INSERTION OF A CONTRA-BAIRE-1 (BAIRE-.5) FUNCTION BETWEEN TWO COMPARABLE REAL-VALUED FUNCTIONS

Majid Mirmiran and Binesh Naderi

Abstract

A necessary and sufficient condition in terms of lower cut sets are given for the insertion of a Baire-. 5 function between two comparable realvalued functions on the topological spaces that F_{σ}-kernel of sets are F_{σ}-sets.

1. Introduction

A generalized class of closed sets was considered by Maki in 1986 [16]. He investigated the sets that can be represented as union of closed sets and called them V-sets. Complements of V-sets, i.e., sets that are intersection of open sets are called Λ-sets [16].

Recall that a real-valued function f defined on a topological space X is called A-continuous [22] if the preimage of every open subset of \mathbb{R} belongs to A, where A is a collection of subsets of X. Most of the definitions of function used throughout this paper are consequences of the definition of A-continuity. However, for unknown concepts the reader may refer to $[\mathbf{4}, \mathbf{1 0}]$. In the recent literature many topologists had focused their research in the direction of investigating different types of generalized continuity.
J. Dontchev in [5] introduced a new class of mappings called contra-continuity. A good number of researchers have also initiated different types of contra-continuous like mappings in the papers $[\mathbf{1}, \mathbf{3}, \mathbf{7}, \mathbf{8}, \mathbf{9}, \mathbf{1 1}, \mathbf{1 2}, 21]$.

[^0]Results of Katětov $[\mathbf{1 3}, \mathbf{1 4}]$ concerning binary relations and the concept of an indefinite lower cut set for a real-valued function, which is due to Brooks [2], are used in order to give a necessary and sufficient condition for the insertion of a Baire- .5 function between two comparable real-valued functions on the topological spaces that F_{σ}-kernel of sets are F_{σ}-sets.

A real-valued function f defined on a topological space X is called contra-Baire-1 (Baire-.5) if the preimage of every open subset of \mathbb{R} is a $G_{\delta}-$ set in X [23].

If g and f are real-valued functions defined on a space X, we write $g \leqslant f$ (resp. $g<f$) in case $g(x) \leqslant f(x)$ (resp. $g(x)<f(x)$) for all x in X.

The following definitions are modifications of conditions considered in [15].
A property P defined relative to a real-valued function on a topological space is a $B-.5$-property provided that any constant function has property P and provided that the sum of a function with property P and any Baire-. 5 function also has property P. If P_{1} and P_{2} are $B-.5$-properties, the following terminology is used:
(i) A space X has the weak $B-.5$-insertion property for $\left(P_{1}, P_{2}\right)$ if and only if for any functions g and f on X such that $g \leqslant f, g$ has property P_{1} and f has property P_{2}, then there exists a Baire-. 5 function h such that $g \leqslant h \leqslant f$.
(ii) A space X has the $B-.5$-insertion property for $\left(P_{1}, P_{2}\right)$ if and only if for any functions g and f on X such that $g<f, g$ has property P_{1} and f has property P_{2}, then there exists a Baire-. 5 function h such that $g<h<f$.

In this paper, for a topological space that F_{σ}-kernel of sets are F_{σ}-sets, is given a sufficient condition for the weak $B-.5$-insertion property. Also for a space with the weak $B-.5$-insertion property, we give a necessary and sufficient condition for the space to have the $B-.5$-insertion property. Several insertion theorems are obtained as corollaries of these results. In addition, the insertion and weak insertion of a contra-continuous function between two comparable real-valued functions has also recently considered by the authors in $[\mathbf{1 8}, \mathbf{1 9}]$.

2. The Main Results

Before giving a sufficient condition for insertability of a Baire-. 5 function, the necessary definitions and terminology are stated.

Definition 2.1. Let A be a subset of a topological space (X, τ). We define the subsets A^{Λ} and A^{V} as follows:

$$
A^{\Lambda}=\cap\{O: O \supseteq A, O \in(X, \tau)\} \text { and } A^{V}=\cup\left\{F: F \subseteq A, F^{c} \in(X, \tau)\right\}
$$

In $[\mathbf{6}, \mathbf{1 7}, \mathbf{2 0}], A^{\Lambda}$ is called the kernel of A.
We define the subsets $G_{\delta}(A)$ and $F_{\sigma}(A)$ as follows:

$$
G_{\delta}(A)=\cup\left\{O: O \subseteq A, O \text { is } G_{\delta}-\text { set }\right\} \text { and } F_{\sigma}(A)=\cap\left\{F: F \supseteq A, F \text { is } F_{\sigma}-\text { set }\right\} .
$$

$F_{\sigma}(A)$ is called the $F_{\sigma}-k e r n e l$ of A. The following first two definitions are modifications of conditions considered in $[\mathbf{1 3}, \mathbf{1 4}]$.

Definition 2.2. If ρ is a binary relation in a set S then $\bar{\rho}$ is defined as follows: $x \bar{\rho} y$ if and only if $y \rho \nu$ implies $x \rho \nu$ and $u \rho x$ implies $u \rho y$ for any u and v in S.

Definition 2.3. A binary relation ρ in the power set $P(X)$ of a topological space X is called a strong binary relation in $P(X)$ in case ρ satisfies each of the following conditions:

1) If $A_{i} \rho B_{j}$ for any $i \in\{1, \ldots, m\}$ and for any $j \in\{1, \ldots, n\}$, then there exists a set C in $P(X)$ such that $A_{i} \rho C$ and $C \rho B_{j}$ for any $i \in\{1, \ldots, m\}$ and any $j \in\{1, \ldots, n\}$.
2) If $A \subseteq B$, then $A \bar{\rho} B$.
3) If $A \rho B$, then $F_{\sigma}(A) \subseteq B$ and $A \subseteq G_{\delta}(B)$.

