# EFFICIENT DOMINATION IN MYCIELSKI'S GRAPHS 

M. Anitha and S. Balamurugan


#### Abstract

Given a graph $G$ and any integer $m \geqslant 0$, Mycielski constructed a graph $\mu(G)$ and one can transform $G$ into a generalized mycielskian of $G$, $\mu_{m}(G)$. This paper investigate the diameter of $\mu_{m}(G)$. A subset $S \subseteq V(G)$ for which $|N[v] \cap S|=1$ for every $v \in V(G)$ is called a perfect code. Efficient domination is a generalization of a perfect code. A perfect code $S$ for a graph $G$ is also called an efficient dominating set. We say that $G$ is efficiently dominatable. We show: For a graph $G$ without isolated vertices, $\mu(G)$ and $\mu_{m}(G)$ are not efficiently dominatable whenever $G$ is efficiently dominatable.


## 1. Introduction

Let $G=(V, E)$ be an undirected graph with vertex set $V$ and edge set $E$. For graph theoretic terminology, we refer to [1] and [2]. The distance between two vertices $u$ and $v$ in a graph $G$, denoted by $d_{G}(u, v)$ is the length of a shortest path between them.

For a set $S$ of vertices, we define $d_{G}(u, S)=\min \left\{d_{G}(u, v) \mid\right.$ for all $\left.v \in S\right\}$. The diameter of $G$, denoted by $\operatorname{diam}(G)$, is the greatest distance between two vertices of $G$. The open neighborhood of $v \in V$ is $N(v)=\{u \in V \mid u v \in E\}$ and closed neighborhood of $v \in V$ is $N[v]=N(v) \cup\{v\}$. For a set $S$ of vertices, we define the open neighborhood $N(S)=\bigcup_{v \in S} N(v)$ and the closed neighborhood $N[S]=N(S) \cup S$. A packing is a set of vertices whose closed neighborhoods are disjoint. The packing number, $\eta(G)$ of a graph $G$ is the maximum order of a packing of $G$.
T. W. Haynes et al [4] introduced efficient domination as a generalization of a perfect code. A subset $S \subseteq V(G)$ for which $|N[v] \cap S|=1$ for every $v \in V(G)$ is

[^0]called a perfect code. We note that if $S \subseteq V(G)$ is a perfect code for $G$, then for every pair $u, v \in S$ we must have $d(u, v) \geqslant 3$ which implies that $S$ is a packing. For any subset $S \subseteq V(G)$, let $I(S)=\sum_{u \in S}(1+\operatorname{deg}(u))$ denote the influence of $S$. The efficient domination number of $G, F(G)$ is defined by the maximum number of vertices that can be efficiently dominated by a packing. That is
$$
F(G)=\max \{|N[S]| \mid S \text { is a packing }\}=\max \{I(S) \mid S \text { is a packing }\}
$$

When $F(G)=|V(G)|$, T.W. Haynes et al says that $G$ is efficiently dominatable. A perfect code $S$ for a graph $G$ is also called an efficient dominating set. We says that there exists a packing, $S$ with $I(S)=|V(G)|$ whenever $G$ is efficiently dominatable and the cardinality of $N[S]$ is also called as influence of $S$, for a packing $S$. That is every vertex in $G$ is either in $S$ or in $N(S)$.

## 2. The Mycielski Construction

In 1955, Mycielski, [7] introduced a admirable construction to increase the chromatic number of triangle free graphs without increasing a clique number. W. Lin et al [5] call this mycielski's graph as mycielskian of $G$. The Mycielskian $\mu(G)$ of a graph $G$ is defined as follows:

Let $G$ be a graph with vertex set $V=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and edge set $E$. Let $V^{1}$ be a copy of the vertex set and $u$ be a single vertex. Then the Mycielskian $\mu(G)$ has the vertex set $V^{0} \cup V^{1} \cup\{u\}$. The edge set of $\mu(G)$ is the set

$$
\left\{v_{i}^{0} v_{j}^{0}: v_{i} v_{j} \in E\right\} \cup\left\{v_{i}^{0} v_{j}^{1}: v_{i} v_{j} \in E\right\} \cup\left\{v_{j}^{1} u: \forall v_{j}^{1} \in V^{1}\right\}
$$

