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SOME NEW CLASSES OF
MAPPINGS BETWEEN RELATIONAL SYSTEMS

Daniel A. Romano

ABSTRACT. In this paper we describe some types of mappings between rela-
tional systems such as 1—, 2— and 3— homomorphism between the relational
systems. The analogous claims with the quasi-order relation obtained by some
other authors are shown as the applications of the obtained results in this ar-
ticle.

1. Introduction

There are many possibilities of how to define homomorphisms between ordered
sets. For information on such homomorphisms, the reader can see the following
articles [1, 2, 3, 4, 8] in the literature. For notations and terminologies on posets
not given in this paper, we rely on [1, 2, 6, 7]. It turns out that these results can
be extended to arbitrary relational systems. This is the aim of this paper.

By a relational system we think that an ordered pair (X, R) consists of a set
X and a binary relation R on X. In this paper, we introduce the notion of a 1-, 2-
and 3-homomorphism between two relational systems. Some characterisations of
such homomorphisms between relational systems are given.

2. Preliminaries

Let X and Y be arbitrary sets and J(X,Y") be the family of all mappings from
X to Y. For arelation o C Y xY and for a mapping ¢ € J(X,Y) we define relation
© 1(p) in the following way

(z,y) € o (0) <= (p(2),9(y)) € o

DEFINITION 2.1. Let (X, a) and (Y, 5) be relational systems.
The mapping ¢ € J(X,Y) is called isotone with respect to relations « and g if
a C ¢~ 1(B) holds.
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The mapping ¢ is reverse isotone with respect to relations o and 3 if ¢ =1(3) C
« holds.

Now we state some characterizations of the notion of homomorphism (= isotone

mapping = relation-preserving mappings). We determine Kerp = ¢! o .

LEMMA 2.1 ([1], Lemma 3.4). Let (A,a) and (B, ) be relational systems and
@ : X — Y. Then the following are equivalent:

(i) @ is a isotone mapping from X to Y.

(i) ¢ Y(B) 2 Kerpoa.

(iii) ¢ %(B) D ao Kerp.

(iv) ¢ Y(B) 2 Kerpoao Kery.

DEFINITION 2.2 ([5]). A reverse isotone mapping ¢ : X — Y is called a
reverse isotone strong mapping of X to Y if holds

¢7H(B) C a C Kerpop™'(B) o Kery;
A isotone mapping ¢ : X — Y is called a isotone strong mapping of X to Y
if holds
a C ¢ 1 (B) C KerpoaoKerg.

DEFINITION 2.3 (]2]). A mapping ¢ from relational system (X, «) into a rela-
tional system (Y, 3) is called:
u-super strong if holds

gofl (8) C Kergpoa.

l-super strong if holds
¢~ (B) C aoKerp.

DEFINITION 2.4. Let (X, R) be a relational system and ) # A C X. By Ur(A)
we denote the set {t € X : (3a € A)((a,t) € R)}.

If A= {a}, then we write Ug(a) = aR which is a left class of R generated by
the element a. So, Ur(A) = U,c4 aRR.

Some others authors (see, for example [1]) determine an upper set Ur(A) gen-
erated by a set A in the following way: Ugr(A) = {x € X : (Va € A)((a,x) € R)}.
In that case Ur(A) = (,c4 aR holds.

3. The Main Results

Although some of the claims of homomorphism between relational systems
are well known, here we them state and proving again for the consistency of the
exposing material and in order to enable the reader to have a deeper insight into
the proposed classification. Of course, for every such claim, it was pointed out
where it was taken from.

THEOREM 3.1. Let ¢ : (X,a) — (Y, 8) be a mapping between two relational
systems. Then the following are equivalent:

(1) @ is an isotone mapping;

(2) (Vz € X)(o(Ua(z)) S Up(p(x)));
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(3) (vz € X)(Ua((¢™! 0 p)(2)) S ¢~ (Us(e(x)))):