The concept of a lower indefinite cut set for a real-valued function was defined by Brooks [2] as follows:

Definition 2.4. If f is a real-valued function defined on a space X and if $\{x \in X: f(x)<\ell\} \subseteq A(f, \ell) \subseteq\{x \in X: f(x) \leqslant \ell\}$ for a real number ℓ, then $A(f, \ell)$ is a lower indefinite cut set in the domain of f at the level ℓ.

We now give the following main results:
Theorem 2.1. Let g and f be real-valued functions on the topological space X, that F_{σ}-kernel of sets in X are $F_{\sigma}-$ sets, with $g \leqslant f$. If there exists a strong binary relation ρ on the power set of X and if there exist lower indefinite cut sets $A(f, t)$ and $A(g, t)$ in the domain of f and g at the level t for each rational number t such that if $t_{1}<t_{2}$ then $A\left(f, t_{1}\right) \rho A\left(g, t_{2}\right)$, then there exists a Baire-. 5 function h defined on X such that $g \leqslant h \leqslant f$.

Proof. Let g and f be real-valued functions defined on the X such that $g \leqslant f$. By hypothesis there exists a strong binary relation ρ on the power set of X and there exist lower indefinite cut sets $A(f, t)$ and $A(g, t)$ in the domain of f and g at the level t for each rational number t such that if $t_{1}<t_{2}$ then $A\left(f, t_{1}\right) \rho A\left(g, t_{2}\right)$.

Define functions F and G mapping the rational numbers \mathbb{Q} into the power set of X by $F(t)=A(f, t)$ and $G(t)=A(g, t)$. If t_{1} and t_{2} are any elements of \mathbb{Q} with $t_{1}<t_{2}$, then $F\left(t_{1}\right) \bar{\rho} F\left(t_{2}\right), G\left(t_{1}\right) \bar{\rho} G\left(t_{2}\right)$, and $F\left(t_{1}\right) \rho G\left(t_{2}\right)$. By Lemmas 1 and 2 of [14] it follows that there exists a function H mapping \mathbb{Q} into the power set of X such that if t_{1} and t_{2} are any rational numbers with $t_{1}<t_{2}$, then $F\left(t_{1}\right) \rho H\left(t_{2}\right), H\left(t_{1}\right) \rho H\left(t_{2}\right)$ and $H\left(t_{1}\right) \rho G\left(t_{2}\right)$.

For any x in X, let $h(x)=\inf \{t \in \mathbb{Q}: x \in H(t)\}$.
We first verify that $g \leqslant h \leqslant f$: If x is in $H(t)$ then x is in $G\left(t^{\prime}\right)$ for any $t^{\prime}>t$; since x in $G\left(t^{\prime}\right)=A\left(g, t^{\prime}\right)$ implies that $g(x) \leqslant t^{\prime}$, it follows that $g(x) \leqslant t$. Hence $g \leqslant h$. If x is not in $H(t)$, then x is not in $F\left(t^{\prime}\right)$ for any $t^{\prime}<t$; since x is not in $F\left(t^{\prime}\right)=A\left(f, t^{\prime}\right)$ implies that $f(x)>t^{\prime}$, it follows that $f(x) \geqslant t$. Hence $h \leqslant f$.

Also, for any rational numbers t_{1} and t_{2} with $t_{1}<t_{2}$, we have $h^{-1}\left(t_{1}, t_{2}\right)=$ $G_{\delta}\left(H\left(t_{2}\right)\right) \backslash F_{\sigma}\left(H\left(t_{1}\right)\right)$. Hence $h^{-1}\left(t_{1}, t_{2}\right)$ is a $G_{\delta}-$ set in X, i.e., h is a Baire-. 5 function on X.

The above proof used the technique of Theorem 1 of [13].

Theorem 2.2. Let P_{1} and P_{2} be $B-.5-$ property and X be a space that satisfies the weak $B-.5$-insertion property for $\left(P_{1}, P_{2}\right)$. Also assume that g and f are functions on X such that $g<f, g$ has property P_{1} and f has property P_{2}. The space X has the $B-.5$-insertion property for $\left(P_{1}, P_{2}\right)$ if and only if there exist lower cut sets $A\left(f-g, 3^{-n+1}\right)$ and there exists a decreasing sequence $\left\{D_{n}\right\}$ of subsets of X with empty intersection and such that for each $n, X \backslash D_{n}$ and $A\left(f-g, 3^{-n+1}\right)$ are completely separated by Baire-. 5 functions.

Proof. Assume that X has the weak $B-.5$-insertion property for $\left(P_{1}, P_{2}\right)$. Let g and f be functions such that $g<f, g$ has property P_{1} and f has property P_{2}. By hypothesis there exist lower cut sets $A\left(f-g, 3^{-n+1}\right)$ and there exists a sequence $\left(D_{n}\right)$ such that $\bigcap_{n=1}^{\infty} D_{n}=\emptyset$ and such that for each $n, X \backslash D_{n}$ and $A\left(f-g, 3^{-n+1}\right)$ are completely separated by Baire-. 5 functions. Let k_{n} be a Baire- .5 function such that $k_{n}=0$ on $A\left(f-g, 3^{-n+1}\right)$ and $k_{n}=1$ on $X \backslash D_{n}$. Let a function k on X be defined by

$$
k(x)=1 / 2 \sum_{n=1}^{\infty} 3^{-n} k_{n}(x) .
$$

By the Cauchy condition and the $B-.5-$ properties, the function k is a Baire- .5 function. Since $\bigcap_{n=1}^{\infty} D_{n}=\emptyset$ and since $k_{n}=1$ on $X \backslash D_{n}$, it follows that $0<k$. Also $2 k<f-g$: In order to see this, observe first that if x is in $A\left(f-g, 3^{-n+1}\right)$, then $k(x) \leqslant 1 / 4\left(3^{-n}\right)$. If x is any point in X, then $x \notin A(f-g, 1)$ or for some n,

$$
x \in A\left(f-g, 3^{-n+1}\right)-A\left(f-g, 3^{-n}\right)
$$

in the former case $2 k(x)<1$, and in the latter $2 k(x) \leqslant 1 / 2\left(3^{-n}\right)<f(x)-g(x)$. Thus if $f_{1}=f-k$ and if $g_{1}=g+k$, then $g<g_{1}<f_{1}<f$. Since P_{1} and P_{2} are $B-.5$-properties, then g_{1} has property P_{1} and f_{1} has property P_{2}. Since X has the weak $B-.5$-insertion property for $\left(P_{1}, P_{2}\right)$, then there exists a Baire-. 5 function such that $g_{1} \leqslant h \leqslant f_{1}$. Thus $g<h<f$, it follows that X satisfies the $B-.5$-insertion property for $\left(P_{1}, P_{2}\right)$. (The technique of this proof is by Katětov [13]).

