INSERTION OF A CONTRA-BAIRE-1 (BAIRE-.5) FUNCTION BETWEEN TWO COMPARABLE REAL-VALUED FUNCTIONS

Majid Mirmiran and Binesh Naderi

Abstract. A necessary and sufficient condition in terms of lower cut sets are given for the insertion of a Baire-.5 function between two comparable real-valued functions on the topological spaces that F_α—kernel of sets are F_α—sets.

1. Introduction

A generalized class of closed sets was considered by Maki in 1986 [16]. He investigated the sets that can be represented as union of closed sets and called them V—sets. Complements of V—sets, i.e., sets that are intersection of open sets are called A—sets [16].

Recall that a real-valued function f defined on a topological space X is called A—continuous [22] if the preimage of every open subset of \mathbb{R} belongs to A, where A is a collection of subsets of X. Most of the definitions of function used throughout this paper are consequences of the definition of A—continuity. However, for unknown concepts the reader may refer to [4, 10]. In the recent literature many topologists had focused their research in the direction of investigating different types of generalized continuity.

J. Dontchev in [5] introduced a new class of mappings called contra-continuity. A good number of researchers have also initiated different types of contra-continuous like mappings in the papers [1, 3, 7, 8, 9, 11, 12, 21].

2010 Mathematics Subject Classification. 26A15, 54C30.

Key words and phrases. Insertion, Strong binary relation, Baire-.5 function, kernel of sets, Lower cut set.

189
Results of Katětov [13, 14] concerning binary relations and the concept of an indefinite lower cut set for a real-valued function, which is due to Brooks [2], are used in order to give a necessary and sufficient condition for the insertion of a Baire-.5 function between two comparable real-valued functions on the topological spaces that \(F_\sigma - \) kernel of sets are \(F_\sigma - \) sets.

A real-valued function \(f \) defined on a topological space \(X \) is called contra-Baire-1 (Baire-.5) if the preimage of every open subset of \(\mathbb{R} \) is a \(G_\delta \) set in \(X \) [23].

If \(g \) and \(f \) are real-valued functions defined on a space \(X \), we write \(g \leq f \) (resp. \(g < f \)) in case \(g(x) \leq f(x) \) (resp. \(g(x) < f(x) \)) for all \(x \) in \(X \).

The following definitions are modifications of conditions considered in [15].

A property \(P \) defined relative to a real-valued function on a topological space is a \(B \) property provided that any constant function has property \(P \) and provided that the sum of a function with property \(P \) and any Baire-.5 function also has property \(P \). If \(P_1 \) and \(P_2 \) are \(B \) properties, the following terminology is used:

(i) A space \(X \) has the weak \(B - .5 \) insertion property for \((P_1, P_2) \) if and only if for any functions \(g \) and \(f \) on \(X \) such that \(g \leq f, g \) has property \(P_1 \) and \(f \) has property \(P_2 \), then there exists a Baire-.5 function \(h \) such that \(g \leq h \leq f \).

(ii) A space \(X \) has the \(B - .5 \) insertion property for \((P_1, P_2) \) if and only if for any functions \(g \) and \(f \) on \(X \) such that \(g < f, g \) has property \(P_1 \) and \(f \) has property \(P_2 \), then there exists a Baire-.5 function \(h \) such that \(g < h < f \).

In this paper, for a topological space that \(F_\sigma \) kernel of sets are \(F_\sigma \) sets, is given a sufficient condition for the weak \(B - .5 \) insertion property. Also for a space with the weak \(B - .5 \) insertion property, we give a necessary and sufficient condition for the space to have the \(B - .5 \) insertion property. Several insertion theorems are obtained as corollaries of these results. In addition, the insertion and weak insertion of a contra-continuous function between two comparable real-valued functions has also recently considered by the authors in [18, 19].

2. The Main Results

Before giving a sufficient condition for insertability of a Baire-.5 function, the necessary definitions and terminology are stated.

Definition 2.1. Let \(A \) be a subset of a topological space \((X, \tau) \). We define the subsets \(A^A \) and \(A^V \) as follows:

\[
A^A = \cap \{O : O \supseteq A, O \in (X, \tau)\} \text{ and } A^V = \cup \{F : F \subseteq A, F^c \in (X, \tau)\}.
\]

In [6, 17, 20], \(A^A \) is called the kernel of \(A \).

We define the subsets \(G_\delta(A) \) and \(F_\sigma(A) \) as follows:

\[
G_\delta(A) = \cup \{O : O \subseteq A, O \text{ is } G_\delta \text{ set}\} \text{ and } F_\sigma(A) = \cap \{F : F \supseteq A, F \text{ is } F_\sigma \text{ set}\}.
\]

\(F_\sigma(A) \) is called the \(F_\sigma - \) kernel of \(A \). The following first two definitions are modifications of conditions considered in [13, 14].
DEFINITION 2.2. If \(\rho \) is a binary relation in a set \(S \) then \(\bar{\rho} \) is defined as follows: \(x \, \bar{\rho} \, y \) if and only if \(y \, \rho \, v \) implies \(x \, \rho \, v \) and \(u \, \rho \, x \) implies \(u \, \rho \, y \) for any \(u \) and \(v \) in \(S \).

