# TRI-IDEALS OF SEMIRINGS 

M. Murali Krishna Rao


#### Abstract

In this paper, we introduce the notion of a tri-ideal as a generalization of bi-quasi-interior ideal,quasi-interior ideal,bi-interior ideal, bi-quasi ideal, quasi ideal, interior ideal,left(right) ideal and ideal of a semiring. Then, we study the properties of tri-ideals of a semiring and characterize the trisimple semiring using tri-ideals of a semiring.


## 1. Introduction

The algebraic structure play a prominent role in mathematics with wide range of applications. Generalization of ideals of algebraic structures and ordered algebraic structure plays a very remarkable role and also necessary for further advance stuctiondies and application of various algebraic structures. During 1950-1980, the concepts of bi-ideals, quasi ideals and interior ideals were studied by many mathematicians and during 1950-2019, the applications of these ideals only studied by mathematicians.

Between 1980 and 2016 there have been no new generalization of these ideals of algebraic structures. Then the author $[\mathbf{2 2}, \mathbf{2 3}, \mathbf{2 4}, \mathbf{2 1}, \mathbf{2 9}, \mathbf{2 5}, \mathbf{3 0}, \mathbf{2 7}$, 26] introduced and studied bi quasi ideals, bi-interior ideals, bi quasi interior ideals, quasi interior ideals and weak interior ideals of $\Gamma$-semirings, semirings, $\Gamma$-semigroups,semigroups as a generalization of bi-ideal, quasi ideal and interior ideal of algebraic structures and characterized regular algebraic structures as weil as simple algebraic structures using these ideals. The notion of a semiring was introduced by Vandiver [34] in 1934, but semirings had appeared in earlier studies on the theory of ideals of rings. Semiring is a generalization of ring but also of

[^0]a generalization of distributive lattice.semirings are structurally similar to semigroups than to rings. Semiring theory has many applications in other branches of mathematics.

As a generalization of ring, the notion of a $\Gamma$-ring was introduced by Nobusawa [15] in 1964. In 1995, M. Murali Krishna Rao $[\mathbf{1 6}, \mathbf{1 7}, \mathbf{1 8}, \mathbf{2 0}]$ introduced the notion of $\Gamma$-semiring as a generalization of $\Gamma$-ring, ternary semiring and semiring. Sen [31] introduced the notion of a $\Gamma$-semigroup as a generalization of semigroup. The notion of a ternary algebraic system was introduced by Lehmer [13] in 1932. Dutta and Sardar [2] introduced the notion of operator semirings of $\Gamma$-semiring. Lister [14] introduced ternary ring. Murali Krishna Rao and Venkateswarlu [19, 30, 27, 28] studied regular $\Gamma$-incline, field $\Gamma$-semiring and derivations.

Many mathematicians introduced various generalizations of concept of ideals in algebraic structures, proved important results and characterizations of regular algebraic structures using bi-ideals, quasi ideals and simple algebraic structures using interior ideals. Henriksen [4] and Shabir and Batod [32] studied ideals in semirings. We know that the notion of a one sided ideal of any algebraic structure is a generalization of notion of an ideal. The quasi ideals are generalization of left ideal and right ideal whereas the bi-ideals are generalization of quasi ideals.

In 1952, the concept of bi-ideals was introduced by Good and Hughes [3] for semigroups. The notion of bi-ideals in rings and semirings were introduced by Lajos and Szasz $[\mathbf{1 1}, \mathbf{1 2}]$. Bi-ideal is a special case of (m-n) ideal. Steinfeld [33] first introduced the notion of quasi ideals for semigroups and then for rings. Iseki $[\mathbf{7}, \mathbf{5}, \mathbf{6}, \mathbf{8}]$ introduced the concept of quasi ideal for a semiring. In 1995, M. Murali Krishna Rao $[\mathbf{1 6}, \mathbf{1 7}, \mathbf{1 8}, \mathbf{2 0}]$ introduced the notion of $\Gamma$-semiring as a generalization of $\Gamma$ - ring, ternary semiring and semiring. Murali Krishna Rao and Venkateswarlu $[\mathbf{1 9}, \mathbf{3 0}, \mathbf{2 7}, 26]$ studied regular $\Gamma$-incline, field $\Gamma$-semiring and derivations. Quasi ideals, bi-ideals in $\Gamma$-semirings studied by Jagtap and Pawar $[\mathbf{9}, \mathbf{1 0}]$. Murali Krishna Rao $[\mathbf{2 0}, \mathbf{2 2}, \mathbf{2 3}, \mathbf{2 4}, \mathbf{2 1}, \mathbf{2 9}, 25]$ introduced the notion of left (right) bi-quasi ideal, the notion of bi-interior ideal and the notion of bi quasiinterior ideal of $\Gamma$-semiring as a generalization of ideal of $\Gamma$-semiring, studied their properties and characterized the simple $\Gamma$-semiring and regular $\Gamma$-semiring using these ideals.