The generalized Mycielskian $\mu_{m}(G)$ of a graph $G$ is defined as follows: Let G be a graph with vertex set $V=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and edge set $E$ and let $m$ be any positive integer. For each integer $k(0 \leqslant k \leqslant m)$, let $V^{k}$ be a copy of vertices in $V$, that is $V^{k}=\left\{v_{1}^{k}, v_{2}^{k}, \cdots, v_{n}^{k}\right\}$. The $m$ - mycielskian $\mu_{m}(G)$ has the vertex set $V^{0} \cup V^{1} \cup \cdots \cup V^{m} \cup\{u\}$ where $u$ is a single vertex. The edge set of $\mu_{m}(G)$ is the set

$$
\left\{v_{i}^{0} v_{j}^{0}: v_{i} v_{j} \in E\right\} \cup\left(\bigcup_{k=0}^{m-1}\left\{v_{i}^{k} v_{j}^{k+1}: v_{i} v_{j} \in E\right\}\right) \cup\left\{v_{j}^{m} u: \forall v_{j}^{m} \in V^{m}\right\}
$$

W. Lin et al [5] define $\mu_{0}(G)$ to be the graph obtained from $G$ by adding a universal vertex $u$.

We observe that every vertex $v_{i}^{k}$ in $V^{k}$ is adjacent to the vertices $v_{j}^{k+1}$ in $V^{k+1}$ and $v_{j}^{k-1}$ in $V^{k-1}, k=1,2, \cdots, m-1$ if $v_{i}$ is adjacent to $v_{j}$ in $G$. No two vertices in $V^{k}$ are adjacent to each other except $k=0$ and $v_{i}^{k}$ and $v_{i}^{l}$ are not adjacent, for all $i, k, l$.

## 3. Diameter

Theorem 3.1. For any graph $G$ without isolated vertices, $\operatorname{diam}\left(\mu_{m}(G)\right)=$ $\min \{\max \{\operatorname{diam}(G), m+1\}, 2 m+2\}$

Proof. Let $G$ be a given graph with a vertex set $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$. Given an integer $m \geqslant 1$, Let $\mu_{m}(G)$ be $m$ - Mycielskian of $G$ with the vertex set $V^{0} \cup V^{1} \cup \cdots \cup V^{m} \cup\{u\}$, where $V^{k}=\left\{v_{i}^{k} \mid v_{i} \in V\right\}$ is the $k^{t h}$ distinct copy of $V$, for $k=0,1,2, \cdots, m$. Clearly, $d\left(u, v^{0}\right)=m+1$ and $d\left(u, v^{k}\right)=m+1-k$ for all $k=1,2, \cdots, m$, since $u$ is adjacent to each vertex $v_{i}^{m}$ in $V^{m}$ and each vertex $v_{i}^{k}$ in $V^{k}$ is adjacent to $v_{j}^{k-1}$ in $V^{k-1}$, if $v_{i}$ is adjacent to $v_{j}$ in $G$. Next we have to calculate the length of the shortest path between $v_{i}^{k}$ and $v_{j}^{l}$.

If $k=l=0$, then $d\left(v_{i}^{0}, v_{j}^{0}\right)$ is either equal to $d\left(v_{i}, v_{j}\right)$, since the sub graph induced by $V^{0}$ is isomorphic to $G$, or the length of the shortest $v_{i}^{0}-v_{j}^{0}$ path containing the vertex $u$. Hence $d\left(v_{i}^{0}, v_{j}^{0}\right)=\min \left\{d\left(v_{i}, v_{j}\right), 2(m+1)\right\}$, for all $i, j$.