Conversely, let g and f be functions on X such that g has property P_{1}, f has property P_{2} and $g<f$. By hypothesis, there exists a Baire- .5 function such that $g<h<f$. We follow an idea contained in Lane [15]. Since the constant function 0 has property P_{1}, since $f-h$ has property P_{2}, and since X has the $B-.5$-insertion property for $\left(P_{1}, P_{2}\right)$, then there exists a Baire-. 5 function k such that $0<k<f-h$. Let $A\left(f-g, 3^{-n+1}\right)$ be any lower cut set for $f-g$ and let $D_{n}=\left\{x \in X: k(x)<3^{-n+2}\right\}$. Since $k>0$ it follows that $\bigcap_{n=1}^{\infty} D_{n}=$???. Since

$$
A\left(f-g, 3^{-n+1}\right) \subseteq\left\{x \in X:(f-g)(x) \leqslant 3^{-n+1}\right\} \subseteq\left\{x \in X: k(x) \leqslant 3^{-n+1}\right\}
$$

and since $\left\{x \in X: k(x) \leqslant 3^{-n+1}\right\}$ and $\left\{x \in X: k(x) \geqslant 3^{-n+2}\right\}=X \backslash D_{n}$ are completely separated by Baire-. 5 function $\sup \left\{3^{-n+1}, \inf \left\{k, 3^{-n+2}\right\}\right\}$, it follows that for each $n, A\left(f-g, 3^{-n+1}\right)$ and $X \backslash D_{n}$ are completely separated by Baire-. 5 functions.

3. Applications

Definition 3.1. A real-valued function f defined on a space X is called contra-upper semi-Baire-. 5 (resp. contra-lower semi-Baire-.5) if $f^{-1}(-\infty, t)$ (resp. $\left.f^{-1}(t,+\infty)\right)$ is a $G_{\delta}-$ set for any real number t.

The abbreviations usc, lsc, cusB. 5 and clsB. 5 are used for upper semicontinuous, lower semicontinuous, contra-upper semi-Baire-.5, and contra-lower semi-Baire-.5, respectively.

Remark 3.1. ([13, 14]). A space X has the weak c-insertion property for (usc,lsc) if and only if X is normal.

Before stating the consequences of Theorem 2.1, and Theorem 2.2 we suppose that X is a topological space that $F_{\sigma}-$ kernel of sets are $F_{\sigma}-$ sets.

Corollary 3.1. For each pair of disjoint $F_{\sigma}-$ sets F_{1}, F_{2}, there are two $G_{\delta}-$ sets G_{1} and G_{2} such that $F_{1} \subseteq G_{1}, F_{2} \subseteq G_{2}$ and $G_{1} \cap G_{2}=\emptyset$ if and only if X has the weak $B-.5$-insertion property for (cusB-.5, clsB-.5).

Proof. Let g and f be real-valued functions defined on the X, such that f is $l s B_{1}, g$ is $u s B_{1}$, and $g \leqslant f$.If a binary relation ρ is defined by $A \rho B$ in case $F_{\sigma}(A) \subseteq G_{\delta}(B)$, then by hypothesis ρ is a strong binary relation in the power set of X. If t_{1} and t_{2} are any elements of \mathbb{Q} with $t_{1}<t_{2}$, then

$$
A\left(f, t_{1}\right) \subseteq\left\{x \in X: f(x) \leqslant t_{1}\right\} \subseteq\left\{x \in X: g(x)<t_{2}\right\} \subseteq A\left(g, t_{2}\right)
$$

since $\left\{x \in X: f(x) \leqslant t_{1}\right\}$ is a F_{σ}-set and since $\left\{x \in X: g(x)<t_{2}\right\}$ is a G_{δ}-set, it follows that $F_{\sigma}\left(A\left(f, t_{1}\right)\right) \subseteq G_{\delta}\left(A\left(g, t_{2}\right)\right)$. Hence $t_{1}<t_{2}$ implies that $A\left(f, t_{1}\right) \rho A\left(g, t_{2}\right)$. The proof follows from Theorem 2. 1.

On the other hand, let F_{1} and F_{2} are disjoint F_{σ}-sets. Set $f=\chi_{F_{1}^{c}}$ and $g=\chi_{F_{2}}$, then f is clsB-.5,g is cusB-.5, and $g \leqslant f$. Thus there exists Baire-. 5 function h such that $g \leqslant h \leqslant f$. Set $G_{1}=\left\{x \in X: h(x)<\frac{1}{2}\right\}$ and $G_{2}=\{x \in$ $\left.X: h(x)>\frac{1}{2}\right\}$, then G_{1} and G_{2} are disjoint G_{δ}-sets such that $F_{1} \subseteq G_{1}$ and $F_{2} \subseteq G_{2}$.

Remark 3.2. ([24]) A space X has the weak c-insertion property for ($l s c, u s c$) if and only if X is extremally disconnected.

Corollary 3.2. For every G of $G_{\delta}-$ set, $F_{\sigma}(G)$ is a $G_{\delta}-$ set if and only if X has the weak $B-.5-$ insertion property for (clsB-.5, cusB-.5).