DEFINITION 2.3. A binary relation \(\rho \) in the power set \(P(X) \) of a topological space \(X \) is called a \textit{strong binary relation} in \(P(X) \) in case \(\rho \) satisfies each of the following conditions:

1) If \(A_i \, \rho \, B_j \) for any \(i \in \{1, \ldots, m\} \) and for any \(j \in \{1, \ldots, n\} \), then there exists a set \(C \) in \(P(X) \) such that \(A_i \, \rho \, C \) and \(C \, \rho \, B_j \) for any \(i \in \{1, \ldots, m\} \) and any \(j \in \{1, \ldots, n\} \).

2) If \(A \subseteq B \), then \(A \, \rho \, B \).

3) If \(A \, \rho \, B \), then \(F_\rho(A) \subseteq B \) and \(A \subseteq G_\rho(B) \).

The concept of a lower indefinite cut set for a real-valued function was defined by Brooks \[2\] as follows:

DEFINITION 2.4. If \(f \) is a real-valued function defined on a space \(X \) and if \(\{ x \in X : f(x) < \ell \} \subseteq A(f, \ell) \subseteq \{ x \in X : f(x) \leq \ell \} \) for a real number \(\ell \), then \(A(f, \ell) \) is a lower indefinite cut set in the domain of \(f \) at the level \(\ell \).

We now give the following main results:

Theorem 2.1. Let \(g \) and \(f \) be real-valued functions on the topological space \(X \), that \(F_\rho \)-kernel of sets in \(X \) are \(F_\rho \)-sets, with \(g \leq f \). If there exists a strong binary relation \(\rho \) on the power set \(X \) and if there exist lower indefinite cut sets \(A(f, t) \) and \(A(g, t) \) in the domain of \(f \) and \(g \) at the level \(t \) for each rational number \(t \) such that if \(t_1 < t_2 \) then \(A(f, t_1) \rho A(g, t_2) \), then there exists a Baire-.5 function \(h \) defined on \(X \) such that \(g \leq h \leq f \).

Proof. Let \(g \) and \(f \) be real-valued functions defined on the \(X \) such that \(g \leq f \). By hypothesis there exists a strong binary relation \(\rho \) on the power set of \(X \) and there exist lower indefinite cut sets \(A(f, t) \) and \(A(g, t) \) in the domain of \(f \) and \(g \) at the level \(t \) for each rational number \(t \) such that if \(t_1 < t_2 \) then \(A(f, t_1) \rho A(g, t_2) \).

Define functions \(F \) and \(G \) mapping the rational numbers \(\mathbb{Q} \) into the power set of \(X \) by \(F(t) = A(f, t) \) and \(G(t) = A(g, t) \). If \(t_1 \) and \(t_2 \) are any elements of \(\mathbb{Q} \) with \(t_1 < t_2 \), then \(F(t_1) \rho F(t_2) \), \(G(t_1) \rho G(t_2) \), and \(F(t_1) \rho G(t_2) \). By Lemmas 1 and 2 of \[14\] it follows that there exists a function \(H \) mapping \(\mathbb{Q} \) into the power set of \(X \) such that if \(t_1 \) and \(t_2 \) are any rational numbers with \(t_1 < t_2 \), then \(F(t_1) \rho H(t_2) \), \(H(t_1) \rho H(t_2) \), and \(F(t_1) \rho G(t_2) \).

For any \(x \) in \(X \), let \(h(x) = \inf \{ t \in \mathbb{Q} : x \in H(t) \} \).

We first verify that \(g \leq h \leq f \). If \(x \) is in \(H(t) \) then \(x \) is in \(G(t') \) for any \(t' > t \); since \(x \) in \(G(t') = A(g, t') \) implies that \(g(x) \leq t' \), it follows that \(g(x) \leq t \). Hence \(g \leq h \). If \(x \) is not in \(H(t) \), then \(x \) is not in \(F(t') \) for any \(t' < t \); since \(x \) is not in \(F(t') = A(f, t') \) implies that \(f(x) > t' \), it follows that \(f(x) \geq t \). Hence \(h \leq f \).

Also, for any rational numbers \(t_1 \) and \(t_2 \) with \(t_1 < t_2 \), we have \(h^{-1}(t_1, t_2) = G_\delta(H(t_2)) \setminus F_\rho(H(t_1)) \). Hence \(h^{-1}(t_1, t_2) \) is a \(G_\delta \)-set in \(X \), i.e., \(h \) is a Baire-.5 function on \(X \).

The above proof used the technique of Theorem 1 of \[13\].
Theorem 2.2. Let P_1 and P_2 be $B-\frac{1}{2}$-property and X be a space that satisfies the weak $B-\frac{1}{2}$-insertion property for (P_1, P_2). Also assume that g and f are functions on X such that $g < f, g$ has property P_1 and f has property P_2. The space X has the $B-\frac{1}{2}$-insertion property for (P_1, P_2) if and only if there exist lower cut sets $A(f - g, 3^{-n+1})$ and there exists a decreasing sequence $\{D_n\}$ of subsets of X with empty intersection and such that for each n, $X \setminus D_n$ and $A(f - g, 3^{-n+1})$ are completely separated by Baire-$\frac{1}{2}$ functions.