If any one of the integer of $k, l$ is zero and other not a zero, suppose that $k \neq 0$ and $l=0$, then $d\left(v_{i}^{0}, v_{j}^{k}\right)$ is the length of the shortest $v_{i}^{0}-v_{j}^{k}$ path containing the vertex $u$ or not containing $u$. Hence, $d\left(v_{i}^{0}, v_{j}^{k}\right) \leqslant 2 m+2-k$. Now if $d\left(v_{i}, v_{j}\right)<k$, then the length of the shortest $v_{i}^{0}-v_{j}^{k}$ path not containing the vertex $u$ is $k$, when both $d\left(v_{i}, v_{j}\right)$ and $k$ are even (or odd) and $k+1$, otherwise. Also if $d\left(v_{i}, v_{j}\right) \geqslant k$, then $d\left(v_{i}^{0}, v_{j}^{k}\right)=d\left(v_{i}, v_{j}\right)$, for all $i, j$. Hence, $d\left(v_{i}^{0}, v_{j}^{k}\right)=\min \left\{\max \left\{d\left(v_{i}, v_{j}\right), k+1\right\}, 2 m+2-k\right\}$.

Otherwise, the shortest $v_{i}^{k}-v_{j}^{l}$ path is in any one of the following form
(i) the path containing the vertex $u$
(ii) the path not containing the vertex $u$ but containing the vertex $v_{r}^{0}$ in $V^{0}$, for some $r$
(iii) the path does not contain a vertex, $v_{r}^{0}$ in $V^{0}$ and $u$

It is clear that (iii) is the required shortest path if both $|k-l|$ and $d\left(v_{i}, v_{j}\right)$ is even or both $|k-l|$ and $d\left(v_{i}, v_{j}\right)$ is odd with $i \neq j$. In these cases, $d\left(v_{i}^{k}, v_{j}^{l}\right)=$ $\min \left\{\max \left\{d\left(v_{i}, v_{j}\right),|k-l|\right\}, 2 m+2-k-l\right\}$. Otherwise, the required shortest path must be in any one of the form $(i)$ and (ii). Let $j_{1}$ and $j_{2}$ be any two distinct indices such that $d\left(v_{j_{1}}, v_{j_{2}}\right)$ is minimum in $G$. Clearly, $d\left(v_{j_{1}}, v_{j_{2}}\right) \geqslant 1$. Hence the required shortest path must contains the section $P_{1}$, from $v_{i}^{k}$ to $v_{j_{1}}^{0}$ and the section $P_{2}$, from $v_{j_{2}}^{0}$ to $v_{j}^{l}$ or the section $Q_{1}$, from $v_{i}^{k}$ to $u$ and the section $Q_{2}$, from $u$ to $v_{j}^{l}$. Since $d\left(v_{i}^{k}, v_{j_{1}}^{0}\right)=k$ for some $j_{1}$ and $d\left(v_{j}^{l}, v_{j_{2}}^{0}\right)=l$ for some $j_{2}$, the shortest path between $v_{j_{1}}^{0}$ and $v_{j_{2}}^{0}$ together with $P_{1}$ and $P_{2}$ form a path between $v_{i}^{k}$ and $v_{j}^{l}$ through a vertex $v_{r}^{0}$ in $V^{0}$, for some $r$. Hence the length of this path is $d\left(v_{j_{1}}, v_{j_{2}}\right)+k+l$. On the other hand, $Q_{1} \cup Q_{2}$ is a path between $v_{i}^{k}$ and $v_{j}^{l}$ through a vertex $u$, then the length of a path $Q_{1} \cup Q_{2}$ is $2 m+2-k-l$. So that $d\left(v_{i}^{k}, v_{j}^{l}\right)=\min \left\{d\left(v_{j_{1}}, v_{j_{2}}\right)+k+l, 2 m+2-k-l\right\}$.

