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EFFICIENT DOMINATION IN MYCIELSKI’S GRAPHS

M. Anitha and S. Balamurugan

Abstract. Given a graph G and any integer m > 0, Mycielski constructed
a graph µ(G) and one can transform G into a generalized mycielskian of G,
µm(G). This paper investigate the diameter of µm(G). A subset S ⊆ V (G)
for which |N [v] ∩ S| = 1 for every v ∈ V (G) is called a perfect code. Efficient

domination is a generalization of a perfect code. A perfect code S for a graph
G is also called an efficient dominating set. We say that G is efficiently
dominatable. We show: For a graph G without isolated vertices, µ(G) and
µm(G) are not efficiently dominatable whenever G is efficiently dominatable.

1. Introduction

Let G = (V,E) be an undirected graph with vertex set V and edge set E.
For graph theoretic terminology, we refer to [1] and [2]. The distance between two
vertices u and v in a graph G, denoted by dG(u, v) is the length of a shortest path
between them.

For a set S of vertices, we define dG(u, S) = min {dG(u, v) | for all v ∈ S}.
The diameter of G, denoted by diam(G), is the greatest distance between two
vertices of G. The open neighborhood of v ∈ V is N(v) = {u ∈ V |uv ∈ E} and
closed neighborhood of v ∈ V is N [v] = N(v) ∪ {v}. For a set S of vertices,
we define the open neighborhood N(S) =

∪
v∈S

N(v) and the closed neighborhood

N [S] = N(S) ∪ S. A packing is a set of vertices whose closed neighborhoods are
disjoint. The packing number, η(G) of a graph G is the maximum order of a packing
of G.

T. W. Haynes et al [4] introduced efficient domination as a generalization of a
perfect code. A subset S ⊆ V (G) for which |N [v] ∩ S| = 1 for every v ∈ V (G) is
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2 ANITHA AND BALAMURUGAN

called a perfect code. We note that if S ⊆ V (G) is a perfect code for G, then for
every pair u, v ∈ S we must have d(u, v) > 3 which implies that S is a packing.
For any subset S ⊆ V (G), let I(S) =

∑
u∈S

(1 + deg(u)) denote the influence of S.

The efficient domination number of G, F (G) is defined by the maximum number
of vertices that can be efficiently dominated by a packing. That is

F (G) = max {|N [S]| | S is a packing} = max {I(S) | S is a packing} .

When F (G) = |V (G)|, T.W. Haynes et al says that G is efficiently dominatable. A
perfect code S for a graph G is also called an efficient dominating set. We says that
there exists a packing, S with I(S) = |V (G)| whenever G is efficiently dominatable
and the cardinality of N [S] is also called as influence of S, for a packing S. That
is every vertex in G is either in S or in N(S).

2. The Mycielski Construction

In 1955, Mycielski, [7] introduced a admirable construction to increase the
chromatic number of triangle free graphs without increasing a clique number. W.
Lin et al [5] call this mycielski’s graph as mycielskian of G. The Mycielskian µ(G)
of a graph G is defined as follows:

Let G be a graph with vertex set V = {v1, v2, · · · , vn} and edge set E. Let V 1

be a copy of the vertex set and u be a single vertex. Then the Mycielskian µ(G)
has the vertex set V 0 ∪ V 1 ∪ {u}. The edge set of µ(G) is the set{

v0i v
0
j : vivj ∈ E

}
∪
{
v0i v

1
j : vivj ∈ E

}
∪
{
v1ju : ∀v1j ∈ V 1

}
.

The generalized Mycielskian µm(G) of a graph G is defined as follows: Let G be
a graph with vertex set V = {v1, v2, · · · , vn} and edge set E and let m be any
positive integer. For each integer k(0 6 k 6 m), let V k be a copy of vertices in
V , that is V k =

{
vk1 , v

k
2 , · · · , vkn

}
. The m - mycielskian µm(G) has the vertex set

V 0 ∪ V 1 ∪ · · · ∪ V m ∪ {u} where u is a single vertex. The edge set of µm(G) is the
set {

v0i v
0
j : vivj ∈ E

}
∪

(
m−1∪
k=0

{
vki v

k+1
j : vivj ∈ E

})
∪
{
vmj u : ∀vmj ∈ V m

}
.