(4) (Vo € X)((¢7 o 0)(Ualle™ 0 9)(2))) € o™ (Up(p(x))))-

PrOOF. (1) = (2). ([7], Lemma 2.2) Suppose that ¢ is an isotone mapping
and let x € X be an arbitrary element. Suppose y € ¢(Uqy(z)). Then there exists
an element 2’ € U,(z), which means (z,2’) € «a, such that y = ¢(z'). Since ¢
is isotone, we have (¢(z), ¢(z')) € B, which implies y = ¢(z') € Ug(p(x)). Thus
¢(Ua(x)) € Us(p(@))-

(2) = (3) Let x € X be an arbitrary element and suppose that o(U,(z) C
Us(p(x)). Let t € Usy(((p™! 0 ¢)(z)) be an arbitrary element. Then there exists
¥ € (p7top)(x), ie. pa) = <p( ) such that (2',#) € «. This means t €
Ua (). Thus p(t) € ( «(2")) C Ug(p(z)). Hence t € o~ (Ug(p(x))). Therefore,
Uall™ 0 0)(@)) S ¢~ (Usle()).
3) = (1) Suppose that (3) is valid and let z,2’ € X be elements such that
(z,2') € a. Since z € p~1(p(z)) we have 2’ € U,(z) C Us((p7t 0 p)(z)) C
(p(z

0o Y Ug ))). Hence ¢(z') € Us(p(x)) and (¢(z),¢(z")) € B. Consequently
(x,2") € a = (p(x),p(z")) € B. Therefore, ¢ is an isotone mapping.

(1) <= (4). Let z € X be an arbitrary element. Suppose that the mapping ¢
is an isotone mapping and t € (¢! 0 ©)(Us((¢~! 0 ¢)(x)) which means ¢(t) €
©(Ua((ptop)(z)). Then there exists an element 2’ € U, ((¢ ! 0 p)(z)) such that
©(t) = p(z’). Thus, there exists an element 2" € (p~! o p)(x), i.e. p(a”) = p(x),
such that =”,2") € a. Since (p(z”),¢(z')) € B because ¢ is an isotone mapping
with respect to relations o and 3, we have p(2’) € Ug(p(z”)) = Ug(p(z)) and

cosequently 2 € o Y Us(p(z))). So, we have (=1 o @) (Us((¢~! 0 9)(x))) C

e (Us(p(2)))-

Opposite. Let x,2" € X be elements such that (z, x) € a. Since x € (p~ 1o
¢)(z) we have 2’ € Ua((¢™top)(2)) C (¢~ op)Ua((p ™ op)(2)) C ¢! (Us(p(x)))
by hypothesis. This implies p(z') € Ug(x)) and (p(x), (")) € B Fmally, the
mapping ¢ is an isotone mapping. O

COROLLARY 3.1 ([3], Lemma 2; [2], Lemma 1). Let ¢ : (X,<x) — (Y, <y)
be a mapping between two ordered sets under quasi-orders. Then the following are
equivalent:

(1) ¢ is an isotone mapping;

(27) (Vo € X)(p(Usx (7)) C© Uy (0(x)));

(3") (Vo € X) (U< (¢ 0 9)(2)) € ¢! (Usgy (<P(~’L’))))~

(4) (Vz € X)((p 7 o) (Usx (97t 0 80)( ) -

Let us note the following proposition

—
‘G
=
S
N
=
S
—~
8
~
~—
~—

PRrROPOSITION 3.1. Let ¢ : (X,a) — (Y, 8) be a surjective mapping between
two relational systems. Then the following are equivalent:

(5) @ is a reverse isotone mapping;

(6) (Vo € X)(Us(p(z)) € ¢(Ua(x))).

ProOOF. (5) = (6) ([7], Lemma 2.1). Suppose that ¢ is a reverse isotone
surjective mapping and let z be an arbitrary element of X. Suppose y € Ug(p(x)).
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Then (¢(x),y) € B. Since ¢ is a surjective mapping, there exists an element
t € X such that y = ¢(t) and (¢(x),p(t)) € B. Hence (z,t) € o because ¢ is a
reverse isotone mapping. Thus t € U, (z) and y = ¢(t) € ¢(U,(x)). Consequently,
Us(p(z)) € ¢(Ua(z)).