Since $0 \leqslant k \leqslant m$ and $0 \leqslant l \leqslant m$, all the distance discussed above are less than $2 m+2$. Hence $\operatorname{diam}\left(\mu_{m}(G)\right) \leqslant 2 m+2$. Also $\operatorname{diam}\left(\mu_{m}(G)\right)=\operatorname{diam}(G)$ if $\operatorname{diam}(G) \geqslant|k-l|$ and $\operatorname{diam}\left(\mu_{m}(G)\right)=|k-l|$ if $\operatorname{diam}(G)<|k-l|$. Hence,

$$
\operatorname{diam}\left(\mu_{m}(G)\right)=\min \{\max \{\operatorname{diam}(G), m+1\}, 2 m+2\}
$$

Corollary 3.1. [3] For any graph $G$ without isolated vertices,

$$
\operatorname{diam}(\mu(G))=\min \{\max \{\operatorname{diam}(G), 2\}, 4\}
$$

In the above theorem, $j_{1}$ and $j_{2}$ are considered as distinct indices. Suppose if $j_{1}=j_{2}$, we can replace the section $v_{j_{1}-1}^{1} v_{j_{1}}^{0} v_{j_{1}+1}^{1}$ by $v_{j_{1}-1}^{1} v_{j_{1}}^{2} v_{j_{1}+1}^{1}$ in the $v_{i}^{k}-v_{j}^{l}$ path. Hence there exists a $v_{i}^{k}-v_{j}^{l}$ path not containing the vertex $u$ and $v_{r}^{0}$ in $V^{0}$. Which is contradiction to the case assumption. Hence $d\left(v_{j_{1}}, v_{j_{2}}\right) \geqslant 1$. If the shortest $v_{i}^{k}-v_{j}^{l}$ path must be in any one of the form $(i)$ and $(i i)$, then $2 m+2-k-l \geqslant$ $d\left(v_{j_{1}}, v_{j_{2}}\right)+k+l+2$ if and only if $m \geqslant k+l$, since $d\left(v_{j_{1}}, v_{j_{2}}\right) \geqslant 1$.
Hence,

$$
d\left(v_{i}^{k}, v_{j}^{l}\right)= \begin{cases}d\left(v_{j_{1}}, v_{j_{2}}\right)+k+l+1, & m \geqslant k+l \\ 2 m+2-k-l, & m<k+l\end{cases}
$$

## 4. The Efficient Domination

Theorem 4.1 ([4]). The following are equivalent:
a) $S=\left\{v_{1}, v_{2}, \cdots, v_{k}\right\}$ is a perfect code for $G$.
b) $\left\{N\left[v_{1}\right], N\left[v_{2}\right], \cdots, N\left[v_{k}\right]\right\}$ is a partition of $V(G)$
c) $S$ is a packing and $\sum_{v \in S}(1+\operatorname{deg}(v))=|V(G)|$

Theorem $4.2([\mathbf{3}])$. For a graph $G$ without isolated vertices, $\eta(\mu(G))=\eta(G)$.
Theorem 4.3. For any graph $G, \mu_{0}(G)$ is efficiently dominatable with an efficient dominating set $\{u\}$.

Theorem 4.4. For a graph $G$ without isolated vertices, $\mu(G)$ is not efficiently dominatable whenever $G$ is efficiently dominatable.

Proof. Given a graph $G$ is efficiently dominatable. Let $S=\left\{v_{1}, v_{2}, \cdots, v_{m}\right\}$ be a perfect code of $G$. Let $|V(G)|=n$. Then, $S$ is a packing of $G$ and $I(S)=n$ (By theorem, 4.1). Since $S$ is a packing of $G$, for all $i=1,2, \cdots, m ; j=1,2, \cdots, m$ and $i \neq j$

$$
\begin{equation*}
d\left(v_{i}, v_{j}\right) \geqslant 3 \tag{4.1}
\end{equation*}
$$

Now, $m+\sum_{s \in S} \operatorname{deg} s=\sum_{s \in S}(1+\operatorname{deg} s)=I(S)=n$. This implies that

