ∧ x =
x ∧ a ∈ I. Thus a ∈ I. Therefore I is an initial segment. �

But, the converse of the above theorem is not true. For, consider the discrete
AL L with 0 with at least two elements. Choose x ̸= y ∈ L−{0} and put I = {0, x}.
Then clearly I is an initial segment of L. But, x ∧ y = y /∈ I. It is clear that if L is
an AL with 0, then every initial segment I of L contains the zero element 0. In the
following, we prove that the intersection (union) of any class of initial segments of
an AL L is again an initial segment.

Theorem 3.2. Let L be an AL with 0. Then the intersection(union) of any
class of an initial segments of L is also an initial segment of L.

Proof. Let I = {Iα /α ∈ ∆} be any class of initial segments of L. Then
clearly L ∈ I and hence I ≠ ∅. Also, since 0 ∈ Iα for all α in ∆, 0 ∈

∩
α∈∆

Iα(
∪

α∈∆

Iα)

and hence
∩

α∈∆

Iα(
∪

α∈∆

Iα) ̸= ∅. Clearly,
∩

α∈∆

Iα(
∪

α∈∆

Iα) is an initial segment of

L. �

In view of Theorem 3.2, we have the following.

Theorem 3.3. The set In(L), of all initial segments of an AL L with 0 is a
complete lattice with respect to set inclusion.

Next, we prove the smallest initial segment generated by a nonempty subset of
an AL L.

Theorem 3.4. Let L be an AL and X( ̸= ∅) ⊆ L. Then X↓ = {a ∈ L | a 6
x for some x ∈ X} is the smallest initial segment containing X.

Proof. Let X( ̸= ∅) ⊆ L and X↓ = {a ∈ L | a 6 x for some x ∈ X}. Then
since X ̸= ∅, X↓ ̸= ∅. Let a ∈ X↓ and t ∈ L such that t 6 a. Then we have a 6 x
for some x ∈ X. Hence we get t 6 a 6 x. Therefore t 6 x, x ∈ X. Thus t ∈ X↓.
Therefore X↓ is an initial segment in L. Clearly X ⊆ X↓. Suppose H is an initial
segment of L such that X ⊆ H. Now, let a ∈ X↓. Then a 6 x for some x ∈ X. It
follows that, a 6 x and x ∈ H. Therefore a ∈ H and hence X↓ ⊆ H. Therefore
X↓ is the smallest initial segment containing X. �

Definition 3.2. Let L be an AL and X( ̸= ∅) ⊆ L. Then the initial segment
X↓ is called the initial segment generated by X.

Corollary 3.1. Let L be an AL and x ∈ L. Then x↓ = {a ∈ L|a 6 x} is an
initial segment and is called the principal initial segment generated by x.

Corollary 3.2. Let L be an AL and X (̸= ∅) ⊆ L. Then
∪

x∈X

x↓ = X↓.
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Proof. Let a ∈
∪

x∈X

x↓. Then a ∈ x↓ for some x ∈ X. This implies a 6 x.

Hence a ∈ X↓. Therefore
∪

x∈X

x↓ ⊆ X↓. Conversely, suppose a ∈ x↓. Then a 6 x

for some x ∈ X. It follows that, a ∈ x↓ and hence a ∈
∪

x∈X

x↓. Thus X↓ ⊆
∪

x∈X

x↓.

Therefore X↓ =
∪

x∈X

x↓. �

4. Ideals in ALs

In this section, we introduce the concept of an ideal in an AL L and describe
the smallest ideal containing a given nonempty subset of L. We prove the set I(L)
of all ideals of an AL L form a lattice and the set PI(L) of all principal ideals of
L is a sublattice of the lattice I(L). Also, we establish a set of identities that the
lattice I(L) is a complete lattice. Now, we begin this section with the following.

Definition 4.1. Let L be an AL. Then a nonempty subset I of L is said to be
an ideal of L if it satisfies the following:

(1) If x, y ∈ I, then there exists d ∈ I such that d ∧ x = x and d ∧ y = y.
(2) If x ∈ I and a ∈ L, then x ∧ a ∈ I.

Lemma 4.1. Let L be an AL and I be an ideal of L. Then the following are
equivalent:

(1) x, y ∈ I, implies x ∨ y ∈ I
(2) x, y ∈ I, implies there exists d ∈ I such that d ∧ x = x and d ∧ y = y.