In this paper, we introduce the notion of tri-ideals as a generalization of quasi ideal, bi-ideal, interior ideal, left(right) ideal and ideal of semiring and study the properties of tri-ideals of a semiring.

## 2. Preliminaries

In this section we will recall some of the fundamental concepts and definitions, which are necessary for this paper.

Definition 2.1. ([1]) A set $M$ together with two associative binary operations called addition and multiplication (denoted by + and $\cdot$ respectively) will be called semiring provided
(i) addition is a commutative operation.
(ii) multiplication distributes over addition both from the left and from the right.
(iii) there exists $0 \in M$ such that $x+0=x$ and $x \cdot 0=0 \cdot x=0$ for all $x \in M$.

Example 2.1. Let $M$ be the set of all natural numbers. Then ( $M$, max, min) is a semiring.

Definition 2.2. Let $M$ be a semiring. If there exists $1 \in M$ such that $a \cdot 1=$ $1 \cdot a=a$, for all $a \in M$, is called an unity element of $M$ then $M$ is said to be semiring with unity.

Definition 2.3. An element $a$ of a semiring $M$ is called a regular element if there exists an element $b$ of $M$ such that $a=a b a$.

Definition 2.4. A semiring $M$ is called a regular semiring if every element of $S$ is a regular element.

Definition 2.5. An element $a$ of a semiring $M$ is called a multiplicatively idempotent (an additively idempotent) element if $a a=a(a+a=a)$.

Definition 2.6. An element $b$ of a semiring $M$ is called an inverse element of $a$ of $M$ if $a b=b a=1$.

Definition 2.7. A semiring $M$ is called a division semiring if for each non-zero element of $M$ has multiplication inverse.

Definition 2.8. A non-empty subset $A$ of a semiring $M$ is called
(i) a subsemiring of $M$ if $(A,+)$ is a subsemigroup of $(M,+)$ and $A A \subseteq A$.
(ii) a quasi ideal of $M$ if $A$ is a subsemiring of $M$ and $A M \cap M A \subseteq A$.
(iii) a bi-ideal of $M$ if $A$ is a subsemiring of $M$ and $A M A \subseteq A$.
(iv) an interior ideal of $M$ if $A$ is a subsemiring of $M$ and $M A M \subseteq A$.
(v) a left (right) ideal of $M$ if $A$ is a subsemiring of $M$ and $M A \subseteq A(A M \subseteq$ A).
(vi) an ideal if $A$ is a subsemiring of $M, A M \subseteq A$ and $M A \subseteq A$.
(vii) a $k$-ideal if $A$ is a subsemiring of $M, A M \subseteq A, M A \subseteq A$ and $x \in M, x+$ $y \in A, y \in A$ then $x \in A$.
(viii) a bi-interior ideal of $M$ if $A$ is a subsemiring of $M$ and $M B M \cap B M B \subseteq B$.
(ix) a left bi-quasi ideal (right bi-quasi ideal) of $M$ if $A$ is a subsemiring of $M$ and $M A \cap A M A \subseteq A(A M \cap A M A \subseteq A)$.
(x) a left quasi-interior ideal (right quasi-interior ideal) of $M$ if $A$ is a subsemigroup of $(M,+)$ and $M A M A \subseteq A(A M A M \subseteq A)$.
(xi) a bi-quasi-interior ideal of $M$ if $A$ is a subsemiring of $M$ and $B M B M B \subseteq$ $B$.
Definition 2.9. A semiring $M$ is called a left bi-quasi simple semiring if $M$ has no left bi-quasi ideal other than $M$ itself.