$$
\begin{equation*}
\sum_{s \in S} d e g s=n-m \tag{4.2}
\end{equation*}
$$

Let $S^{\prime}=\left\{v_{1}^{0}, v_{2}^{0}, \cdots, v_{m}^{0}\right\}$ and $S^{\prime \prime}=\left\{v_{1}^{0}, v_{2}^{0}, \cdots, v_{i-1}^{0}, v_{i}^{1}, v_{i+1}^{0}, \cdots, v_{m}^{0}\right\}$. From (4.1), $d\left(v_{i}^{0}, v_{j}^{0}\right) \geqslant 3$, for all $i=1,2, \cdots, m ; j=1,2, \cdots, m$ and $i \neq j$ then $S^{\prime}$ is a packing of $\mu(G)$. We have to prove that $d\left(v_{i}^{0}, v_{k}^{1}\right) \geqslant 3$, for all $i \neq k ; i=1,2, \cdots, m$. Suppose $d\left(v_{i}^{0}, v_{k}^{1}\right) \leqslant 2$, then $d\left(v_{i}^{0}, v_{k}^{0}\right) \leqslant 2$. Which leads to the contradiction. Hence $d\left(v_{i}^{0}, v_{k}^{1}\right) \geqslant 3$, for all $i \neq k ; i=1,2, \cdots, m$; implies that $S^{\prime \prime}$ is a packing of $\mu(G)$. Since $\eta(\mu(G))=\eta(G)$ (By theorem, 4.2) and $|S|=\left|S^{\prime}\right|=\left|S^{\prime \prime}\right|=m, S^{\prime}$ and $S^{\prime \prime}$ are the maximum packing of $\mu(G)$. Now

$$
\begin{gathered}
I\left(S^{\prime}\right)=\sum_{v_{i}^{0} \in S^{\prime}}\left(1+\operatorname{degv}_{i}^{0}\right) \\
=m+\sum_{v_{i}^{0} \in S^{\prime}} \operatorname{deg} v_{i}^{0}=m+2 \sum_{v_{i} \in S} \operatorname{degv}_{i}=m+2(n-m)=2 n-m<2 n+1 .
\end{gathered}
$$

Hence

$$
\begin{equation*}
I\left(S^{\prime}\right)<|V(\mu(G))| \tag{4.3}
\end{equation*}
$$

Also,

$$
\begin{gathered}
I\left(S^{\prime \prime}\right)=\sum_{s \in S^{\prime \prime}}(1+\operatorname{deg} s)=\sum_{v_{i}^{0} \in S^{\prime} ; i \neq k}\left(1+\operatorname{deg} v_{i}^{0}\right)+\left(1+\operatorname{deg}_{k}^{1}\right) \\
<\sum_{v_{i}^{0} \in S^{\prime} ; i \neq k}\left(\operatorname{deg} v_{i}^{0}\right)+m+\left(\operatorname{degv}_{k}^{0}\right)=m+2 \sum_{v_{i} \in S} \operatorname{deg}_{i} \\
=m+2(n-m)=2 n-m<2 n+1 .
\end{gathered}
$$

Hence

$$
\begin{equation*}
I\left(S^{\prime \prime}\right)<|V(\mu(G))| \tag{4.4}
\end{equation*}
$$

From (4.3) and (4.4), we get $F(\mu(G)) \neq|V(\mu(G))|$. This implies that $\mu(G)$ is not efficiently dominatable, since $\mu(G)$ has no perfect code.

For example, $K_{2}$ is efficiently dominatable but $\mu\left(K_{2}\right)=C_{5}$ not. In general, we can say that $\mu_{m}\left(K_{2}\right)=C_{2 m+3}$ is efficiently dominatable if and only if $m=3 k, k=$ $0,1,2, \cdots$.

Theorem 4.5. For a connected graph $G \neq K_{2}$ without isolated vertices, $\mu_{m}(G)$ is not efficiently dominatable whenever $G$ is efficiently dominatable.

Proof. Given a graph $G$ is efficiently dominatable. For a positive integer $m>1, \mu_{m}(G)$ be a generalized mysielskian graph. Let $S$ be a maximum packing of $\mu_{m}(G)$ and $T=N(S)$. Suppose that $\mu_{m}(G)$ is efficiently dominatable. Then $F(G)=N[S]=V\left(\mu_{m}(G)\right)$.