Proof. (1) =⇒ (2) Assume (1). Suppose x, y ∈ I. Then by (1), x∨ y ∈ I and
(x ∨ y) ∧ x = x, (x ∨ y) ∧ y = y.
(2) =⇒ (1):- Assume (2). Let x, y ∈ L. Then there exists d ∈ I such that
d ∧ x = x and d ∧ y = y. It follows that, d ∨ x = d and d ∨ y = d. Consider,
d ∨ (x ∨ y) = (d ∨ x) ∨ y = d ∨ y = d and hence x ∨ y = d ∧ (x ∨ y) ∈ I. �

Corollary 4.1. Let L be an AL and I be an ideal of L. Then I is a sub AL
of L.

But, converse of the above corollary is not true. For, consider the following
example.

Example 4.1. Let L = {a, b, c}. Define a binary operation ∨ and ∧ on L as
below:

∨ a b c
a a b c
b b b b
c c c c

and

∧ a b c
a a a a
b a b c
c a b c

Then clearly, (L,∨,∧) is an AL. Put I = {a, b}. Clearly, I is sub AL of L. But,
since b ∧ c = c /∈ I, I is not an ideal.

Corollary 4.2. Let L be an AL and I be an ideal of L. If x ∈ I and a ∈ L,
then a ∧ x ∈ I.
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Proof. Suppose x ∈ I and a ∈ L. Then x ∧ a ∈ I. Now, consider a ∧ x =
a ∧ (x ∧ x) = (a ∧ x) ∧ x = (x ∧ a) ∧ x ∈ I. Therefore a ∧ x ∈ I. �

In the following, we describe the ideal generated by a given nonempty subset
S of an AL L and prove that this is the smallest ideal of L containing S.

Theorem 4.1. Let S be a nonempty subset of an AL L. Then

(S] = {(
n∨

i=1

si) ∧ x | si ∈ S, x ∈ L and n is a positive integer}

is the smallest ideal of L containing S.

Proof. Suppose S is a nonempty subset of L. We shall prove that

(S] = {(
n∨

i=1

si) ∧ x | si ∈ S, x ∈ L and n is a positive integer}

is the smallest ideal of L containing S. Clearly, S ⊆ (S] and hence (S] ̸= ∅. Let
(
∨n

i=1 si) ∧ x, (
∨m

j=1 tj) ∧ y ∈ (S]. Put d = (
∨n

i=1 si) ∨ (
∨m

j=1 tj). Then clearly

d ∈ (S] and d ∧ ((
∨n

i=1 si) ∧ x) = (d ∧ (
∨n

i=1 si)) ∧ x = (
∨n

i=1 si) ∧ x. Similarly,
we can prove that, d ∧ ((

∨m
j=1 tj) ∧ y) = (

∨m
j=1 tj) ∧ y. Also, if (

∨n
i=1 si) ∧ x ∈ (S]

and p ∈ L, then ((
∨n

i=1 si) ∧ x) ∧ p = (
∨n

i=1 si) ∧ (x ∧ p) ∈ (S]. Therefore (S] is
an ideal of L containing S. Suppose H is an ideal of L such that S ⊆ H. Now, let
(
∨n

i=1 si) ∧ x ∈ (S] where si ∈ S for all i and x ∈ L. Then si ∈ H for all i and
x ∈ L and hence

∨n
i=1 si ∈ H. Now, since H is an ideal, (

∨n
i=1 si) ∧ x ∈ H. It

follows that, (S] ⊆ H. Therefore (S] is the smallest ideal containing S. �

If S = {a}, then we write (a] instead of ({a}]. With this notion we have the
following.

Corollary 4.3. Let L be an AL and a ∈ L. Then (a] = {a ∧ x| x ∈ L} is an
ideal of L and is called principal ideal generated by a.

Corollary 4.4. Let L be an AL and a, b ∈ L. Then a ∈ (b] if and only if
a = b ∧ a.

Proof. Suppose a ∈ (b]. Then a = b ∧ t for some t ∈ L. Now, b ∧ a =
b ∧ (b ∧ t) = b ∧ t = a. Therefore a = b ∧ a. Converse follows by the definition of
(b]. �

Corollary 4.5. Let I be an ideal of an AL L and a, b ∈ L. Then a ∧ b ∈ I if
and only if b ∧ a ∈ I.