W. Lin et al [5] define µ0(G) to be the graph obtained from G by adding a
universal vertex u.

We observe that every vertex vki in V k is adjacent to the vertices vk+1
j in V k+1

and vk−1
j in V k−1, k = 1, 2, · · · ,m− 1 if vi is adjacent to vj in G. No two vertices

in V k are adjacent to each other except k = 0 and vki and vli are not adjacent, for
all i, k, l.

3. Diameter

Theorem 3.1. For any graph G without isolated vertices, diam (µm(G)) =
min {max {diam(G),m+ 1} , 2m+ 2}
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Proof. Let G be a given graph with a vertex set {v1, v2, · · · , vn}. Given
an integer m > 1, Let µm(G) be m - Mycielskian of G with the vertex set
V 0 ∪ V 1 ∪ · · · ∪ V m ∪ {u}, where V k = {vki | vi ∈ V } is the kth distinct copy of
V , for k = 0, 1, 2, · · · ,m. Clearly, d(u, v0) = m + 1 and d(u, vk) = m + 1 − k for
all k = 1, 2, · · · ,m, since u is adjacent to each vertex vmi in V m and each vertex

vki in V k is adjacent to vk−1
j in V k−1, if vi is adjacent to vj in G. Next we have to

calculate the length of the shortest path between vki and vlj .

If k = l = 0, then d(v0i , v
0
j ) is either equal to d(vi, vj), since the sub graph

induced by V 0 is isomorphic to G, or the length of the shortest v0i − v0j path con-

taining the vertex u. Hence d(v0i , v
0
j ) = min {d(vi, vj), 2(m+ 1)}, for all i, j.

If any one of the integer of k, l is zero and other not a zero, suppose that
k ̸= 0 and l = 0, then d(v0i , v

k
j ) is the length of the shortest v0i − vkj path

containing the vertex u or not containing u. Hence, d(v0i , v
k
j ) 6 2m + 2 − k.

Now if d(vi, vj) < k, then the length of the shortest v0i − vkj path not contain-
ing the vertex u is k, when both d(vi, vj) and k are even (or odd) and k + 1,
otherwise. Also if d(vi, vj) > k, then d(v0i , v

k
j ) = d(vi, vj), for all i, j. Hence,

d(v0i , v
k
j ) = min {max {d(vi, vj), k + 1} , 2m+ 2− k}.

Otherwise, the shortest vki − vlj path is in any one of the following form

(i) the path containing the vertex u
(ii) the path not containing the vertex u but containing the vertex v0r in V 0,

for some r
(iii) the path does not contain a vertex, v0r in V 0 and u

It is clear that (iii) is the required shortest path if both |k − l| and d(vi, vj)
is even or both |k − l| and d(vi, vj) is odd with i ̸= j. In these cases, d(vki , v

l
j) =

min {max {d(vi, vj), |k − l|} , 2m+ 2− k − l}. Otherwise, the required shortest
path must be in any one of the form (i) and (ii). Let j1 and j2 be any two distinct
indices such that d(vj1 , vj2) is minimum in G. Clearly, d(vj1 , vj2) > 1. Hence
the required shortest path must contains the section P1, from vki to v0j1 and the

section P2, from v0j2 to vlj or the section Q1, from vki to u and the section Q2,

from u to vlj . Since d(vki , v
0
j1
) = k for some j1 and d(vlj , v

0
j2
) = l for some j2, the

shortest path between v0j1 and v0j2 together with P1 and P2 form a path between

vki and vlj through a vertex v0r in V 0, for some r. Hence the length of this path

is d(vj1 , vj2) + k + l. On the other hand, Q1 ∪ Q2 is a path between vki and vlj
through a vertex u, then the length of a path Q1 ∪ Q2 is 2m + 2 − k − l. So that
d(vki , v

l
j) = min {d(vj1 , vj2) + k + l, 2m+ 2− k − l}.

Since 0 6 k 6 m and 0 6 l 6 m, all the distance discussed above are less
than 2m + 2. Hence diam (µm(G)) 6 2m + 2. Also diam (µm(G)) = diam(G) if
diam(G) > |k − l| and diam (µm(G)) = |k − l| if diam(G) < |k − l|. Hence,

diam (µm(G)) = min {max {diam(G),m+ 1} , 2m+ 2} .