Before giving the proof of this corollary, the necessary lemma is stated.
Lemma 3.1. The following conditions on the space X are equivalent:
(i) For every G of G_{δ}-set we have $F_{\sigma}(G)$ is a $G_{\delta}-$ set.
(ii) For each pair of disjoint G_{δ}-sets as G_{1} and G_{2} we have $F_{\sigma}\left(G_{1}\right) \cap F_{\sigma}\left(G_{2}\right)=$ \emptyset.

Proof. The proof of Lemma 3.1 is a direct consequence of the definition $F_{\sigma}-$ kernel of sets.

We now give the proof of corollary 3.2.
Proof. Let g and f be real-valued functions defined on the X, such that f is cls $B-.5, g$ is cus $B-.5$, and $f \leqslant g$.If a binary relation ρ is defined by $A \rho B$ in case $F_{\sigma}(A) \subseteq G \subseteq F_{\sigma}(G) \subseteq G_{\delta}(B)$ for some G_{δ}-set g in X, then by hypothesis and Lemma 3.1ρ is a strong binary relation in the power set of X. If t_{1} and t_{2} are any elements of \mathbb{Q} with $t_{1}<t_{2}$, then

$$
A\left(g, t_{1}\right)=\left\{x \in X: g(x)<t_{1}\right\} \subseteq\left\{x \in X: f(x) \leqslant t_{2}\right\}=A\left(f, t_{2}\right)
$$

since $\left\{x \in X: g(x)<t_{1}\right\}$ is a G_{δ}-set and since $\left\{x \in X: f(x) \leqslant t_{2}\right\}$ is a F_{σ}-set, by hypothesis it follows that $A\left(g, t_{1}\right) \rho A\left(f, t_{2}\right)$. The proof follows from Theorem 2.1.

On the other hand, Let G_{1} and G_{2} are disjoint $G_{\delta}-$ sets. Set $f=\chi_{G_{2}}$ and $g=\chi_{G_{1}^{c}}$, then f is clsB-.5,g is cusB-.5, and $f \leqslant g$.

Thus there exists Baire-. 5 function h such that $f \leqslant h \leqslant g$. Set $F_{1}=\{x \in X$: $\left.h(x) \leqslant \frac{1}{3}\right\}$ and $F_{2}=\{x \in X: h(x) \geqslant 2 / 3\}$ then F_{1} and F_{2} are disjoint F_{σ}-sets such that $G_{1} \subseteq F_{1}$ and $G_{2} \subseteq F_{2}$. Hence $F_{\sigma}\left(F_{1}\right) \cap F_{\sigma}\left(F_{2}\right)=\emptyset$.

Before stating the consequences of Theorem 2.2, we state and prove the necessary lemmas.

Lemma 3.2. The following conditions on the space X are equivalent:
(i) Every two disjoint F_{σ}-sets of X can be separated by $G_{\delta}-$ sets of X.
(ii) If F is a F_{σ}-set of X which is contained in a $G_{\delta}-$ set G, then there exists $a G_{\delta}-$ set H such that $F \subseteq H \subseteq F_{\sigma}(H) \subseteq G$.

Proof. (i) \Rightarrow (ii) Suppose that $F \subseteq G$, where F and G are F_{σ}-set and G_{δ}-set of X, respectively. Hence, G^{c} is a F_{σ}-set and $F \cap G^{c}=\emptyset$.

By (i) there exists two disjoint G_{δ}-sets G_{1}, G_{2} such that $F \subseteq G_{1}$ and $G^{c} \subseteq G_{2}$. But

$$
G^{c} \subseteq G_{2} \Rightarrow G_{2}^{c} \subseteq G
$$

and

$$
G_{1} \cap G_{2}=\emptyset \Rightarrow G_{1} \subseteq G_{2}^{c}
$$

hence

$$
F \subseteq G_{1} \subseteq G_{2}^{c} \subseteq G
$$

and since G_{2}^{c} is a F_{σ}-set containing G_{1} we conclude that $F_{\sigma}\left(G_{1}\right) \subseteq G_{2}^{c}$, i.e.,

$$
F \subseteq G_{1} \subseteq F_{\sigma}\left(G_{1}\right) \subseteq G
$$

By setting $H=G_{1}$, condition (ii) holds.
(ii) \Rightarrow (i) Suppose that F_{1}, F_{2} are two disjoint F_{σ}-sets of X.

This implies that $F_{1} \subseteq F_{2}^{c}$ and F_{2}^{c} is a G_{δ}-set. Hence by (ii) there exists a G_{δ}-set H such that, $F_{1} \subseteq H \subseteq F_{\sigma}(H) \subseteq F_{2}^{c}$.
But

$$
H \subseteq F_{\sigma}(H) \Rightarrow H \cap\left(F_{\sigma}(H)\right)^{c}=\emptyset
$$

and

$$
F_{\sigma}(H) \subseteq F_{2}^{c} \Rightarrow F_{2} \subseteq\left(F_{\sigma}(H)\right)^{c}
$$

Furthermore, $\left(F_{\sigma}(H)\right)^{c}$ is a $G_{\delta}-$ set of X. Hence $F_{1} \subseteq H, F_{2} \subseteq\left(F_{\sigma}(H)\right)^{c}$ and $H \cap\left(F_{\sigma}(H)\right)^{c}=\emptyset$. This means that condition (i) holds.

Lemma 3.3. Suppose that X is the topological space such that we can separate every two disjoint F_{σ}-sets by $G_{\delta}-$ sets. If F_{1} and F_{2} are two disjoint F_{σ}-sets of X, then there exists a Baire-. 5 function $h: X \rightarrow[0,1]$ such that $h\left(F_{1}\right)=\{0\}$ and $h\left(F_{2}\right)=\{1\}$.