Proof. Suppose a ∧ b ∈ I. Then (a ∧ b) ∧ a ∈ I. Now, consider b ∧ a =
b ∧ (a ∧ a) = (b ∧ a) ∧ a = (a ∧ b) ∧ a ∈ I. Hence b ∧ a ∈ I. Similarly, we can prove
that if b ∧ a ∈ I, then a ∧ b ∈ I. �

Corollary 4.6. Let I be an ideal of an AL L and a, b ∈ L. Then a ∨ b ∈ I if
and only if b ∨ a ∈ I.
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Proof. Suppose a ∨ b ∈ I. Then (a ∨ b) ∧ (b ∨ a) ∈ I. It follows that,
b∨a = (b∨a)∧ (b∨a) ∈ I. Conversely, suppose b∨a ∈ I. Then (b∨a)∧ (a∨b) ∈ I.
Hence a ∨ b = (a ∨ b) ∧ (a ∨ b) ∈ I. �

Corollary 4.7. Let L be an AL and a, b ∈ L. Then (a ∧ b] = (b ∧ a].

Recall that, for any a, b ∈ L with a 6 b, we have a ∧ b = b ∧ a. It follows that,
every ideal of an AL L is an initial segment.

Remark 4.1. One may suspect that an initial segment of an AL L which is
closed under the operation ∨ is an ideal. Though, it is true when L is a lattice, it is
not true in a general AL. For, consider a discrete AL L with at least two elements.
Now, choose x ∈ L. Then clearly, {x} is an initial segment and is closed under the
operation ∨. But {x} is not an ideal; since for any a(̸= x) ∈ L, x ∧ a = a /∈ {x}.

Theorem 4.2. Let L be an AL. Then the set I(L) of all ideals of L form
a lattice under set inclusion in which the glb and lub for any I, J ∈ I(L) are
respectively

I ∧ J = I ∩ J
and

I ∨ J = {x ∈ L| (a ∨ b) ∧ x = x for some a ∈ I and b ∈ J}.

Proof. Clearly, I(L) is non empty. Also, clearly I(L) is a poset with respect
to set inclusion. Now, let I, J ∈ I(L). Then clearly I ∩ J is the glb of I and J in
I(L). Now, we shall prove I∨J = {x ∈ L| (a∨b)∧x = x for some a ∈ I and b ∈ J}
is the lub of I and J in I(L). Since I and J are nonempty, it follows that, I ∨ J
is nonempty. Let x, y ∈ I ∨ J . Then (a1 ∨ b1) ∧ x = x and (a2 ∨ b2) ∧ y = y for
some a1, a2 ∈ I and b1, b2 ∈ J . It follows that, there exists d1 ∈ I and d2 ∈ J
such that d1 ∧ a1 = a1, d1 ∧ a2 = a2 and d2 ∧ b1 = b1, d2 ∧ b2 = b2. Hence
d1 ∨ a1 = d1, d1 ∨ a2 = d1 and d2 ∨ b1 = d2, d2 ∨ b2 = d2. Now, we have
d1 ∈ I, d2 ∈ J and hence d1 ∨ d2 ∈ I ∨ J . Consider, (d1 ∨ d2) ∧ x = ((d1 ∨ a1) ∨
(d2 ∨ b1))∧x = ((d1 ∨ d2)∨ (a1 ∨ b1))∧x = ((d1 ∨ d2)∨ (a1 ∨ b1))∧ ((a1 ∨ b1)∧x) =
(((d1 ∨ d2) ∨ (a1 ∨ b1)) ∧ (a1 ∨ b1)) ∧ x = (a1 ∨ b1) ∧ x = x. Similarly, we can prove
that (d1∨d2)∧y = y. Again, let x ∈ I∨J and p ∈ L. Then (a∨b)∧x = x for some
a ∈ I and b ∈ J . Now, (a∨b)∧(x∧p) = ((a∨b)∧x)∧p = x∧p. Hence x∧p ∈ I∨J .
Therefore I ∨ J is an ideal of L. Let x ∈ I and y ∈ J . Then x = (x ∨ y) ∧ x and
y = (x ∨ y) ∧ y. Hence x, y ∈ I ∨ J . So that I, J ⊆ I ∨ J . Therefore I ∨ J is an
upper bound of I and J in I(L). Suppose that H ∈ I(L) such that H is an upper
bound of I and J. Then I ⊆ H and J ⊆ H. Now, let x ∈ I ∨J . Then (a∨b)∧x = x
for some a ∈ I and b ∈ J . Hence a, b ∈ H since I, J ⊆ H. Therefore by Corollary
4.1, we get a ∨ b ∈ H. It follows that, x = (a ∨ b) ∧ x ∈ H. Therefore I ∨ J ⊆ H.
Thus I ∨ J is the lub of I and J in I(L). Therefore I(L) is a lattice. �

Lemma 4.2. For any a, b in an AL L, b ∈ (a] if and only if (b] ⊆ (a].