Case: 1 If $u \in S$, then $v_{i}^{m} \in T$, for all $i$ and no vertex of $V^{m}$ and $V^{m-1}$ belongs to $S$, since $d\left(v_{i}^{m}, u\right)=1$ and $d\left(v_{i}^{m-1}, u\right)=2$. Let $x$ and $y$ be any two vertices in G. If $N(x)=N(y)$, then clearly, $x$ and $y$ are nonadjacent vertices in $G$. Since $d\left(x^{m-2}, y^{m-2}\right)=2$, either $x^{m-2}$ or $y^{m-2}$ is in $S$. Hence either $x^{m-2} \notin N[S]$ or $y^{m-2} \notin N[S]$.

If $N(x) \supset N(y)$, then clearly $x$ and $y$ are non adjacent vertices in G. Since $d\left(x^{m-2}, y^{m-2}\right)=2$, either $x^{m-2}$ or $y^{m-2}$ is in $S$. Suppose if $x^{m-2} \in S, y^{m-2} \notin$ $N[S]$. Suppose if $y^{m-2} \in S$ then $x^{m-2} \notin N[S]$. Let $z \in N(x) \backslash N(y)$. For $x^{m-2} \in T$, $z^{m-3} \in S$, then clearly $z^{m-1} \notin N[S]$, since $d\left(z^{m-3}, z^{m-1}\right)=2$.

If $N(x)$ and $N(y)$ are not comparable. Suppose if $N(x) \bigcap N(y)=\phi$. If $x$ and $y$ are adjacent in $G$, then the subgraph, $H$ induced by the vertices $x, y, N(x)$ and $N(y)$ of a graph $G$ is either $P_{3}$ or a double star. Then, the copy of any two adjacent vertices of $H$ in $V^{m-2}$ belongs to $S$ and the copy of the remaining vertices in $V^{m-2}$, say $r^{m-2}$, are not in $N[S]$.

If $N[x] \cup N[y]=V(G), N[S] \subset V\left(\mu_{m}(G)\right)$, since $r^{m-2} \notin N[S]$.

Otherwise, for $r^{m-2} \in T$, if exists $q^{m-3} \in S$, where $r$ is adjacent to $q \in$ $V(G) \backslash(N[x] \bigcup N[y])$ in $G$, then $q^{m-1} \notin N[S]$. If $x$ and $y$ are non adjacent in $G$, then there exists a shortest path between $x$ and $y$ through a vertex of $N(x)$ and $N(y)$, since $G$ is connected.

Let $N(x)=\left\{x_{i} \mid 1 \leqslant i \leqslant r\right\}$ and $N(y)=\left\{y_{j} \mid 1 \leqslant j \leqslant s\right\}$. Let $P: p_{0} p_{1} \cdots p_{l}$ be such a path in $G$ where $p_{0}=x, p_{1}=x_{i}, p_{l-1}=y_{j}$ and $p_{l}=y$ We have to prove that there exists a vertex, $v$ in $\mu_{m}(G)$ such that $v \notin N[S]$. We use induction on $l$. If $l=3$, then the copy of any two adjacent vertices of the path $P$ in $V^{m-2}$ belongs to $S$ and the copy of the remaining vertices in $V^{m-2}$, say $r^{m-2}$, are not in $N[S]$.

If $N[x] \cup N[y]=V(G), N[S] \subset V\left(\mu_{m}(G)\right)$, since $r^{m-2} \notin N[S]$.
Otherwise, for $r^{m-2} \in T$, if exists $q^{m-3} \in S$, where $r$ is adjacent to $q \in$ $V(G) \backslash(N[x] \bigcup N[y])$ in $G$, then $q^{m-1} \notin N[S]$.