(6) = (5). Opposite, suppose that the condition (6) is valid. Let x,2’ € X
be elements such that (¢(x),p(z")) € . Thus ¢(z’) € Ug(p(z)) C ¢(Ua(x)).
Hence 2’ € U,(z) and therefore (z,2’) € a. So, the mapping ¢ is a reverse isotone
mapping. O

REMARK 3.1. (a) Let z be an arbitrary element and suppose that Ug(¢(2)) C
©(Ua(2)). Suppose t € o~ (Ug(p(x))). Then p(t) € Us(p(x)) € ¢(Ua(z)). Thus
t € Uy (z), which means (z,t) € a. Since x € (¢! o ¢)(x), we have t € U,((¢ 1 o
©)(z)). Finally,

¢ (Uslp(@))) € Uall¢™ 09)()).

(b) Also, let us remember the Theorem 3.10 in [6]: Let (X, «) and (Y, ) be
relational systems and let ¢ : X — Y be a surjective reverse isotone mapping.
Then

plof CaopT

(c) Let ¢ be a reverse isotone surjective mapping between two relational sys-
tems. Suppose t € o~ (Us(¢(x)). This means () € Ug(p(z)) and (¢(z), ¢(t)) €
B. Thus (z,t) € a because the mapping ¢ is a reverse isotone mapping. Since
z € (p7! o )(x), we have t € Ua((¢™! 0 9)(x)) S (97" 0 9)(Uallp™ 0 0)(x)))-
Finally, we have

¢~ (Us(p(2))) S (971 0 @)(Uallp™ 0 ¢)(2))).
In the following theorem we give a connection between these three conditions.

THEOREM 3.2. Let ¢ : (X, a) — (Y, 8) be a surjective mapping between two
relational systems. Then the following are equivalent:

(7) (Vo € X) (o™ (Uslp(x))) S Ual(p™" 0 @)(2)));

(8) ¢ H(B) C ao(ptoyp);

(9) ¢ lopf Caocp™;

(10) (Vz € X) (¢ (Us(e(x))) € (¢~ o) (Ual(e™! 0 p)(x)))).

PROOF. (7) => (8). Suppose that ¢~ ({Us(p(z))) C Ua((¢~! o ¢)(x) holds
for any z € X. Let 2,2’ € X be arbitrary elements such that (¢(z),¢(z')) € S.
It is means (z,2') € ¢ 1(8). Then ¢(z') € Us(p(z)) and 2’ € o~ (Us(p(x))).
Thus 2’ € Uy((p~! o ¢)(x)). Hence there exists an element z” € X such that
2" € (¢ top)(x) and (2”,2") € a. Thus ¢~ (B) C ao Kere.
(9) < (8) ([6], Theorem 3.7). Suppose that the condition (9) holds. Let z, 2’ € X
be arbitrary elements such that (z,2’) € ¢=1(8). Then (¢(z),¢(z')) € 8. Since
(p(z"),2") € ¢~ we have (p(z),2') € o1 o B C aop l. Thus there exists
an element /7 € X such that (p(z),2”) € ¢~ and (2”,2') € . This means
(z,2") € p~topand (z”,2') € a. So, (z,2') € ao(p~t o). Therefore p~1(8) C
ao(p~log).
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Opposite, suppose that the condition (8) holds and let (y,2’) € ¢~ o 3. Then
there exists an element y’ € X such that (y,y’) € 8 and (y/,2') € ¢~ L. Since ¢
is a surjective mapping, there exists an element z € X such that (z,y) € ¢. So
(x,2") € p~1(B) C ao Keryp. Hence, there exists an element 2"/ € X such that
(z,2") € oL oy and (2”,2") € a. Now, we have (y,2”) € ¢ and (z”,2') € a.
Finally, (y,2') € ao @™t
(9) = (7). Let the condition (8) is valid and let t € =1 (Us(¢(x))). Then
¢(t) € Us(p(x)) and (p(z),p(t)) € B. Since (p(t),t) € ¢~ ' we have (p(z),t) €
¢ 1oB C aop ! By determination of the composition, there exists an element
2’ € X such that (¢(z),2’) € o~ ! and (2/,t) € a. So, ' € (¢! 0 ¢)(z) and
(2/,t) € a. Therefore, t € Uy ((¢~ ! 0 ¢)(x)).

(7) = (10). Obviously.