Proof. Assume that X has the weak $B-\frac{1}{2}$-insertion property for (P_1, P_2). Let g and f be functions such that $g < f, g$ has property P_1 and f has property P_2. By hypothesis there exist lower cut sets $A(f - g, 3^{-n+1})$ and there exists a sequence (D_n) such that $\bigcap_{n=1}^{\infty} D_n = \emptyset$ and such that for each $n, X \setminus D_n$ and $A(f - g, 3^{-n+1})$ are completely separated by Baire-$\frac{1}{2}$ functions. Let k_n be a Baire-$\frac{1}{2}$ function such that $k_n = 0$ on $A(f - g, 3^{-n+1})$ and $k_n = 1$ on $X \setminus D_n$. Let a function k on X be defined by

$$k(x) = 1/2 \sum_{n=1}^{\infty} 3^{-n} k_n(x) .$$

By the Cauchy condition and the $B-\frac{1}{2}$-properties, the function k is a Baire-$\frac{1}{2}$ function. Since $\bigcap_{n=1}^{\infty} D_n = \emptyset$ and since $k_n = 1$ on $X \setminus D_n$, it follows that $0 < k$. Also $2k < f - g$: In order to see this, observe first that if x is in $A(f - g, 3^{-n+1})$, then $k(x) \leq 1/4(3^{-n})$. If x is any point in X, then $x \notin A(f - g, 1)$ or for some n,

$$x \in A(f - g, 3^{-n+1}) - A(f - g, 3^{-n});$$

in the former case $2k(x) < 1$, and in the latter $2k(x) \leq 1/2(3^{-n}) < f(x) - g(x)$. Thus if $f_1 = f - k$ and if $g_1 = g + k$, then $g < g_1 < f_1 < f$. Since P_1 and P_2 are $B-\frac{1}{2}$-properties, then g_1 has property P_1 and f_1 has property P_2. Since X has the weak $B-\frac{1}{2}$-insertion property for (P_1, P_2), then there exists a Baire-$\frac{1}{2}$ function such that $g_1 \leq h \leq f_1$. Thus $g < h < f$, it follows that X satisfies the $B-\frac{1}{2}$-insertion property for (P_1, P_2). (The technique of this proof is by Katětov [13]).

Conversely, let g and f be functions on X such that g has property P_1, f has property P_2 and $g < f$. By hypothesis, there exists a Baire-$\frac{1}{2}$ function such that $g < h < f$. We follow an idea contained in Lane [15]. Since the constant function 0 has property P_1, since $f - h$ has property P_2, and since X has the $B-\frac{1}{2}$-insertion property for (P_1, P_2), then there exists a Baire-$\frac{1}{2}$ function k such that $0 < k < f - h$. Let $A(f - g, 3^{-n+1})$ be any lower cut set for $f - g$ and let $D_n = \{x \in X : k(x) < 3^{-n+2}\}$. Since $k > 0$ it follows that $\bigcap_{n=1}^{\infty} D_n = \emptyset$. Since

$$A(f - g, 3^{-n+1}) \subseteq \{x \in X : (f - g)(x) \leq 3^{-n+1}\} \subseteq \{x \in X : k(x) \leq 3^{-n+1}\}$$

and since $\{x \in X : k(x) \leq 3^{-n+1}\}$ and $\{x \in X : k(x) \geq 3^{-n+2}\} = X \setminus D_n$ are completely separated by Baire-$\frac{1}{2}$ function $sup\{3^{-n+1}, inf\{k, 3^{-n+2}\}\}$, it follows that for each $n, A(f - g, 3^{-n+1})$ and $X \setminus D_n$ are completely separated by Baire-$\frac{1}{2}$ functions.

\Box
3. Applications

Definition 3.1. A real-valued function f defined on a space X is called contra-upper semi-Baire-.5 (resp. contra-lower semi-Baire-.5) if $f^{-1}(-\infty, t)$ (resp. $f^{-1}(t, +\infty)$) is a G_δ-set for any real number t.

The abbreviations $usc, lsc, cusB.5$ and $clsB.5$ are used for upper semicontinuous, lower semicontinuous, contra-upper semi-Baire-.5, and contra-lower semi-Baire-.5, respectively.

Remark 3.1. ([13, 14]) A space X has the weak $c-$insertion property for (usc, lsc) if and only if X is normal.

Before stating the consequences of Theorem 2.1, and Theorem 2.2 we suppose that X is a topological space that $F_\sigma-$kernel of sets are $F_\sigma-$sets.

Corollary 3.1. For each pair of disjoint $F_\sigma-$sets F_1, F_2, there are two $G_\delta-$sets G_1 and G_2 such that $F_1 \subseteq G_1$, $F_2 \subseteq G_2$ and $G_1 \cap G_2 = \emptyset$ if and only if X has the weak $B - .5-$insertion property for $(cusB - .5, clsB - .5)$.