Proof. Suppose b ∈ (a]. Then b = a ∧ b. Now, let t ∈ (b]. Then t = b ∧ t =
(a ∧ b) ∧ t = a ∧ (b ∧ t) ∈ (a]. Thus (b] ⊆ (a]. Conversely, suppose (b] ⊆ (a]. Since
b ∈ (b], b ∈ (a]. Therefore b ∈ (a]. �
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Lemma 4.3. For any a, b in an AL L, (a] ⊆ (b] whenever a 6 b.

Proof. Suppose a 6 b. Then a = a ∧ b. Now, let t ∈ (a]. Then t = a ∧ t =
(a ∧ b) ∧ t = (b ∧ a) ∧ t = b ∧ (a ∧ t) ∈ (b]. Therefore (a] ⊆ (b]. �

Lemma 4.4. For any a, b in an AL L, we have the following.

(1) (a] ∨ (b] = (a ∨ b] = (b ∨ a]
(2) (a] ∩ (b] = (a ∧ b] = (b ∧ a]

Proof. Let x ∈ (a] ∨ (b]. Then x = (s ∨ t) ∧ x for some s ∈ (a] and t ∈ (b].
It follows that, s = a ∧ s and t = b ∧ t. Hence a = a ∨ s, b = b ∨ t. Now, a ∨ b =
(a∨s)∨(b∨t). It follows that, (a∨b)∧x = ((a∨s)∨(b∨t))∧x = ((a∨b)∨(s∨t))∧x =
((a∨ b)∨ (s∨ t))∧ ((s∨ t)∧ x) = ((a∨ b)∨ (s∨ t))∧ ((s∨ t))∧ x = (s∨ t)∧ x = x.
Therefore x ∈ (a ∨ b]. Hence (a] ∨ (b] ⊆ (a ∨ b].

Conversely, suppose x ∈ (a∨b]. Then (a∨b)∧x = x. It follows that, x ∈ (a]∨(b];
since a ∈ (a], b ∈ (b]. Therefore(a ∨ b] ⊆ (a] ∨ (b]. Hence (a] ∨ (b] = (a ∨ b]. Again,
since (a ∨ b) ∧ t = (b ∨ a) ∧ t for all t ∈ L, (a ∨ b] = (b ∨ a].

Let t ∈ (a] ∩ (b]. Then t ∈ (a] and t ∈ (b]. This implies t = a ∧ t and t = b ∧ t.
Hence t = t ∧ t = a ∧ t ∧ b ∧ t = a ∧ b ∧ t ∈ (a ∧ b]. Therefore (a] ∩ (b] ⊆ (a ∧ b].
Conversely, suppose t ∈ (a ∧ b]. Then t = (a ∧ b) ∧ t = a ∧ (b ∧ t) ∈ (a] and also
t = (a ∧ b) ∧ t = (b ∧ a) ∧ t = b ∧ (a ∧ t) ∈ (b]. Hence t ∈ (a] ∩ (b]. It follows that,
(a ∧ b] ⊆ (a] ∩ (b]. Therefore (a] ∩ (b] = (a ∧ b] = (b ∧ a]. �

Now, we have the following theorem whose proof follows from Lemma 4.4.

Theorem 4.3. Let L be an AL. Then the set PI(L), of all principal ideals of
L is a sub lattice of the lattice I(L) of all ideals of L.

Let us recall that, an element m of L is said to be maximal (minimal) if and
only if m ∧ x = x(x ∧m = m) if and only if m ∨ x = m(x ∨m = x) for all x ∈ L.
Therefore it can be easily seen that every ideal of an AL L contains all minimal
elements in L. In the following, we prove that the set of all minimal elements in L
is an ideal.