�



4 ANITHA AND BALAMURUGAN

Corollary 3.1. [3] For any graph G without isolated vertices,

diam (µ(G)) = min {max {diam(G), 2} , 4} .

In the above theorem, j1 and j2 are considered as distinct indices. Suppose if
j1 = j2, we can replace the section v1j1−1v

0
j1
v1j1+1 by v1j1−1v

2
j1
v1j1+1 in the vki − vlj

path. Hence there exists a vki − vlj path not containing the vertex u and v0r in

V 0. Which is contradiction to the case assumption. Hence d(vj1 , vj2) > 1. If the
shortest vki −vlj path must be in any one of the form (i) and (ii), then 2m+2−k−l >
d(vj1 , vj2) + k + l + 2 if and only if m > k + l, since d(vj1 , vj2) > 1.
Hence,

d(vki , v
l
j) =

{
d(vj1 , vj2) + k + l + 1, m > k + l

2m+ 2− k − l, m < k + l
.

4. The Efficient Domination

Theorem 4.1 ([4]). The following are equivalent:

a) S = {v1, v2, · · · , vk} is a perfect code for G.

b) {N [v1], N [v2], · · · , N [vk]} is a partition of V (G)

c) S is a packing and
∑
v∈S

(1 + deg(v)) = |V (G)|

Theorem 4.2 ([3]). For a graph G without isolated vertices, η (µ(G)) = η(G).

Theorem 4.3. For any graph G, µ0(G) is efficiently dominatable with an ef-
ficient dominating set {u}.

Theorem 4.4. For a graph G without isolated vertices, µ(G) is not efficiently
dominatable whenever G is efficiently dominatable.

Proof. Given a graph G is efficiently dominatable. Let S = {v1, v2, · · · , vm}
be a perfect code of G. Let |V (G)| = n. Then, S is a packing of G and I(S) = n
(By theorem, 4.1). Since S is a packing of G, for all i = 1, 2, · · · ,m; j = 1, 2, · · · ,m
and i ̸= j

(4.1) d(vi, vj) > 3

Now, m+
∑
s∈S

deg s =
∑
s∈S

(1 + degs) = I(S) = n. This implies that

(4.2)
∑
s∈S

degs = n−m

Let S′ =
{
v01 , v

0
2 , · · · , v0m

}
and S′′ =

{
v01 , v

0
2 , · · · , v0i−1, v

1
i , v

0
i+1, · · · , v0m

}
. From

(4.1), d(v0i , v
0
j ) > 3, for all i = 1, 2, · · · ,m; j = 1, 2, · · · ,m and i ̸= j then S′ is a

packing of µ(G). We have to prove that d(v0i , v
1
k) > 3, for all i ̸= k; i = 1, 2, · · · ,m.

Suppose d(v0i , v
1
k) 6 2, then d(v0i , v

0
k) 6 2. Which leads to the contradiction. Hence

d(v0i , v
1
k) > 3, for all i ̸= k; i = 1, 2, · · · ,m; implies that S′′ is a packing of µ(G).

Since η (µ(G)) = η(G) (By theorem, 4.2 ) and |S| = |S′| = |S′′| = m, S′ and S′′

are the maximum packing of µ(G). Now
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I(S′) =
∑

v0
i∈S′

(
1 + degv0i

)
= m+

∑
v0
i∈S′

degv0i = m+ 2
∑

vi∈S

degvi = m+ 2(n−m) = 2n−m < 2n+ 1.

Hence

(4.3) I(S′) < |V (µ(G))|
Also,

I(S′′) =
∑

s∈S′′
(1 + degs) =

∑
v0
i∈S′;i ̸=k

(
1 + degv0i

)
+ (1 + degv1k)

<
∑

v0
i∈S′;i ̸=k

(
degv0i

)
+m+ (degv0k) = m+ 2

∑
vi∈S

degvi

= m+ 2(n−m) = 2n−m < 2n+ 1.