Proof. Suppose F_{1} and F_{2} are two disjoint F_{σ}-sets of X. Since $F_{1} \cap F_{2}=\emptyset$, hence $F_{1} \subseteq F_{2}^{c}$. In particular, since F_{2}^{c} is a $G_{\delta}-$ set of X containing F_{1}, by Lemma 3.2, there exists a $G_{\delta}-$ set $H_{1 / 2}$ such that,

$$
F_{1} \subseteq H_{1 / 2} \subseteq F_{\sigma}\left(H_{1 / 2}\right) \subseteq F_{2}^{c}
$$

Note that $H_{1 / 2}$ is a $G_{\delta}-$ set and contains F_{1}, and F_{2}^{c} is a $G_{\delta}-$ set and contains $F_{\sigma}\left(H_{1 / 2}\right)$. Hence, by Lemma 3.2, there exists G_{δ}-sets $H_{1 / 4}$ and $H_{3 / 4}$ such that,

$$
F_{1} \subseteq H_{1 / 4} \subseteq F_{\sigma}\left(H_{1 / 4}\right) \subseteq H_{1 / 2} \subseteq F_{\sigma}\left(H_{1 / 2}\right) \subseteq H_{3 / 4} \subseteq F_{\sigma}\left(H_{3 / 4}\right) \subseteq F_{2}^{c}
$$

By continuing this method for every $t \in D$, where $D \subseteq[0,1]$ is the set of rational numbers that their denominators are exponents of 2 , we obtain G_{δ}-sets H_{t} with the property that if $t_{1}, t_{2} \in D$ and $t_{1}<t_{2}$, then $H_{t_{1}} \subseteq H_{t_{2}}$. We define the function h on X by $h(x)=\inf \left\{t: x \in H_{t}\right\}$ for $x \notin F_{2}$ and $h(x)=1$ for $x \in F_{2}$.

Note that for every $x \in X, 0 \leqslant h(x) \leqslant 1$, i.e., h maps X into [0,1$]$. Also, we note that for any $t \in D, F_{1} \subseteq H_{t}$; hence $h\left(F_{1}\right)=\{0\}$. Furthermore, by definition, $h\left(F_{2}\right)=\{1\}$. It remains only to prove that h is a Baire-. 5 function on X. For every $\alpha \in \mathbb{R}$, we have if $\alpha \leqslant 0$ then $\{x \in X: h(x)<\alpha\}=\emptyset$ and if $0<\alpha$ then $\{x \in X: h(x)<\alpha\}=\cup\left\{H_{t}: t<\alpha\right\}$, hence, they are $G_{\delta}-$ sets of X. Similarly, if $\alpha<0$ then $\{x \in X: h(x)>\alpha\}=X$ and if $0 \leqslant \alpha$ then $\{x \in X: h(x)>$ $\alpha\}=\cup\left\{\left(F_{\sigma}\left(H_{t}\right)\right)^{c}: t>\alpha\right\}$ hence, every of them is a $G_{\delta}-$ set. Consequently h is a Baire-. 5 function.

Lemma 3.4. Suppose that X is the topological space such that every two disjoint $F_{\sigma}-$ sets can be separated by $G_{\delta}-$ sets. The following conditions are equivalent:
(i) Every countable convering of G_{δ}-sets of X has a refinement consisting of G_{δ}-sets such that, for every $x \in X$, there exists a $G_{\delta}-$ set containing x such that it intersects only finitely many members of the refinement.
(ii) Corresponding to every decreasing sequence $\left\{F_{n}\right\}$ of F_{σ}-sets with empty intersection there exists a decreasing sequence $\left\{G_{n}\right\}$ of $G_{\delta}-$ sets such that, $\bigcap_{n=1}^{\infty} G_{n}=$ \emptyset and for every $n \in \mathbb{N}, F_{n} \subseteq G_{n}$.

Proof. (i) \Rightarrow (ii). suppose that $\left\{F_{n}\right\}$ be a decreasing sequence of F_{σ}-sets with empty intersection. Then $\left\{F_{n}^{c}: n \in \mathbb{N}\right\}$ is a countable covering of G_{δ}-sets. By hypothesis (i) and Lemma 3.2, this covering has a refinement $\left\{V_{n}: n \in \mathbb{N}\right\}$ such that every V_{n} is a G_{δ}-set and $F_{\sigma}\left(V_{n}\right) \subseteq F_{n}^{c}$. By setting $F_{n}=\left(F_{\sigma}\left(V_{n}\right)\right)^{c}$, we obtain a decreasing sequence of G_{δ}-sets with the required properties.
(ii) \Rightarrow (i). Now if $\left\{H_{n}: n \in \mathbb{N}\right\}$ is a countable covering of $G_{\delta}-$ sets, we set for $n \in \mathbb{N}, F_{n}=\left(\bigcup_{i=1}^{n} H_{i}\right)^{c}$. Then $\left\{F_{n}\right\}$ is a decreasing sequence of F_{σ}-sets with empty intersection. By (ii) there exists a decreasing sequence $\left\{G_{n}\right\}$ consisting of
G_{δ}-sets such that, $\bigcap_{n=1}^{\infty} G_{n}=\emptyset$ and for every $n \in \mathbb{N}, F_{n} \subseteq G_{n}$. Now we define the subsets W_{n} of X in the following manner:
W_{1} is a G_{δ}-set of X such that $G_{1}^{c} \subseteq W_{1}$ and $F_{\sigma}\left(W_{1}\right) \cap F_{1}=\emptyset$.
W_{2} is a G_{δ}-set of X such that $F_{\sigma}\left(W_{1}\right) \cup G_{2}^{c} \subseteq W_{2}$ and $F_{\sigma}\left(W_{2}\right) \cap F_{2}=\emptyset$, and so on. (By Lemma 3.2, W_{n} exists).

Then since $\left\{G_{n}^{c}: n \in \mathbb{N}\right\}$ is a covering for X, hence $\left\{W_{n}: n \in \mathbb{N}\right\}$ is a covering for X consisting of G_{δ}-sets. Moreover, we have
(i) $F_{\sigma}\left(W_{n}\right) \subseteq W_{n+1}$
(ii) $G_{n}^{c} \subseteq W_{n}$
(iii) $W_{n} \subseteq \bigcup_{i=1}^{n} H_{i}$.