Lemma 4.5. Let L be an AL with a minimal element. Then the set of all
minimal elements of L form an ideal of L.

Proof. Suppose L has a minimal element. Put I = {m/ m is a minimal
element in L}. Then clearly I is nonempty. Let x, y ∈ I. Then x and y are minimal
elements in L and hence x ∧ x = x and x ∧ y = y. Now, put d = x. Then d ∈ I
and d ∧ x = x, d ∧ y = y. Again, let x ∈ I and t ∈ L. Then for any a ∈ L,
a ∧ (x ∧ t) = (a ∧ x) ∧ t = x ∧ t. Thus x ∧ t is a minimal element of L. Hence
x ∧ t ∈ I. Therefore I is an ideal in L. �

In view of Theorem 4.2, it can be easily seen that the intersection of a finite
family of ideals is again an ideal in an AL L, but, the intersection of an arbitrary
family of ideals need not be an ideal in general. In the following, we establish a set
of identities that intersection of any family of ideals is again an ideal.



46 G. N. RAO AND HABTAMU T. A.

Theorem 4.4. Let L be an AL. Then the following conditions are equivalent
in L:

(1) The intersection of any family of ideals is nonempty.
(2) The intersections of any family of ideals is again an ideal.
(3) The lattice I(L) has least element.
(4) The lattice I(L) is complete.
(5) The class PI(L) has least element.
(6) L has a minimal element.

Proof. (1) =⇒ (2): Suppose {Iα}α∈∆ be a family of ideals in L and suppose
I =

∩
α∈∆

Iα is nonempty. Let x, y ∈ I. Then x, y ∈ Iα for all α ∈ ∆. Since each Iα is

an ideal, x∨y ∈ Iα for all α ∈ ∆. Therefore x∨y ∈
∩

α∈∆

Iα such that (x∨y)∧x = x

and (x ∨ y) ∧ y = y. It follows that, I is an ideal of L.
Proof of (2) =⇒ (3) and (3) =⇒ (4) is clear.
(4) =⇒ (5): Suppose I(L) is complete. Since PI(L) is a nonempty subset of

I(L), PI(L) has a greatest lower bound say I. Clearly, I is a principal ideal, since
every element in I generates I. Thus PI(L) has least element.

(5) =⇒ (6): Suppose PI(L) has least element say (a]. Now, we shall prove
that a is a minimal element in L. Suppose x ∈ L such that x 6 a. Then we have
(x] ⊆ (a]. It follows that, (x] = (a]. Since a ∈ (a] = (x], a = x ∧ a = x. Therefore
a is minimal.

(6) =⇒ (1): Suppose L has a minimal element. Since every ideal in L contains
a minimal element, the intersections of any family of ideals is nonempty. �

5. The Lattice PI(L)

In this section, we introduce the concept of prime ideals in an AL L and prove
that a proper ideal P of L is prime if and only if for any ideal I and J of L, I∩J ⊆ P
implies either I ⊆ P or J ⊆ P . We have proved in the previous section that the
class PI(L) of all principal ideals of an AL L form a lattice. In this section, we
prove that the lattice I(L) of all ideals of an AL L is isomorphic with the lattice
of all ideals of the lattice PI(L) of L and also we prove this correspondence gives
a one-to-one correspondence between the prime ideals of L and those of PI(L).
Also, we prove that the set AM (L), of all M-amicable elements of L is an ideal of
L. Finally, we prove that an amicable set M of L (as lattice) and the lattice PI(L)
are isomorphic.

First, we begin this section with the following definition.

Definition 5.1. Let L be an AL. Then a proper ideal P of L is said to be
prime if for any x, y ∈ L, x ∧ y ∈ P , then either x ∈ P or y ∈ P .

Now, we derive a necessary and sufficient condition for a proper ideal P to
become a prime ideal in an AL L.