Assume that the result is true for all path of length less than $l$. Let $P$ be the path of length $l$. By induction hypothesis, there exists a vertex $z_{1}^{m-2}$ such that $z_{1}^{m-2} \notin N[S]$ where $z_{1}$ is the vertex in the path of length $l-1$. Add a new vertex, $z_{2}$ to this path such that the resultant is a path of length $l$. If $d\left(z_{1}, z_{2}\right)$ is odd in $G$, then clearly, $z_{1}^{m-2} \notin N[S]$. If $d\left(z_{1}, z_{2}\right)=4 k+2, k=0,1,2 \cdots$, then either $z_{1}^{m-2} \notin N[S]$ or $z_{2}^{m-2} \notin N[S]$. If $d\left(z_{1}, z_{2}\right)=4 k, k=0,1,2 \cdots$, then $d\left(z_{2}^{m-2}, S\right)=2$, since $d\left(z_{1}^{m-2}, S\right)=2$. Hence neither $z_{1}^{m-2}$ nor $z_{2}^{m-2}$ belongs to $S$. Therefore there exists a vertex, $v$ in $\mu_{m}(G)$ such that $v \notin N[S]$.

If $N(x) \bigcap N(y) \neq \phi$, then either $x^{m-2}$ or $y^{m-2}$ are in $S$. Without loss of generality, Let $x^{m-2} \in S$, Let $z \in N(y) \backslash N(x)$. For $y^{m-2} \in T, z^{m-3} \in S$, then clearly $z^{m-1} \notin N[S]$, since $d\left(z^{m-3}, z^{m-1}\right)=2$.

Case: 2 Let $u \notin S$. For $u \in T$, there exists at most one vertex $x^{m}$ in $V^{m}$ belongs to $S$, since $d\left(x^{m}, y^{m}\right)=2$ for all $x^{m}, y^{m} \in V^{m}$.

Suppose, Let $x_{1}$ be a unique vertex adjacent to $x$ in $G$. Clearly, $x_{1}^{m} \notin N[S]$. Since $G \neq K_{2}$, there exists a vertex, $x_{2}$ in $V(G) \backslash\left\{x, x_{1}\right\}$, adjacent to $x_{1}$. For $x_{1}^{m} \in$ $T$, either $x^{m-1} \in S$ or $x_{2}^{m-1} \in S$. If $x_{2}^{m-1} \in S$, then $x^{m-1} \notin N[S]$. For $x^{m-1} \in T$ there exists no vertex, $v$ in $V^{m-3}$ such that $d(v, S) \geqslant 3$. If $x^{m-1} \in S$ then $x_{2}^{m}$ and $x_{2}^{m-1}$ are not in $S$. For $x_{2}^{m} \in T$, if there exists a vertex, $x_{3}$ in $V(G) \backslash\left\{x, x_{1}, x_{2}\right\}$, adjacent to $x_{2}$ such that $x_{3} \notin N\left(\left\{x, x_{1}\right\}\right)$, Then $x_{3}^{m-1} \in S$ but $x_{3}^{m} \notin N[S]$. For $x_{3}^{m} \in T$, if there exists a vertex, $x_{4}$ in $V(G) \backslash\left\{x, x_{1}, x_{2}, x_{3}\right\}$, adjacent to $x_{3}$ such that $x_{4} \notin N\left(\left\{x, x_{1}, x_{2}\right\}\right)$, Then $x_{4}^{m-1} \in S$ but still $x_{2}^{m-1} \notin N[S]$. For $x_{2}^{m-1} \in T$, if there exists a vertex, $x_{5}$ in $V(G) \backslash\left\{x, x_{1}, x_{2}, x_{3}, x_{4}\right\}$, adjacent to $x_{2}$ such that $x_{5} \notin N\left(\left\{x, x_{1}, x_{3}, x_{4}\right\}\right)$, Then $x_{5}^{m-2} \in S$ but $x_{5}^{m} \notin N[S]$. Proceeding in this way, we concluded that there exists a vertex, $v$ either in $V^{m}$ or in $V^{m-1}$ such that $v \notin N[S]$.