Proof. Let g and f be real-valued functions defined on the X, such that f is lsB_1, g is usB_1, and $g \leq f$. If a binary relation ρ is defined by $A \rho B$ in case $F_\sigma(A) \subseteq G_\delta(B)$, then by hypothesis ρ is a strong binary relation in the power set of X. If t_1 and t_2 are any elements of \mathbb{Q} with $t_1 < t_2$, then

$$A(f,t_1) \subseteq \{x \in X : f(x) \leq t_1\} \subseteq \{x \in X : g(x) < t_2\} \subseteq A(g,t_2);$$

since $\{x \in X : f(x) \leq t_1\}$ is a $F_\sigma-$set and since $\{x \in X : g(x) < t_2\}$ is a $G_\delta-$set, it follows that $F_\sigma(A(f,t_1)) \subseteq G_\delta(A(g,t_2))$. Hence $t_1 < t_2$ implies that $A(f,t_1) \rho A(g,t_2)$. The proof follows from Theorem 2.1.

On the other hand, let F_1 and F_2 are disjoint $F_\sigma-$sets. Set $f = \chi_{F_1}$ and $g = \chi_{F_2}$, then f is $clsB - .5$, g is $cusB - .5$, and $g \leq f$. Thus there exists Baire-.5 function h such that $g \leq h \leq f$. Set $G_1 = \{x \in X : h(x) < \frac{1}{2}\}$ and $G_2 = \{x \in X : h(x) > \frac{1}{2}\}$, then G_1 and G_2 are disjoint $G_\delta-$sets such that $F_1 \subseteq G_1$ and $F_2 \subseteq G_2$.

Remark 3.2. ([24]) A space X has the weak $c-$insertion property for (lsc, usc) if and only if X is extremally disconnected.

Corollary 3.2. For every G of $G_\delta-$set, $F_\sigma(G)$ is a $G_\delta-$set if and only if X has the weak $B - .5-$insertion property for $(clsB - .5, cusB - .5)$.

Before giving the proof of this corollary, the necessary lemma is stated.

Lemma 3.1. The following conditions on the space X are equivalent:

(i) For every G of $G_\delta-$set we have $F_\sigma(G)$ is a $G_\delta-$set.

(ii) For each pair of disjoint $G_\delta-$sets as G_1 and G_2 we have $F_\sigma(G_1) \cap F_\sigma(G_2) = \emptyset$.

Proof. The proof of Lemma 3.1 is a direct consequence of the definition $F_\sigma-$kernel of sets.

We now give the proof of corollary 3.2.

Proof. Let g and f be real-valued functions defined on the X, such that f is $\text{cls}B-1/2$, g is $\text{cus}B-1/2$, and $f \leq g$. If a binary relation p is defined by $A \rho B$ in case $F_p(A) \subseteq G \subseteq F_p(B)$ for some G_δ-set g in X, then by hypothesis and Lemma 3.1, ρ is a strong binary relation in the power set of X. If t_1 and t_2 are any elements of Q with $t_1 < t_2$, then

$$A(g, t_1) = \{x \in X : g(x) < t_1\} \subseteq \{x \in X : f(x) \leq t_2\} = A(f, t_2);$$

since $\{x \in X : g(x) < t_1\}$ is a G_δ-set and since $\{x \in X : f(x) \leq t_2\}$ is a F_σ-set, by hypothesis it follows that $A(g, t_1) \rho A(f, t_2)$. The proof follows from Theorem 2.1.

On the other hand, Let G_1 and G_2 are disjoint G_δ-sets. Set $f = \chi_{G_2}$ and $g = \chi_{G_1}$, then f is $\text{cls}B-1/2$, g is $\text{cus}B-1/2$, and $f \leq g$.

Thus there exists Baire-$1/2$ function h such that $f \leq h \leq g$. Set $F_1 = \{x \in X : h(x) \leq 1/2\}$ and $F_2 = \{x \in X : h(x) \geq 2/3\}$ then F_1 and F_2 are disjoint F_σ-sets such that $G_1 \subseteq F_1$ and $G_2 \subseteq F_2$. Hence $F_\sigma(F_1) \cap F_\sigma(F_2) = \emptyset$. □

Before stating the consequences of Theorem 2.2, we state and prove the necessary lemmas.

Lemma 3.2. The following conditions on the space X are equivalent:

(i) Every two disjoint F_σ-sets of X can be separated by G_δ-sets of X.

(ii) If F is a F_σ-set of X which is contained in a G_δ-set G, then there exists a G_δ-set H such that $F \subseteq H \subseteq F_\sigma(H) \subseteq G$.

Proof. (i) \Rightarrow (ii) Suppose that $F \subseteq G$, where F and G are F_σ-set and G_δ-set of X, respectively. Hence, G^c is a F_δ-set and $F \cap G^c = \emptyset$.

By (i) there exists two disjoint G_δ-sets G_1, G_2 such that $F \subseteq G_1$ and $G^c \subseteq G_2$.

But

$$G^c \subseteq G_2 \Rightarrow G_2^c \subseteq G,$$

and

$$G_1 \cap G_2 = \emptyset \Rightarrow G_1 \subseteq G^c_2$$

hence

$$F \subseteq G_1 \subseteq G^c_2 \subseteq G$$

and since G^c_2 is a F_σ-set containing G_1 we conclude that $F_\sigma(G_1) \subseteq G^c_2$, i.e.,

$$F \subseteq G_1 \subseteq F_\sigma(G_1) \subseteq G.$$

By setting $H = G_1$, condition (ii) holds.

(ii) \Rightarrow (i) Suppose that F_1, F_2 are two disjoint F_σ-sets of X.