Theorem 5.1. Let L be an AL. Then a proper ideal P of L is prime if and
only if for any ideals I and J of L, I ∩ J ⊆ P implies either I ⊆ P or J ⊆ P .
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Proof. Suppose P is a prime ideal and suppose I, J are ideals of L such that
I ∩ J ⊆ P . Suppose I * P . Then there exists x ∈ I such that x /∈ P . Let y ∈ J .
Then y ∧ x ∈ J and hence x ∧ y ∈ J . Also, x ∧ y ∈ I. Hence x ∧ y ∈ I ∩ J ⊆ P .
Since P is prime ideal and x /∈ P , y ∈ P . Thus J ⊆ P . Conversely, assume the
condition. We shall prove that P is a prime ideal. Let x, y ∈ L such that x∧y ∈ P .
Then (x] ∩ (y] = (x ∧ y] ⊆ P . Therefore either (x] ⊆ P or (y] ⊆ P . It follows that,
x ∈ P or y ∈ P . Thus P is prime. �

In the following, we prove an isomorphism between the lattices I(L) and
I(PI(L)) and also derive a one-to-one correspondence between the prime ideals
of L and those of PI(L). First, we need the following:

Lemma 5.1. Let L be an AL. Then we have the following:

(1) For any ideal I of L, Ie = {(a]| a ∈ I} is an ideal of PI(L). Moreover, I
is prime if and only if Ie is prime.

(2) For any ideal K of the lattice PI(L), Kc = {a ∈ L| (a] ∈ K} is an ideal
of L. Further, K is prime if and only if Kc is prime.

(3) For any ideals I1 and I2 of L, I1 ⊆ I2 if and only if I1
e ⊆ I2

e.
(4) For any ideals K1 and K2 of PI(L), K1 ⊆ K2 if and only if K1

c ⊆ K2
c.

(5) Iec = I for all ideals I of L.
(6) Kce = K for all ideals K of PI(L).

Proof. (1) Suppose I is an ideal of L. Now, we shall prove that Ie is an ideal
of PI(L). Since I is nonempty, Ie is nonempty. Let (a], (b] ∈ Ie. Then a, b ∈ I and
hence a ∨ b ∈ I. It follows that, (a] ∨ (b] = (a ∨ b] ∈ Ie. Again, we have a ∧ b ∈ I.
Hence (a] ∩ (b] = (a ∧ b] ∈ Ie. Thus Ie is an ideal of the lattice PI(L). Suppose
I is a prime ideal of L. We shall prove that Ie is a prime ideal of PI(L). Let
(a], (b] ∈ PI(L) such that (a] ∩ (b] ∈ Ie. Then (a ∧ b] ∈ Ie. Therefore (a ∧ b] = (t]
for some t ∈ I. Since a∧ b ∈ (a∧ b] = (t], a∧ b = t∧ (a∧ b) ∈ I. Therefore a∧ b ∈ I.
Since I is prime, either a ∈ I or b ∈ I. It follows that, (a] ∈ Ie or (b] ∈ Ie. Thus Ie

is a prime ideal of PI(L). Conversely, suppose Ie is a prime ideal of PI(L). Let
a, b ∈ L such that a ∧ b ∈ I. Then (a] ∩ (b] = (a ∧ b] ∈ Ie. Therefore (a] ∈ Ie or
(b] ∈ Ie. Hence a ∈ I or b ∈ I. Therefore I is prime.

(2) Suppose K is an ideal of PI(L). We shall prove that Kc is an ideal of L.
Since K is nonempty, Kc is nonempty. Let a, b ∈ Kc. Then (a], (b] ∈ K. Hence
(a∨ b] = (a]∨ (b] ∈ K. Therefore a∨ b ∈ Kc, (a∨ b)∧a = a and (a∨ b)∧ b = b. Let
a ∈ Kc and t ∈ L. Then (a] ∈ K and (t] ∈ PI(L). Therefore (a∧ t] = (a]∩ (t] ∈ K.
Hence a ∧ t ∈ Kc. Thus Kc is an ideal of L. Now, suppose K is a prime ideal
of PI(L). We shall prove that Kc is a prime ideal of L. Let a, b ∈ L such that
a ∧ b ∈ Kc. Then (a] ∩ (b] = (a ∧ b] ∈ K. Therefore either (a] ∈ K or (b] ∈ K,
since K is prime. This implies a ∈ Kc or b ∈ Kc. Hence Kc is a prime ideal of L.
Conversely, suppose Kc is a prime ideal of L. Now, let (a], (b] ∈ PI(L) such that
(a] ∩ (b] ∈ K. Then (a ∧ b] ∈ K. It follows, a ∧ b ∈ Kc. Since Kc is prime, either
a ∈ Kc or b ∈ Kc. Therefore (a] ∈ K or (b] ∈ K. Hence K is a prime ideal of
PI(L).
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(3) item Suppose I1 and I2 are an ideals of L such that I1 ⊆ I2. We shall prove
that Ie1 ⊆ Ie2 . Let (a] ∈ I1

e. Then a ∈ I1 and hence a ∈ I2. Therefore (a] ∈ I2
e.