Now suppose that $S_{1}=W_{1}$ and for $n \geqslant 2$, we set $S_{n}=W_{n+1} \backslash F_{\sigma}\left(W_{n-1}\right)$.
Then since $F_{\sigma}\left(W_{n-1}\right) \subseteq W_{n}$ and $S_{n} \supseteq W_{n+1} \backslash W_{n}$, it follows that $\left\{S_{n}: n \in \mathbb{N}\right\}$ consists of G_{δ}-sets and covers X. Furthermore, $S_{i} \cap S_{j} \neq \emptyset$ if and only if $|i-j| \leqslant 1$. Finally, consider the following sets:

$$
\begin{array}{lll}
S_{1} \cap H_{1}, & S_{1} \cap H_{2} & \\
S_{2} \cap H_{1}, & S_{2} \cap H_{2}, & S_{2} \cap H_{3} \\
S_{3} \cap H_{1}, & S_{3} \cap H_{2}, & S_{3} \cap H_{3},
\end{array} S_{3} \cap H_{4}
$$

and continue ad infinitum. These sets are $G_{\boldsymbol{\delta}}$-sets, cover X and refine $\left\{H_{n}: n \in\right.$ $\mathbb{N}\}$. In addition, $S_{i} \cap H_{j}$ can intersect at most the sets in its row, immediately above, or immediately below row.

Hence if $x \in X$ and $x \in S_{n} \cap H_{m}$, then $S_{n} \cap H_{m}$ is a G_{δ}-set containing x that intersects at most finitely many of sets $S_{i} \cap H_{j}$. Consequently, $\left\{S_{i} \cap H_{j}: i \in \mathbb{N}, j=\right.$ $1, \ldots, i+1\}$ refines $\left\{H_{n}: n \in \mathbb{N}\right\}$ such that its elements are G_{δ}-sets, and for every point in X we can find a G_{δ}-set containing the point that intersects only finitely many elements of that refinement.

Remark 3.3. ([13, 14]) A space X has the c-insertion property for (usc,lsc) if and only if X is normal and countably paracompact.

Corollary 3.3. X has the $B-.5$-insertion property for (cusB-.5, clsB-.5) if and only if every two disjoint F_{σ}-sets of X can be separated by $G_{\delta}-$ sets, and in addition, every countable covering of $G_{\delta}-$ sets has a refinement that consists of $G_{\delta}-$ sets such that, for every point of X we can find a G_{δ}-set containing that point such that, it intersects only a finite number of refining members.

Proof. Suppose that F_{1} and F_{2} are disjoint F_{σ}-sets . Since $F_{1} \cap F_{2}=\emptyset$, it follows that $F_{2} \subseteq F_{1}^{c}$. We set $f(x)=2$ for $x \in F_{1}^{c}, f(x)=\frac{1}{2}$ for $x \notin F_{1}^{c}$, and $g=\chi_{F_{2}}$.

Since F_{2} is a $F_{\sigma}-$ set, and F_{1}^{c} is a $G_{\delta}-$ set, therefore g is $\operatorname{cus} B-.5, f$ is $c l s B-.5$ and furthermore $g<f$. Hence by hypothesis there exists a Baire-. 5 function h such that, $g<h<f$. Now by setting $G_{1}=\{x \in X: h(x)<1\}$ and $G_{2}=$ $\{x \in X: h(x)>1\}$. We can say that G_{1} and G_{2} are disjoint G_{δ}-sets that contain F_{1} and F_{2}, respectively. Now suppose that $\left\{F_{n}\right\}$ is a decreasing sequence of F_{σ}-sets with empty intersection. Set $F_{0}=X$ and define for every $x \in F_{n} \backslash F_{n+1}$, $f(x)=\frac{1}{n+1}$. Since $\bigcap_{n=0}^{\infty} F_{n}=\emptyset$ and for every $x \in X$, there exists $n \in \mathbb{N}$, such that, $x \in F_{n} \backslash F_{n+1}, f$ is well defined. Furthermore, for every $r \in \mathbb{R}$, if $r \leqslant 0$
then $\{x \in X: f(x)>r\}=X$ is a $G_{\delta}-$ set and if $r>0$ then by Archimedean property of \mathbb{R}, we can find $i \in \mathbb{N}$ such that $\frac{1}{i+1} \leqslant r$. Now suppose that k is the least natural number such that $\frac{1}{k+1} \leqslant r$. Hence $\frac{1}{k}>r$ and consequently, $\{x \in X: f(x)>r\}=X \backslash F_{k}$ is a $G_{\delta}-$ set. Therefore, f is $c l s B-.5$. By setting $g=0$, we have g is cus $B-.5$ and $g<f$. Hence by hypothesis there exists a Baire-. 5 function h on X such that, $g<h<f$.

By setting $G_{n}=\left\{x \in X: h(x)<\frac{1}{n+1}\right\}$, we have G_{n} is a $G_{\delta}-$ set. But for every $x \in F_{n}$, we have $f(x) \leqslant \frac{1}{n+1}$ and since $g<h<f$ therefore $0<h(x)<\frac{1}{n+1}$, i.e., $x \in G_{n}$ therefore $F_{n} \subseteq G_{n}$ and since $h>0$ it follows that $\bigcap_{n=1}^{\infty} G_{n}=\emptyset$. Hence by Lemma 3.4, the conditions holds.