(10) = (8). Suppose that the condition (10) holds. Let z,2’ € X be elements
such that (z,2) € ¢~ 1(B), i.e. (p(x), (') € B. Thus ¢(z') € Ug(p(z)) and 2’ €
¢~ (Us(p(@)) C (¢ op)(Uall¢™ op)(2))). Hence (') € p(Ua((p™ " 0)(2))).
This means 2’ € U,((¢ ™! 0 ¢)(x)). So, there exists an element 2" € (¢~ o ¢)(x)
such that (z”,2') € a. Finally, we have (z,2') € a o Kery. Therefore, p=1(8) C
ao(ptog). g

COROLLARY 3.2. Let ¢ : (X,<x) — (Y, <y) be a surjective mapping between
two ordered sets under quasi-orders. Then the following are equivalent:

(7) (Vz € X) (¢ (Ugy (p(2))) € Usi (97" 0 p)(2))).

(8) o' (<y) S <xo(ptoyp)

(9) plo <y C <x op!

(10°) (Vz € X) (¢ " (Ugy (9(2))) € (97" 0 @)Uy (07" 0 0)()))).

Following the ideas of Definition 1 in [3], Definition 1 in [2] and relying on our
statements (3), (4), (7) and (10) in this article, we introduce the following notions.

DEFINITION 3.1. Let X, «) and (Y, 8) be relational systems. A mapping ¢ :
X — Y is called
- a 1-homomorphism if it satisfies the condition

(Vz € X) (¢ (Uslp(@)) = (¢ 0 @)(Uallp™" 0 9)(2))));
- a 2-homomorphism if it satisfies the condition
(Vz € X) (¢ (Uslp(@))) = ¢~ p(Ua(x))));
- a 3-homomorphism if it satisfies the condition

(Vo € X)(¢™ (Us(p(@)) = Ual(p™" 0 9)(x))).

In the following theorems we give description on 1—, 2— and 3—homomorphism
between two relational systems.

THEOREM 3.3. Let (X,a) and (Y, ) be relational systems and ¢ : X — Y
be a mapping. Then the mapping ¢ is a 1-homomorphism if and only if ¢ is an
isotone strong mapping.
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PROOF. (=) Suppose that ¢ is a 1-mapping. Then ¢ is an isotone mapping
by condition (4) of Theorem 1. Let x,2’ € X such that (z,2") € p~1(B), ie.
(o), o(a)) € B. Thus (') € U(p(x)) and o/ € o~ (Us((x))). By hypothesis.
we have &/ € (¢~ 0 @)(Us (¢~ 0 9)(x))) and p(a’) € p(Us(p~ 0 9)(x))). Hence,
there exists an element 2" € Us((p~! o )(z)) such that p(z') = p(z"). Further
on, there exists an element 2/’ € (¢! o p)(z ) such that (z’,2") € a. Finally,
we have (z,2"") € Kery, (2'",2") € a and (z”,2") € Kery. Therefore, (z,z') €
Kerpoao Kery. So, the mapping ¢ is an 1sotone strong mapping.

(«<=) Suppose that ¢ is an isotone strong mapping. Since ¢ is isotone, the
inclusion (4) holds. Let t € p~1(Us(¢(x)) be an arbitrary element. Then ¢(t) €
Us(p(x)) and (¢(x),p(t)) € B. Thus (z,t) € ¢ 1(8) C Kerpoao Kerp. So,
there exist elements x;,2” € X such that 2/ € (p~! o ¢)(z), (2/,2") € a and
t € (g toy)(a"). Finally, we have t € (¢! 0 ¢)(Ua(p~t 0 @) ((2))). O

COROLLARY 3.3 (]2], Proposition 3). Let (X,<x) and (Y,<y) be ordered sets
under quasi-orders and ¢ : X — Y be a mapping. Then the mapping ¢ is a
1-homomorphism if and only if ¢ is an isotone strong mapping.

THEOREM 3.4. Let (X,a) and (Y, ) be relational systems and ¢ : X — Y
be a mapping. Then the mapping ¢ is a 2-homomorphism if and only if ¢ is an
isotone u-super strong mapping.