Thus I1
e ⊆ I2

e. Conversely, suppose I1
e ⊆ I2

e. Let a ∈ I1. Then (a] ∈ I1
e ⊆ I2

e.
Therefore (a] = (t] for some t ∈ I2. Hence a = t ∧ a ∈ I2. Thus I1 ⊆ I2.

(4) Suppose K1 and K2 are ideals of PI(L) such that K1 ⊆ K2. We shall prove
that Kc

1 ⊆ Kc
2. Let a ∈ K1

c. Then (a] ∈ K1. Hence (a] ∈ K2. Therefore (a] = (t]
for some t ∈ K2. It follows that a = t ∧ a ∈ K2

c. Thus K1
c ⊆ K2

c. Conversely,
suppose K1

c ⊆ K2
c. Let (a] ∈ K1. Then a ∈ K1

c ⊆ K2
c. Therefore a ∈ K2

c.
Hence (a] ∈ K2. Therefore K1 ⊆ K2.

(5) Suppose a ∈ Iec. Then (a] ∈ Ie. Therefore (a] = (t] for some t ∈ I. Hence
a = t ∧ a ∈ I. Thus Iec ⊆ I. Clearly I ⊆ Iec. Thus I = Iec.

(6) Suppose (a] ∈ Kce. Then a ∈ Kc. This implies (a] ∈ K. Therefore
Kce ⊆ K. Conversely, suppose (a] ∈ K. Then a ∈ Kc. It follows that, a ∈ Kce.
Hence K ⊆ Kce. Thus Kce = K �

Lemma 5.2. Let I and J be an ideals of an AL L. Then (I ∩ J)e = Ie ∩ Je

and (I ∨ J)e = Ie ∨ Je.

Proof. Suppose I and J are ideals of L. Then I ∩ J ⊆ I, J and hence
(I ∩ J)e ⊆ Ie, Je. Therefore (I ∩ J)e ⊆ Ie ∩ Je. Conversely, suppose (a] ∈ Ie ∩ Je.
Then (a] ∈ Ie and (a] ∈ Je. Hence (a] = (t] for some t ∈ I and (a] = (s] for some
s ∈ J . Therefore a ∈ (a] = (t] and hence a = t ∧ a. Similarly, we get a = s ∧ a. It
follows that, a ∈ I ∩ J . Thus (a] ∈ (I ∩ J)e. Therefore Ie ∩ Je ⊆ (I ∩ J)e. Thus
(I ∩ J)e = Ie ∩ Je.

We have I, J ⊆ I∨J . It follows that, Ie, Je ⊆ (I∨J)e. Hence Ie∨Je ⊆ (I∨J)e.
Conversely, let (a] ∈ (I ∨ J)e. Then a ∈ I ∨ J . Hence a = (x ∨ y) ∧ a for some
x ∈ I and y ∈ J . Hence (a] = ((x ∨ y) ∧ a] = (x ∨ y] ∩ (a] = ((x] ∨ (y]) ∩ (a].
Therefore (a] ⊆ (x]) ∨ (y], (x] ∈ Ie and (y] ∈ Je. Thus (a] ∈ Ie ∨ Je. Therefore
(I ∨ J)e ⊆ Ie ∨ Je and hence (I ∨ J)e = Ie ∨ Je �

Now, we have the following theorem whose proof follows by Lemmas 5.1 and
5.2.

Theorem 5.2. Let L be an AL. Then the mapping I 7→ Ie is an isomorphism of
the ideal lattice I(L) onto the ideal lattice I(PI(L)). Moreover, this correspondence
gives one-to-one correspondence between the prime ideals of L and those of PI(L).

Recall that a maximal set M in an AL L is a maximal compatible set. Also,
recall that an element x ∈ L is said to be M−amicable if a∧x = x for some a ∈ M .
It follows that, if x ∈ L is M-amicable, then there exists a unique element xM in
M with the property xM ∧ x = x and x ∧ xM = xM . Now, we prove the following.

Theorem 5.3. Let M be a maximal set in an AL L. Then the set AM (L), of
all M-amicable elements of L is an ideal of L.