On the other hand, since every two disjoint F_{σ}-sets can be separated by G_{δ}-sets, therefore by corollary 3.1, X has the weak $B-.5$-insertion property for ($\operatorname{cus} B-.5, \operatorname{cls} B-.5$). Now suppose that f and g are real-valued functions on X with $g<f$, such that, g is cus $B-.5$ and f is $c l s B-.5$. For every $n \in \mathbb{N}$, set

$$
A\left(f-g, 3^{-n+1}\right)=\left\{x \in X:(f-g)(x) \leqslant 3^{-n+1}\right\}
$$

Since g is cus $B-.5$, and f is $c l s B-.5$, therefore $f-g$ is $c l s B-.5$. Hence $A\left(f-g, 3^{-n+1}\right)$ is a F_{σ}-set of X. Consequently, $\left\{A\left(f-g, 3^{-n+1}\right)\right\}$ is a decreasing sequence of F_{σ}-sets and furthermore since $0<f-g$, it follows that $\bigcap_{n=1}^{\infty} A(f-$ $\left.g, 3^{-n+1}\right)=\emptyset$. Now by Lemma 3.4, there exists a decreasing sequence $\left\{D_{n}\right\}$ of G_{δ}-sets such that $A\left(f-g, 3^{-n+1}\right) \subseteq D_{n}$ and $\bigcap_{n=1}^{\infty} D_{n}=\emptyset$. But by Lemma 3.3, $A\left(f-g, 3^{-n+1}\right)$ and $X \backslash D_{n}$ of F_{σ}-sets can be completely separated by Baire-. 5 functions. Hence by Theorem 2.2, there exists a Baire-. 5 function h defined on X such that, $g<h<f$, i.e., X has the $B-.5$-insertion property for (cus $B-$.5, clsB - .5).

Remark 3.4. ([15]) A space X has the c-insertion property for $(l s c, u s c)$ iff X is extremally disconnected and if for any decreasing sequence $\left\{G_{n}\right\}$ of open subsets of X with empty intersection there exists a decreasing sequence $\left\{F_{n}\right\}$ of closed subsets of X with empty intersection such that $G_{n} \subseteq F_{n}$ for each n.

Corollary 3.4. For every G of $G_{\delta}-$ set, $F_{\sigma}(G)$ is a $G_{\delta}-$ set and in addition for every decreasing sequence $\left\{G_{n}\right\}$ of G_{δ}-sets with empty intersection, there exists a decreasing sequence $\left\{F_{n}\right\}$ of F_{σ}-sets with empty intersection such that for every $n \in \mathbb{N}, G_{n} \subseteq F_{n}$ if and only if X has the $B-.5$-insertion property for (clsB$.5, \operatorname{cus} B-.5)$.

Proof. Since for every G of $G_{\delta}-$ set, $F_{\sigma}(G)$ is a $G_{\delta}-$ set, therefore by Corollary $3.2, X$ has the weak $B-.5$-insertion property for (clsB-.5, cusB-.5). Now suppose that f and g are real-valued functions defined on X with $g<f, g$ is $c l s B-$.5 , and f is cus $B-.5$. Set $A\left(f-g, 3^{-n+1}\right)=\left\{x \in X:(f-g)(x)<3^{-n+1}\right\}$. Then since $f-g$ is $\operatorname{cus} B-.5$, hence $\left\{A\left(f-g, 3^{-n+1}\right)\right\}$ is a decreasing sequence of G_{δ}-sets with empty intersection. By hypothesis, there exists a decreasing sequence $\left\{D_{n}\right\}$ of F_{σ}-sets with empty intersection such that, for every $n \in \mathbb{N}, A\left(f-g, 3^{-n+1}\right) \subseteq D_{n}$. Hence $X \backslash D_{n}$ and $A\left(f-g, 3^{-n+1}\right)$ are two disjoint G_{δ}-sets and therefore by

Lemma 3.1, we have

$$
F_{\sigma}\left(A\left(f-g, 3^{-n+1}\right)\right) \cap F_{\sigma}\left(\left(X \backslash D_{n}\right)\right)=\emptyset
$$

and therefore by Lemma $3.3, X \backslash D_{n}$ and $A\left(f-g, 3^{-n+1}\right)$ are completely separable by Baire-. 5 functions. Therefore by theorem 2.2, there exists a Baire-. 5 function h on X such that, $g<h<f$, i.e., X has the $B-.5$-insertion property for (clsB-.5, cusB-.5).

On the other hand, suppose that G_{1} and G_{2} be two disjoint G_{δ}-sets. Since $G_{1} \cap G_{2}=\emptyset$. We have $G_{2} \subseteq G_{1}^{c}$. We set $f(x)=2$ for $x \in G_{1}^{c}, f(x)=\frac{1}{2}$ for $x \notin G_{1}^{c}$ and $g=\chi_{G_{2}}$.

Then since G_{2} is a $G_{\delta}-$ set and G_{1}^{c} is a F_{σ}-set, we conclude that g is $c l s B-.5$ and f is cus $B-.5$ and furthermore $g<f$. By hypothesis, there exists a Baire-. 5 function h on X such that, $g<h<f$. Now we set $F_{1}=\left\{x \in X: h(x) \leqslant \frac{3}{4}\right\}$ and $F_{2}=\{x \in X: h(x) \geqslant 1\}$. Then F_{1} and F_{2} are two disjoint F_{σ}-sets contain G_{1} and G_{2}, respectively. Hence $F_{\sigma}\left(G_{1}\right) \subseteq F_{1}$ and $F_{\sigma}\left(G_{2}\right) \subseteq F_{2}$ and consequently $F_{\sigma}\left(G_{1}\right) \cap F_{\sigma}\left(G_{2}\right)=\emptyset$. By Lemma 3.1, for every G of $G_{\delta}-$ set, the set $F_{\sigma}(G)$ is a G_{δ}-set.

Now suppose that $\left\{G_{n}\right\}$ is a decreasing sequence of G_{δ}-sets with empty intersection.