PROOF. (=) Suppose that ¢ : X — Y is a 2-homomorphism, i.e. suppose
that o1 (Us(p())) = ¢~ (@(Uas(z))) holds. Let (z,2') € ¢~1(B) be arbitrary el-
ement. Then (p(z), p(2)) € B and ¢(z') € Us(p(z)). Thus 2’ € o~ (Ug(p(x))) =
0 H@(Uq())). So, there exists an element y € Y such that 2’ = ¢~!(y) and
Yy € @(Ua(x)). Further on, there exists an element " € U, (z)) such that y = ¢(x")
and (z,2") € a. Thus(’ "y € Kerp and (z,2') € Kerp o a.

Suppose xz,x’ € X are arbitrary elements such that (x, ) 6 «. Then 2’ €
Un (), which implies ¢(a') € p(Ua(2)) and 2’ € (¢ 0p)(z) C ¢~ (¢(Ua(z))) =
0 Y Us(p(z)). Hence, p(z') € Us(p(x)), which means (¢(z), go( ")) € B. So, the
mapping ¢ is an isotone mapping.

Therefore, ¢ is an u-super strong homomorphism.

(<=) Suppose that ¢ : X — Y is a 2—super strong homomorphism. Let
o’ € ¢ (Us(p(x))), which implies p(z’) € Ug(p(x)). Thus (p(z),p(z')) € B
and (z,2') € ¢~ }(B) C Kergoa. So, there exists an element z” € X such
that (z,2"”) € a and p(z”) = p(z’). Hence 2" € U,(x), which implies ¢92") €
©(Uyn(x)). Finally 2/ € ¢~ (p(Uy(z))). The converse inclusion follows from the
condition (2) in Theorem 1. So, we have ¢~ (Ug(p(z)) = ¢~ (o(Us(2))). O

COROLLARY 3.4 ([2], Proposition 4). Let (X,<x) and (Y,<y) be ordered sets
under quasi-orders and ¢ : X — Y be a mapping. Then the mapping ¢ is a
2-homomorphism if and only if ¢ is an isotone u-super strong mapping.

THEOREM 3.5. Let (X,a) and (Y, ) be relational systems and ¢ : X — Y
be a mapping. Then the mapping ¢ is a 3-homomorphism if and only if ¢ is an
isotone l-super strong mapping.
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PROOF. (=) Let ¢ be a 3—homomorphism, i.e. suppose that

¢~ (Us(p(2))) = Ual(p™" 0 9)(2))
holds.

Suppose (z,2) € afor z,2' € X. Since z € (¢~ top)(z), we have 2’ € U, (z) C
Ua((p™t 0 0)(x)) = ¢ (Us(p(2)). Hence o(a’) € Ug(p(x)) and (p(z), p(a')) € B.
So, the mapping ¢ is an isotone mapping.

Let (z,2') € ¢~1(B) be arbitrary element. This means (¢(z), ¢(2')) € 8. Thus
o(2') € Ug(p(z)) and 2’ € o1 (Us(p(z))) = Ua((¢~ o ¢)(z)). Hence, there exists
an element x” € (o~ o p)(z) such that (2”,2') € a. Therefore, (z,2') € ao Kere.
So, the ¢ is a [—super strong homomorphism.

(«<=) Suppose that ¢ : X — Y is an [—super strong homomorphism between
two relational systems. Since ¢ is a homomorphism, then, by condition (3) in
Theorem 1, the inclusion U, ((¢~! o )(x)) € ¢~ 1 (Us(p(z))) holds. Opposite,
let 2’ € 1 (Ug(p(z))), ie. let p(z) € Us(p(z)) holds. Then (p(z),¢(z')) € B
and (x,2") € ™ 1(8) C ao Kery. So, there exists an element 2 € X such that
2" € (pltop)(x) and (2”,2") € a. Thus 2’ € Uy((p~! o ¢o(z)). Therefore, the
mapping ¢ is an isotone 3—homomorphism. (|

COROLLARY 3.5 ([2], Proposition 5). Let (X,<x) and (Y,<y) be ordered sets
under quasi-orders and ¢ : X — Y be a mapping. Then the mapping ¢ is a
3-homomorphism if and only if ¢ is an isotone l-super strong mapping.
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