This implies that $F_1 \subseteq F_1^c$ and F_2 is a G_δ-set. Hence by (ii) there exists a G_δ-set H such that, $F_1 \subseteq H \subseteq F_\sigma(H) \subseteq F_2^c$.

But

$$H \subseteq F_\sigma(H) \Rightarrow H \cap (F_\sigma(H))^c = \emptyset$$

and

$$F_\sigma(H) \subseteq F_2^c \Rightarrow F_2 \subseteq (F_\sigma(H))^c.$$
Furthermore, \((F_\sigma(H))^c\) is a \(G_\delta\)-set of \(X\). Hence \(F_1 \subseteq H, F_2 \subseteq (F_\sigma(H))^c\) and
\(H \cap (F_\sigma(H))^c = \emptyset\). This means that condition (i) holds.

Lemma 3.3. Suppose that \(X\) is the topological space such that we can separate every two disjoint \(F_\sigma\)-sets by \(G_\delta\)-sets. If \(F_1\) and \(F_2\) are two disjoint \(F_\sigma\)-sets of \(X\), then there exists a Baire-.5 function \(h : X \to [0,1]\) such that \(h(F_1) = \{0\}\) and \(h(F_2) = \{1\}\).

Proof. Suppose \(F_1\) and \(F_2\) are two disjoint \(F_\sigma\)-sets of \(X\). Since \(F_1 \cap F_2 = \emptyset\), hence \(F_1 \subseteq F_2^c\). In particular, since \(F_2^c\) is a \(G_\delta\)-set of \(X\) containing \(F_1\), by Lemma 3.2, there exists a \(G_\delta\)-set \(H_{1/2}\) such that,

\[F_1 \subseteq H_{1/2} \subseteq F_\sigma(H_{1/2}) \subseteq F_2^c.\]

Note that \(H_{1/2}\) is a \(G_\delta\)-set and contains \(F_1\), and \(F_2^c\) is a \(G_\delta\)-set and contains \(F_\sigma(H_{1/2})\). Hence, by Lemma 3.2, there exists \(G_\delta\)-sets \(H_{1/4}\) and \(H_{3/4}\) such that,

\[F_1 \subseteq H_{1/4} \subseteq F_\sigma(H_{1/4}) \subseteq H_{1/2} \subseteq F_\sigma(H_{1/2}) \subseteq H_{3/4} \subseteq F_\sigma(H_{3/4}) \subseteq F_2^c.\]

By continuing this method for every \(t \in D\), where \(D \subseteq [0,1]\) is the set of rational numbers that their denominators are exponents of 2, we obtain \(G_\delta\)-sets \(H_t\) with the property that if \(t_1, t_2 \in D\) and \(t_1 < t_2\), then \(H_{t_1} \subseteq H_{t_2}\). We define the function \(h\) on \(X\) by \(h(x) = \inf\{t : x \in H_t\}\) for \(x \notin F_2\) and \(h(x) = 1\) for \(x \in F_2\).

Note that for every \(x \in X\), \(0 < h(x) < 1\), i.e., \(h\) maps \(X\) into \([0,1]\). Also, we note that for any \(t \in D\), \(F_1 \subseteq H_t\); hence \(h(F_1) = \{0\}\). Furthermore, by definition, \(h(F_2) = \{1\}\). It remains only to prove that \(h\) is a Baire-5 function on \(X\). For every \(\alpha \in \mathbb{R}\), we have if \(\alpha \leq 0\) then \(\{x \in X : h(x) < \alpha\} = \emptyset\) and if \(0 < \alpha\) then \(\{x \in X : h(x) < \alpha\} = \cup\{H_t : t < \alpha\}\), hence, they are \(G_\delta\)-sets of \(X\). Similarly, if \(\alpha < 0\) then \(\{x \in X : h(x) > \alpha\} = X\) and if \(0 \leq \alpha\) then \(\{x \in X : h(x) > \alpha\} = \cup\{F_\sigma(H_t) : t > \alpha\}\) hence, every of them is a \(G_\delta\)-set. Consequently \(h\) is a Baire-5 function.

Lemma 3.4. Suppose that \(X\) is the topological space such that every two disjoint \(F_\sigma\)-sets can be separated by \(G_\delta\)-sets. The following conditions are equivalent:

(i) Every countable covering of \(G_\delta\)-sets of \(X\) has a refinement consisting of \(G_\delta\)-sets such that, for every \(x \in X\), there exists a \(G_\delta\)-set containing \(x\) such that it intersects only finitely many members of the refinement.

(ii) Corresponding to every decreasing sequence \(\{F_n\}\) of \(F_\sigma\)-sets with empty intersection there exists a decreasing sequence \(\{G_n\}\) of \(G_\delta\)-sets such that, \(\bigcap_{n=1}^{\infty} G_n = 0\) and for every \(n \in \mathbb{N}\), \(F_n \subseteq G_n\).

Proof. (i) \(\Rightarrow\) (ii). Suppose that \(\{F_n\}\) be a decreasing sequence of \(F_\sigma\)-sets with empty intersection. Then \(\{F_n^c : n \in \mathbb{N}\}\) is a countable covering of \(G_\delta\)-sets.