We set $G_{0}=X$ and $f(x)=\frac{1}{n+1}$ for $x \in G_{n} \backslash G_{n+1}$. Since $\bigcap_{n=0}^{\infty} G_{n}=\emptyset$ and for every $n \in \mathbb{N}$ there exists $x \in G_{n} \backslash G_{n+1}, f$ is well-defined. Furthermore, for every $r \in \mathbb{R}$, if $r \leqslant 0$ then $\{x \in X: f(x)<r\}=\emptyset$ is a G_{δ}-set and if $r>0$ then by Archimedean property of \mathbb{R}, there exists $i \in \mathbb{N}$ such that $\frac{1}{i+1} \leqslant r$. Suppose that k is the least natural number with this property. Hence $\frac{1}{k}>r$. Now if $\frac{1}{k+1}<r$ then $\{x \in X: f(x)<r\}=G_{k}$ is a G_{δ}-set and if $\frac{1}{k+1}=r$ then $\{x \in X: f(x)<r\}=G_{k+1}$ is a $G_{\delta}-$ set. Hence f is a cusB-.5 on X. By setting $g=0$, we have conclude that g is $c l s B-.5$ on X and in addition $g<f$. By hypothesis there exists a Baire-. 5 function h on X suvh that, $g<h<f$.

Set $F_{n}=\left\{x \in X: h(x) \leqslant \frac{1}{n+1}\right\}$. This set is a $F_{\sigma}-$ set. But for every $x \in G_{n}$, we have $f(x) \leqslant \frac{1}{n+1}$ and since $g<h<f$ thus $h(x)<\frac{1}{n+1}$, this means that $x \in F_{n}$ and consequently $G_{n} \subseteq F_{n}$.

By definition of $F_{n},\left\{F_{n}\right\}$ is a decreasing sequence of F_{σ}-sets and since $h>$ $0, \bigcap_{n=1}^{\infty} F_{n}=\emptyset$. Thus the conditions holds.

Acknowledgement

This research was partially supported by Centre of Excellence for Mathematics(University of Isfahan).

References

[1] A. Al-Omari and M.S. Md Noorani. Some properties of contra-b-continuous and almost contra-b-continuous functions. European J. Pure. Appl. Math., 2(2)(2009), 213-230.
[2] F. Brooks. Indefinite cut sets for real functions. Amer. Math. Monthly, 78(9)(1971), 10071010.
[3] M. Caldas and S. Jafari. Some properties of contra- β-continuous functions. Mem. Fac. Sci. Kochi. Univ., 22(2001), 19-28.
[4] J. Dontchev. The characterization of some peculiar topological space via \mathcal{A} and \mathcal{B}-sets. Acta Math. Hungar., 69(1-2)(1995), 67-71.
[5] J. Dontchev. Contra-continuous functions and strongly S-closed space. Intrnat. J. Math. Math. Sci., 19(2)(1996), 303-310
[6] J. Dontchev, and H. Maki. On sg-closed sets and semi- $\lambda-$ closed sets. Questions Answers Gen. Topology, 15(2)(1997), 259-266.
[7] E. Ekici. On contra-continuity. Annales Univ. Sci. Bodapest, 47(2004), 127-137.
[8] E. Ekici. New forms of contra-continuity. Carpathian J. Math., 24(1)(2008), 37-45.
[9] A. I. El-Magbrabi. Some properties of contra-continuous mappings. Int. J. General Topol., 3(1-2)(2010), 55-64.
[10] M. Ganster and I. Reilly. A decomposition of continuity. Acta Math. Hungar., 56(3-4)(1990), 299-301.
[11] S. Jafari and T. Noiri. Contra- α-continuous function between topological spaces. Iranian Int. J. Sci., 2(2)(2001), 153-167.
[12] S. Jafari and T. Noiri. On contra-precontinuous functions. Bull. Malaysian Math. Sc. Soc., 25(2002), 115-128.
[13] M. Katětov. On real-valued functions in topological spaces. Fund. Math., 38(1951), 85-91.
[14] M. Katětov. Correction to, "On real-valued functions in topological spaces". Fund. Math., 40(1953), 203-205.
[15] E. Lane. Insertion of a continuous function. Pacific J. Math., 66(1)(1976), 181-190.
[16] H. Maki. Generalized Λ-sets and the associated closure operator. The special Issue in commemoration of Prof. Kazuada IKEDA's Retirement, (1986), 139-146.
[17] S. N. Maheshwari and R. Prasad. On $R_{O s}$-spaces. Portugal. Math., 34(4)(1975), 213-217.
[18] M. Mirmiran and B. Naderi. Insertion of a contra-continuous function between two comparable contra- α-continuous (contra- C-continuous) functions. Facta Universitatis (Nis) Ser. Math., 34(1)(2019), 13-22.
[19] M. Mirmiran. Weak insertion of a contra-continuous function between two comparable contra- precontinuous (contra-semi-continuous) functions. Mathematica Montisnigri, 41(2018), 16-20.
[20] M. Mršević. On pairwise R_{0} and pairwise R_{1} bitopological spaces. Bull. Math. Soc. Sci. Math. R. S. Roumanie, $\mathbf{3 0}(78)(2)(1986), 141-145$.
[21] A. A. Nasef. Some properties of contra- γ-continuous functions. Chaos, Solitons and Fractals, 24(2)(2005), 471-477.
[22] M. Przemski. A decomposition of continuity and α-continuity. Acta Math. Hungar., 61(12)(1993), 93-98.
[23] H. Rosen. Darboux Baire-. 5 functions. Proc. Amer. Math. Soc., 110(1)(1990), 285-286.
[24] M. H. Stone. Boundedness properties in function-lattices. Canad. J. Math., 1(2)(1949), 176186.

Received by editors 25.05.2018; Revised version 10.09.2019; Available online 16.09..2019.

Department of Mathematics, University of Isfahan, Isfahan 81746-73441, Iran
E-mail address: mirmir@sci.ui.ac.ir
Department of General Courses, School of Managment and Medical information Sciences, Isfahan University of Medical Sciences, Isfahan, Iran

E-mail address: naderi@mng.mui.ac.ir

[^0]: 2010 Mathematics Subject Classification. 26A15, 54C30.
 Key words and phrases. Insertion, Strong binary relation, Baire-. 5 function, kernel of sets, Lower cut set.