Hence

(4.4) I(S′′) < |V (µ(G))|
From (4.3) and (4.4), we get F (µ(G)) ̸= |V (µ(G))|. This implies that µ(G) is not
efficiently dominatable, since µ(G) has no perfect code. �

For example, K2 is efficiently dominatable but µ(K2) = C5 not. In general, we
can say that µm(K2) = C2m+3 is efficiently dominatable if and only if m = 3k, k =
0, 1, 2, · · · .

Theorem 4.5. For a connected graph G ̸= K2 without isolated vertices, µm(G)
is not efficiently dominatable whenever G is efficiently dominatable.

Proof. Given a graph G is efficiently dominatable. For a positive integer
m > 1, µm(G) be a generalized mysielskian graph. Let S be a maximum packing
of µm(G) and T = N(S). Suppose that µm(G) is efficiently dominatable. Then
F (G) = N [S] = V (µm(G)).

Case: 1 If u ∈ S, then vmi ∈ T , for all i and no vertex of V m and V m−1

belongs to S, since d(vmi , u) = 1 and d(vm−1
i , u) = 2. Let x and y be any two

vertices in G. If N(x) = N(y), then clearly, x and y are nonadjacent vertices in G.
Since d(xm−2, ym−2) = 2, either xm−2 or ym−2 is in S. Hence either xm−2 /∈ N [S]
or ym−2 /∈ N [S].

If N(x) ⊃ N(y), then clearly x and y are non adjacent vertices in G. Since
d(xm−2, ym−2) = 2, either xm−2 or ym−2 is in S. Suppose if xm−2 ∈ S, ym−2 /∈
N [S]. Suppose if ym−2 ∈ S then xm−2 /∈ N [S]. Let z ∈ N(x)\N(y). For xm−2 ∈ T ,
zm−3 ∈ S, then clearly zm−1 /∈ N [S], since d(zm−3, zm−1) = 2.

If N(x) and N(y) are not comparable. Suppose if N(x)
∩

N(y) = ϕ. If x and
y are adjacent in G, then the subgraph, H induced by the vertices x, y,N(x) and
N(y) of a graph G is either P3 or a double star. Then, the copy of any two adjacent
vertices of H in V m−2 belongs to S and the copy of the remaining vertices in V m−2,
say rm−2, are not in N [S].

If N [x] ∪N [y] = V (G), N [S] ⊂ V (µm(G)), since rm−2 /∈ N [S].
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Otherwise, for rm−2 ∈ T , if exists qm−3 ∈ S, where r is adjacent to q ∈
V (G)\ (N [x]

∪
N [y]) in G, then qm−1 /∈ N [S]. If x and y are non adjacent in G,

then there exists a shortest path between x and y through a vertex of N(x) and
N(y), since G is connected.

Let N(x) = {xi | 1 6 i 6 r} and N(y) = {yj | 1 6 j 6 s}. Let P : p0p1 · · · pl
be such a path in G where p0 = x, p1 = xi, pl−1 = yj and pl = y We have to prove
that there exists a vertex, v in µm(G) such that v /∈ N [S]. We use induction on l.
If l = 3, then the copy of any two adjacent vertices of the path P in V m−2 belongs
to S and the copy of the remaining vertices in V m−2, say rm−2, are not in N [S].

If N [x] ∪N [y] = V (G), N [S] ⊂ V (µm(G)), since rm−2 /∈ N [S].
Otherwise, for rm−2 ∈ T , if exists qm−3 ∈ S, where r is adjacent to q ∈

V (G)\ (N [x]
∪

N [y]) in G, then qm−1 /∈ N [S].
Assume that the result is true for all path of length less than l. Let P be

the path of length l. By induction hypothesis, there exists a vertex zm−2
1 such

that zm−2
1 /∈ N [S] where z1 is the vertex in the path of length l − 1. Add a new

vertex, z2 to this path such that the resultant is a path of length l. If d(z1, z2)
is odd in G, then clearly, zm−2

1 /∈ N [S]. If d(z1, z2) = 4k + 2, k = 0, 1, 2 · · · ,
then either zm−2

1 /∈ N [S] or zm−2
2 /∈ N [S]. If d(z1, z2) = 4k, k = 0, 1, 2 · · · , then

d(zm−2
2 , S) = 2, since d(zm−2

1 , S) = 2. Hence neither zm−2
1 nor zm−2

2 belongs to S.
Therefore there exists a vertex, v in µm(G) such that v /∈ N [S].