Otherwise, Let $N(x)=\left\{x_{1}, x_{2}, \cdots x_{t}\right\}$ in G. If $x^{m-1} \in S$ then the copy of all the vertices of $N(x)$ in $V^{m}, V^{m-1}$ and $V^{m-2}$ belongs to $T$. Since $x^{m-2}, x^{m-3} \notin S$, If possible, for $x^{m-2} \in T$ and $x^{m-3} \in T$, the copy of $x_{i} \in N(x)$, for some unique i, in $V^{m-3}$ and $V^{m-4}$ belongs to $S$ respectively. Hence the copy of the vertices of $N(x) \backslash\left\{x_{i}\right\}$ in $V^{m-3}$ and $V^{m-4}$ does not belongs to $N[S]$. Suppose if there exists a vertex, $v_{1} \in V(G) \backslash N[x]$ is adjacent to any vertex, $x_{j}(i \neq j)$ in $N(x)$, then $v_{1}^{m} \notin N[S]$ and $v_{1}^{m-1} \notin N[S]$. For $v_{1}^{m} \in T$, Suppose if there exists a vertex,
$v_{2} \in V(G) \backslash\left(\left\{v_{1}\right\} \cup N[x]\right)$ is adjacent to $v_{1}$, then $v_{2}^{m-1} \in S$, but $v_{2}^{m} \notin N[S]$. For $v_{2}^{m} \in T$, Suppose if there exists a vertex, $v_{3} \in V(G) \backslash\left(N[x] \cup\left\{v_{1}, v_{2}\right\}\right)$ is adjacent to $v_{2}$, then $v_{3}^{m-1} \in S$, but still $v_{1}^{m-1} \notin N[S]$ For $v_{1}^{m-1} \in T$, Suppose if there exists a vertex, $v_{4} \in V(G) \backslash\left(N[x] \cup\left\{v_{1}, v_{2}, v_{3}\right\}\right)$ is adjacent to $v_{1}$, then $v_{4}^{m-2} \in S$, but still $v_{4}^{m} \notin N[S]$. Proceeding in this way, we concluded that there exists a vertex, $v$ either in $V^{m}$ or in $V^{m-1}$ such that $v \notin N[S]$.

Both cases show that there must be exists a vertex, $v$ in $V\left(\mu_{m}(G)\right)$ (in particular, $v$ is in $V^{m}$ or $V^{m-1}$ ) such that $v \notin N[S]$.

Hence $N[S] \subset V\left(\mu_{m}(G)\right)$. This implies that $F\left(\mu_{m}(G)\right) \neq\left|V\left(\mu_{m}(G)\right)\right|$. Which leads to the contradiction. Therefore $\mu_{m}(G)$ is not efficiently dominatable.

Corollary 4.1. For a graph $G \neq K_{2}$ without isolated vertices $\mu_{m}(G)$ is not efficiently dominatable whenever $G$ is efficiently dominatable.

## References

[1] R. Balakrishnan and K. Ranganathan. A textbook of graph theory. Springer, 2011.
[2] J. A. Bondy and U.S.R. Murthy. Graph theory with Applications. Mew York: North-Holland, 1982.
[3] D. C. Fisher, P. A. McKenna and E. D. Boyer. Hamiltonicity, diameter, domination, packing, and biclique partitions of Mycielski's graphs. Discrete Apl. Math., 84(1-3)(1998), 93-105.
[4] T. W. Haynes, S. T. Hedetniemi and P. J. Slater. Fundamentals of domination in graphs. Marcel dekker, Inc, New York, 1998.
[5] W. Lin, J. Wu, P. Che Bor Lam and G. Gu. Several parameters of generalized Mycielskians. Discrete Apll. Math., 154(8)(2006), 1173-1182.
[6] T. Meagher. Multi-coloring and Mycielski's construction.
Available at address http://web.pdx.edu/ caughman/TimRound6.pdf.
[7] J. Mycielski. Sur le coloriage des graphes. Colloq. Math., 3(2)(1955), 161-162. Received by editors 04.02.2019; Revised version 10.05.2019; Available online 20.05.2019.

Department of Mathematics, Syed Ammal Arts and Science College, Ramanathapuram, Tamilnadu, India

E-mail address: ani.thania@gmail.com
PG Department of Mathematics, Government Arts College, Madurai, Tamilnadu, INDIA

E-mail address: balapoojaa2009@gmail.com


[^0]:    2010 Mathematics Subject Classification. Primary 05C69.
    Key words and phrases. Diameter, Efficient domination, Efficient domination Number, Mycielski's graph.