By hypothesis (i) and Lemma 3.2, this covering has a refinement \(\{V_n : n \in \mathbb{N}\}\) such that every \(V_n\) is a \(G_\delta\)-set and \(F_\sigma(V_n) \subseteq F_n^c\). By setting \(F_n = (F_\sigma(V_n))^c\), we obtain a decreasing sequence of \(G_\delta\)-sets with the required properties.

(ii) \(\Rightarrow\) (i). Now if \(\{H_n : n \in \mathbb{N}\}\) is a countable covering of \(G_\delta\)-sets, we set for \(n \in \mathbb{N}\), \(F_n = \bigcup_{i=1}^{n} H_i^c\). Then \(\{F_n\}\) is a decreasing sequence of \(F_\sigma\)-sets with empty intersection. By (ii) there exists a decreasing sequence \(\{G_n\}\) consisting of
G_δ–sets such that, $\bigcap_{n=1}^{\infty} G_n = \emptyset$ and for every $n \in \mathbb{N}, F_n \subseteq G_n$. Now we define the subsets W_n of X in the following manner:

- W_1 is a G_δ–set of X such that $G_1 \subseteq W_1$ and $F_\sigma(W_1) \cap F_1 = \emptyset$.
- W_2 is a G_δ–set of X such that $F_\sigma(W_1) \cup G_2 \subseteq W_2$ and $F_\sigma(W_2) \cap F_2 = \emptyset$, and so on. (By Lemma 3.2, W_n exists).

Then since $\{G_n^c : n \in \mathbb{N}\}$ is a covering for X, hence $\{W_n : n \in \mathbb{N}\}$ is a covering for X consisting of G_δ–sets. Moreover, we have

(i) $F_\sigma(W_n) \subseteq W_{n+1}$
(ii) $G_n^c \subseteq W_n$
(iii) $W_n \subseteq \bigcup_{i=1}^{n} F_i$.

Now suppose that $S_1 = W_1$ and for $n \geq 2$, we set $S_n = W_{n+1} \setminus F_\sigma(W_{n-1})$.

Then since $F_\sigma(W_{n-1}) \subseteq W_n$ and $S_n \supseteq W_{n+1} \setminus W_n$, it follows that $\{S_n : n \in \mathbb{N}\}$ consists of G_δ–sets and covers X. Furthermore, $S_i \cap S_j \neq \emptyset$ if and only if $|i - j| \leq 1$.

Finally, consider the following sets:

- $S_1 \cap H_1$
- $S_1 \cap H_2$
- $S_2 \cap H_1$
- $S_2 \cap H_2$
- $S_3 \cap H_1$
- $S_3 \cap H_2$
- $S_3 \cap H_3$
- $S_3 \cap H_4$

and continue ad infinitum. These sets are G_δ–sets, cover X and refine $\{H_n : n \in \mathbb{N}\}$. In addition, $S_i \cap H_j$ can intersect at most the sets in its row, immediately above, or immediately below row.

Hence if $x \in X$ and $x \in S_n \cap H_m$, then $S_n \cap H_m$ is a G_δ–set containing x that intersects at most finitely many of sets $S_i \cap H_j$. Consequently, $\{S_i \cap H_j : i \in \mathbb{N}, j = 1, \ldots, i + 1\}$ refines $\{H_n : n \in \mathbb{N}\}$ such that its elements are G_δ–sets, and for every point in X we can find a G_δ–set containing the point that intersects only finitely many elements of that refinement.

Remark 3.3. ([13, 14]) A space X has the c–insertion property for (usc, lsc) if and only if X is normal and countably paracompact.

Corollary 3.3. X has the $B - .5$–insertion property for $(cusB - .5, clsB - .5)$ if and only if every two disjoint F_σ–sets of X can be separated by G_δ–sets, and in addition, every countable covering of G_δ–sets has a refinement that consists of G_δ–sets such that, for every point of X we can find a G_δ–set containing that point such that, it intersects only a finite number of refining members.

Proof. Suppose that F_1 and F_2 are disjoint F_σ–sets. Since $F_1 \cap F_2 = \emptyset$, it follows that $F_2 \subseteq F_1^c$. We set $f(x) = 2$ for $x \in F_1^c$, $f(x) = \frac{1}{2}$ for $x \notin F_1^c$, and $g = \chi_{F_1}$.

Since F_3 is a F_σ–set, and F_1^c is a G_δ–set, therefore g is $cusB - .5$,$ f$ is $clsB - .5$ and furthermore $g < f$. Hence by hypothesis there exists a Baire-.5 function h such that, $g < h < f$. Now by setting $G_1 = \{x \in X : h(x) < 1\}$ and $G_2 = \{x \in X : h(x) > 1\}$. We can say that G_1 and G_2 are disjoint G_δ–sets that contain F_1 and F_2, respectively. Now suppose that $\{F_n\}$ is a decreasing sequence of F_σ–sets with empty intersection. Set $F_0 = X$ and define for every $x \in F_n \setminus F_{n+1}$.