Proof. Suppose M is a maximal set in L. Then clearly AM (L) is non empty,
since every element in M is M-amicable. Let x, y ∈ AM (L). Then there exists
xM , yM ∈ M such that xM ∧ x = x and yM ∧ y = y. Since xM , yM ∈ M and M is
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compatible set, xM ∨yM , xM ∧yM ∈ M . Now, since (xM ∨yM )∨ (x∨y) = ((xM ∨
yM )∨(x∨y))∧((xM ∨yM )∨(x∨y)) = (xM∨yM )∧((xM∨yM )∨(x∨y)) = xM∨yM ,
by Theorem 2.1, we get (xM∨yM )∧(x∨y) = x∨y. Hence x∨y ∈ AM (L). Therefore
(x∨ y)∧x = x and (x∨ y)∧ y = y. Now, if a ∈ AM (L) and t ∈ L, then there exists
m ∈ M such that m ∧ a = a. Consider, a ∧ t = (m ∧ a) ∧ t = m ∧ (a ∧ t). Thus
a ∧ t ∈ AM (L). Therefore AM (L) is an ideal of L. �

Corollary 5.1. If M is a maximal set in an AL L, then AM (L) is a sub AL
of L.

Finally, we prove that every amicable set in an AL L is isomorphic with the
lattice I(L). For this, first we need the following.

Lemma 5.3. Let M be an amicable set in an AL L and x ∈ L be M-amicable.
Then (x] = (xM ].

Proof. Suppose x ∈ L is M-amicable. Then there exists a unique element
xM ∈ M such that xM ∧ x = x and x ∧ xM = xM . It follows that, (x] = (xM ]. �

Lemma 5.4. Let M be an amicable set in an AL L. Then for any x, y ∈ L, the
following are equivalent:

(1) (x] = (y]
(2) (xM ] = (yM ]
(3) xM = yM .

Proof. Suppose M is an amicable set in L. Then AM (L) = L.
(1) =⇒ (2):- Assume (1). Let x, y ∈ L = AM (L) such that (x] = (y]. Then

by Lemma 5.3, we have (x] = (xM ] and (y] = (yM ]. Hence (xM ] = (yM ].
(2) =⇒ (3):-Assume (2). Since xM ∈ (xM ] = (yM ], we get xM = yM ∧ xM =

xM ∧ yM . Hence xM 6 yM . Similarly, we get yM 6 xM . Therefore xM = yM .
(3) =⇒ (1):-Assume (3). We need to show that (x] = (y]. Let t ∈ (x]. Then

t = x ∧ t = (xM ∧ x) ∧ t = (x ∧ xM ) ∧ t = xM ∧ t = yM ∧ t = (y ∧ yM ) ∧ t =
(yM ∧ y) ∧ t = y ∧ t ∈ (y]. Hence (x] ⊆ (y]. Similarly, we can prove that (y] ⊆ (x].
Therefore (x] = (y]. �

Now, we have the following corollary whose proof follows by Lemma 5.4 and
Theorem 2.5.

Corollary 5.2. Let M be a maximal set in an AL L. Then for any x, y ∈ M ,
the following are equivalent:

(1) x = y
(2) (x] = (y].

Recall that, if M is a maximal set in L and a ∈ M , then for any x ∈ L,
x ∧ a ∈ M . Therefore we prove the following theorem.

Theorem 5.4. Let M be an amicable set in an AL L.Then the mapping x 7→ (x]
is an isomorphism of a lattice M onto the lattice PI(L).
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Proof. Let M be an amicable set in L. Define, f : M → PI(L) by f(x) = (x]
for all x ∈ M . Then by the Corollary 5.2, f is both well defined and one-one. Let
(x] ∈ PI(L). Then x ∈ L = AM (L). Therefore there exists a ∈ M such that
a ∧ x = x. Since x ∧ a ∈ M , we get f(x ∧ a) = (x ∧ a] = (a ∧ x] = (x]. Hence f
is onto. Now, it remains to show that f is a homomorphism. Suppose x, y ∈ M .
Then f(x∧y) = (x∧y] = (x]∩ (y] = f(x)∩f(y) and f(x∨y) = (x∨y] = (x]∨ (y] =
f(x) ∨ f(y). Therefore f is a homomorphism and hence is an isomorphism. �
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