If N(x)
∩

N(y) ̸= ϕ, then either xm−2 or ym−2 are in S. Without loss of
generality, Let xm−2 ∈ S, Let z ∈ N(y)\N(x). For ym−2 ∈ T , zm−3 ∈ S, then
clearly zm−1 /∈ N [S], since d(zm−3, zm−1) = 2.

Case: 2 Let u /∈ S. For u ∈ T , there exists at most one vertex xm in V m

belongs to S, since d(xm, ym) = 2 for all xm, ym ∈ V m.
Suppose, Let x1 be a unique vertex adjacent to x in G. Clearly, xm

1 /∈ N [S].
Since G ̸= K2, there exists a vertex, x2 in V (G)\{x, x1}, adjacent to x1. For x

m
1 ∈

T , either xm−1 ∈ S or xm−1
2 ∈ S. If xm−1

2 ∈ S, then xm−1 /∈ N [S]. For xm−1 ∈ T
there exists no vertex, v in V m−3 such that d(v, S) > 3. If xm−1 ∈ S then xm

2 and
xm−1
2 are not in S. For xm

2 ∈ T , if there exists a vertex, x3 in V (G)\{x, x1, x2},
adjacent to x2 such that x3 /∈ N ({x, x1}), Then xm−1

3 ∈ S but xm
3 /∈ N [S]. For

xm
3 ∈ T , if there exists a vertex, x4 in V (G)\{x, x1, x2, x3}, adjacent to x3 such

that x4 /∈ N ({x, x1, x2}), Then xm−1
4 ∈ S but still xm−1

2 /∈ N [S]. For xm−1
2 ∈ T ,

if there exists a vertex, x5 in V (G)\{x, x1, x2, x3, x4}, adjacent to x2 such that
x5 /∈ N ({x, x1, x3, x4}), Then xm−2

5 ∈ S but xm
5 /∈ N [S]. Proceeding in this way,

we concluded that there exists a vertex, v either in V m or in V m−1 such that
v /∈ N [S].

Otherwise, Let N(x) = {x1, x2, · · ·xt} in G. If xm−1 ∈ S then the copy of all
the vertices of N(x) in V m, V m−1 and V m−2 belongs to T . Since xm−2, xm−3 /∈ S,
If possible, for xm−2 ∈ T and xm−3 ∈ T , the copy of xi ∈ N(x), for some unique
i, in V m−3 and V m−4 belongs to S respectively. Hence the copy of the vertices
of N(x)\{xi} in V m−3 and V m−4 does not belongs to N [S]. Suppose if there
exists a vertex, v1 ∈ V (G)\N [x] is adjacent to any vertex, xj(i ̸= j) in N(x),

then vm1 /∈ N [S] and vm−1
1 /∈ N [S]. For vm1 ∈ T , Suppose if there exists a vertex,
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v2 ∈ V (G)\ ({v1} ∪N [x]) is adjacent to v1, then vm−1
2 ∈ S, but vm2 /∈ N [S]. For

vm2 ∈ T , Suppose if there exists a vertex, v3 ∈ V (G)\ (N [x] ∪ {v1, v2}) is adjacent
to v2, then vm−1

3 ∈ S, but still vm−1
1 /∈ N [S] For vm−1

1 ∈ T , Suppose if there exists
a vertex, v4 ∈ V (G)\ (N [x] ∪ {v1, v2, v3}) is adjacent to v1, then vm−2

4 ∈ S, but
still vm4 /∈ N [S]. Proceeding in this way, we concluded that there exists a vertex, v
either in V m or in V m−1 such that v /∈ N [S].

Both cases show that there must be exists a vertex, v in V (µm(G)) (in partic-
ular, v is in V m or V m−1) such that v /∈ N [S].

Hence N [S] ⊂ V (µm(G)). This implies that F (µm(G)) ̸= |V (µm(G))|. Which
leads to the contradiction. Therefore µm(G) is not efficiently dominatable. �

Corollary 4.1. For a graph G ̸= K2 without isolated vertices µm(G) is not
efficiently dominatable whenever G is efficiently dominatable.
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