$$f(x) = \frac{1}{\#n}.$$ Since $\bigcap_{n=0}^{\infty} F_n = \emptyset$ and for every $x \in X$, there exists $n \in \mathbb{N}$, such that, $x \in F_n \setminus F_{n+1}, f$ is well defined. Furthermore, for every $r \in \mathbb{R}$, if $r \leq 0$
then \(\{ x \in X : f(x) > r \} = X \) is a \(G_δ \)-set and if \(r > 0 \) then by Archimedean property of \(\mathbb{R} \), we can find \(i \in \mathbb{N} \) such that \(\frac{1}{i+1} \leq r \). Now suppose that \(k \) is the least natural number such that \(\frac{1}{i+1} \leq r \). Hence \(\frac{1}{k} > r \) and consequently, \(\{ x \in X : f(x) > r \} = X \setminus F_k \) is a \(G_δ \)-set. Therefore, \(f \) is \(\text{cls}B - .5 \). By setting \(g = 0 \), we have \(g \) is \(\text{c}usB - .5 \) and \(g < f \). Hence by hypothesis there exists a Baire-.5 function \(h \) on \(X \) such that, \(g < h < f \).

By setting \(G_n = \{ x \in X : h(x) < \frac{1}{n+1} \} \), we have \(G_n \) is a \(G_δ \)-set. But for every \(x \in F_n \), we have \(f(x) \leq \frac{1}{n+1} \) and since \(g < h < f \) therefore \(0 < h(x) < \frac{1}{n+1} \), i.e., \(x \in G_n \) therefore \(F_n \subseteq G_n \) and since \(h > 0 \) it follows that \(\bigcap_{n=1}^{\infty} G_n = \emptyset \). Hence by Lemma 3.4, the conditions holds.

On the other hand, since every two disjoint \(F_σ \)-sets can be separated by \(G_δ \)-sets, therefore by corollary 3.1, \(X \) has the weak \(B - .5 \)-insertion property for \((\text{c}usB - .5, \text{cls}B - .5) \). Now suppose that \(f \) and \(g \) are real-valued functions on \(X \) with \(g < f \), such that, \(g \) is \(\text{c}usB - .5 \) and \(f \) is \(\text{cls}B - .5 \). For every \(n \in \mathbb{N} \), set

\[
A(f-g, 3^{-n+1}) = \{ x \in X : (f-g)(x) \leq 3^{-n+1} \}.
\]

Since \(g \) is \(\text{c}usB - .5 \), and \(f \) is \(\text{cls}B - .5 \), therefore \(f - g \) is \(\text{cls}B - .5 \). Hence \(A(f-g, 3^{-n+1}) \) is a \(F_σ \)-set of \(X \). Consequently, \(\{ A(f-g, 3^{-n+1}) \} \) is a decreasing sequence of \(F_σ \)-sets and furthermore since \(0 < f - g \), it follows that \(\bigcap_{n=1}^{\infty} A(f-g, 3^{-n+1}) = \emptyset \).

Now by Lemma 3.4, there exists a decreasing sequence \(\{ D_n \} \) of \(G_δ \)-sets such that \(A(f-g, 3^{-n+1}) \subseteq D_n \) and \(\bigcap_{n=1}^{\infty} D_n = \emptyset \). But by Lemma 3.3, \(A(f-g, 3^{-n+1}) \) and \(X \setminus D_n \) of \(F_σ \)-sets can be completely separated by Baire-.5 functions. Hence by Theorem 2.2, there exists a Baire-.5 function \(h \) defined on \(X \) such that, \(g < h < f \), i.e., \(X \) has the \(B - .5 \)-insertion property for \((\text{c}usB - .5, \text{cls}B - .5) \).

Remark 3.4. ([15]) A space \(X \) has the \(c \)-insertion property for \((\text{isc}, \text{usc})\) iff \(X \) is extremally disconnected and if for any decreasing sequence \(\{ G_n \} \) of open subsets of \(X \) with empty intersection there exists a decreasing sequence \(\{ F_n \} \) of closed subsets of \(X \) with empty intersection such that \(G_n \subseteq F_n \) for each \(n \).

Corollary 3.4. For every \(G \) of \(G_δ \)-set, \(F_σ(G) \) is a \(G_δ \)-set and in addition for every decreasing sequence \(\{ G_n \} \) of \(G_δ \)-sets with empty intersection, there exists a decreasing sequence \(\{ F_n \} \) of \(F_σ \)-sets with empty intersection such that for every \(n \in \mathbb{N}, G_n \subseteq F_n \) if and only if \(X \) has the \(B - .5 \)-insertion property for \((\text{c}usB - .5, \text{cls}B - .5) \).

Proof. Since for every \(G \) of \(G_δ \)-set, \(F_σ(G) \) is a \(G_δ \)-set, therefore by Corollary 3.2, \(X \) has the weak \(B - .5 \)-insertion property for \((\text{c}usB - .5, \text{cls}B - .5) \). Now suppose that \(f \) and \(g \) are real-valued functions defined on \(X \) with \(g < f \), \(g \) is \(\text{c}usB - .5 \), and \(f \) is \(\text{cls}B - .5 \). Set \(A(f-g, 3^{-n+1}) = \{ x \in X : (f-g)(x) < 3^{-n+1} \} \). Then since \(f - g \) is \(\text{c}usB - .5 \), hence \(A(f-g, 3^{-n+1}) \) is a decreasing sequence of \(G_δ \)-sets with empty intersection. By hypothesis, there exists a decreasing sequence \(\{ D_n \} \) of \(F_σ \)-sets with empty intersection such that, for every \(n \in \mathbb{N}, A(f-g, 3^{-n+1}) \subseteq D_n \). Hence \(X \setminus D_n \) and \(A(f-g, 3^{-n+1}) \) are two disjoint \(G_δ \)-sets and therefore by
Lemma 3.1, we have
\[F_\sigma(A(f - g, 3^{-n+1})) \cap F_\sigma((X \setminus D_n)) = \emptyset \]
and therefore by Lemma 3.3, \(X \setminus D_n \) and \(A(f - g, 3^{-n+1}) \) are completely separable by Baire-.5 functions. Therefore by theorem 2.2, there exists a Baire-.5 function \(h \) on \(X \) such that, \(g < h < f \), i.e., \(X \) has the \(B - .5 \)-insertion property for \((cls B - .5, cus B - .5) \).

On the other hand, suppose that \(G_1 \) and \(G_2 \) be two disjoint \(G_δ \)-sets. Since \(G_1 \cap G_2 = \emptyset \). We have \(G_2 \subseteq G_1^c \). We set \(f(x) = 2 \) for \(x \in G_1^c \), \(f(x) = \frac{1}{r} \) for \(x \notin G_1^c \) and \(g = \chi g_2 \).

Then since \(G_2 \) is a \(G_δ \)-set and \(G_1^c \) is a \(F_\sigma \)-set, we conclude that \(g \) is \(cls B - .5 \) and \(f \) is \(cus B - .5 \) and furthermore \(g < f \). By hypothesis, there exists a Baire-.5 function \(h \) on \(X \) such that, \(g < h < f \). Now we set \(F_1 = \{ x \in X : h(x) \leq \frac{1}{r} \} \) and \(F_2 = \{ x \in X : h(x) \geq 1 \} \). Then \(F_1 \) and \(F_2 \) are two disjoint \(F_\sigma \)-sets contain \(G_1 \) and \(G_2 \), respectively. Hence \(F_\sigma(G_1) \subseteq F_1 \) and \(F_\sigma(G_2) \subseteq F_2 \) and consequently \(F_\sigma(G_1) \cap F_\sigma(G_2) = \emptyset \). By Lemma 3.1, for every \(G \) of \(G_δ \)-set, the set \(F_\sigma(G) \) is a \(G_δ \)-set.

Now suppose that \(\{ G_n \} \) is a decreasing sequence of \(G_δ \)-sets with empty intersection.

We set \(G_0 = X \) and \(f(x) = \frac{1}{r + 1} \) for \(x \in G_n \setminus G_{n+1} \). Since \(\bigcap_{n=0}^{\infty} G_n = \emptyset \) and for every \(n \in \mathbb{N} \) there exists \(x \in G_n \setminus G_{n+1} \), \(f \) is well-defined. Furthermore, for every \(r \in \mathbb{R} \), if \(r \leq 0 \) then \(\{ x \in X : f(x) < r \} = \emptyset \) is a \(G_δ \)-set and if \(r > 0 \) then by Archimedean property of \(\mathbb{R} \), there exists \(i \in \mathbb{N} \) such that \(\frac{1}{i+1} \leq r \).

Suppose that \(k \) is the least natural number with this property. Hence \(\frac{1}{k} > r \). Now if \(\frac{1}{k+1} < r \) then \(\{ x \in X : f(x) < r \} = G_k \) is a \(G_δ \)-set and if \(\frac{1}{k+1} = r \) then \(\{ x \in X : f(x) < r \} = G_{k+1} \) is a \(G_δ \)-set. Hence \(f \) is a \(cus B - .5 \) on \(X \). By setting \(g = 0 \), we have conclude that \(g \) is \(cls B - .5 \) on \(X \) and in addition \(g < f \). By hypothesis there exists a Baire-.5 function \(h \) on \(X \) such that, \(g < h < f \).

Set \(F_n = \{ x \in X : h(x) \leq \frac{1}{n+1} \} \). This set is a \(F_\sigma \)-set. But for every \(x \in G_n \), we have \(f(x) \leq \frac{1}{n+1} \) and since \(g < h < f \) thus \(h(x) < \frac{1}{n+1} \), this means that \(x \in F_n \) and consequently \(G_n \subseteq F_n \).

By definition of \(F_n \), \(\{ F_n \} \) is a decreasing sequence of \(F_\sigma \)-sets and since \(h > 0 \), \(\bigcap_{n=1}^{\infty} F_n = \emptyset \). Thus the conditions holds.

\[\square \]

Acknowledgement

This research was partially supported by Centre of Excellence for Mathematics(University of Isfahan).

References

Received by editors 25.05.2018; Revised version 10.09.2019; Available online 16.09.2019.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ISFAHAN, ISFAHAN 81746-73441, IRAN
E-mail address: mirmir@sci.ui.ac.ir

DEPARTMENT OF GENERAL COURSES, SCHOOL OF MANAGEMENT AND MEDICAL INFORMATION SCIENCES, ISFAHAN UNIVERSITY OF MEDICAL SCIENCES, ISFAHAN, IRAN
E-mail address: naderi@mng.mui.ac.ir