## 3. Tri-ideals of semirings

In this section, we introduce the notion of tri-ideal as a generalization of biideal, quasi-ideal and interior ideal of a semiring and study the properties of tri-ideal of a semiring. Throughout this paper $M$ is a semiring with unity element.

Definition 3.1. A non-empty subset $B$ of a semiring $M$ is said to be right tri-ideal of $M$ if $B$ is a subsemiring of $M$ and $B B M B \subseteq B$.

Definition 3.2. A non-empty subset $B$ of a semiring $M$ is said to be left tri-ideal of $M$ if $B$ is a subsemiring of $M$ and $B M B B \subseteq B$.

Definition 3.3. A non-empty subset $B$ of a semiring $M$ is said to be tri-ideal of $M$ if $B$ is a subsemiring of $M$ and $B$ is a left and a right tri-ideal of $M$.

Remark: A tri-ideal of a semiring $M$ need not be quasi-ideal, interior ideal, bi-interior ideal. and bi-quasi ideal of a semiring $M$.

Example 3.1. (i) If $M=\left\{\left.\left(\begin{array}{ll}a & 0 \\ c & 0\end{array}\right) \right\rvert\, a, b, c \in Q\right\}$, then $M$ is a semiring with respect to usual addition of matrices and ternary operation is defined as usual matrix multiplication and $A=\left\{\left.\left(\begin{array}{cc}a & 0 \\ b & 0\end{array}\right) \right\rvert\, 0 \neq a, 0 \neq b \in Q\right\}$. Then $A$ is not a left tri-ideal of semiring $M$.
(ii) If $M=\left\{\left.\left(\begin{array}{ll}a & b \\ c & 0\end{array}\right) \right\rvert\, a, b, c \in Q\right\}$ then $M$ is a semiring with respect to usual addition of matrices and usual matrix multiplication and $A=\left\{\left.\left(\begin{array}{cc}a & b \\ 0 & 0\end{array}\right) \right\rvert\,\right.$ $0 \neq a, 0 \neq b \in Q\}$. Then $A$ is not a bi-ideal and $A$ is a left tri-ideal of the semiring M
(iii) If $M=\left\{\left.\left(\begin{array}{ll}a & b \\ c & 0\end{array}\right) \right\rvert\, a, b, c \in Q\right\}$ then $M$ is a semiring with respect to usual addition of matrices and ternary operation is defined as usual matrix multiplication and $A=\left\{\left.\left(\begin{array}{cc}a & b \\ 0 & 0\end{array}\right) \right\rvert\, 0 \neq a, 0 \neq b \in Q\right\}$. Then $A$ is not a bi-ideal and $A$ is a left tri-ideal of the semiring $M$.

In the following theorem, we mention some important properties and we omit the proofs since they are straight forward.

Theorem 3.1. Let $M$ be a semring. Then the following are hold.
(1) Every left ideal is a tri-ideal of $M$.
(2) Every right ideal is a tri-ideal of $M$.
(3) Every quasi ideal is a tri-ideal of $M$.
(4) Every ideal is a tri-ideal of $M$.
(5) If $L$ is a left ideal and $R$ is a right ideal of $M$ then $B=R \cap L$ is a tri-ideal of $M$.
(6) If $L$ is a left ideal and $R$ is a right ideal of a semiring $M$ then $B=R L$ is a tri-ideal of $M$.
(7) Let $M$ be a semiring and $B$ be a subsemiring of M.If $M M M B \subseteq B$ andBMMM $\subseteq B$ then $B$ is a tri-ideal of $M$.
(8) Let $M$ be a semiring and $B$ be a subsemiring of $M$. If $M M M \subseteq B$ then $B$ is a left tri-ideal of $M$.
Theorem 3.2. If $B$ be a left bi-quasi ideal of a semiring $M$, then $B$ is a tri-ideal of $M$.

Proof. Suppose $B$ is a left bi-quasi ideal of the semiring $M$. Then $B M B \subseteq$ $M B$. We have $B M B B \subseteq B M B$ Therefore $B M B B \subseteq M B \cap B M B \subseteq B$ Hence $B$ is a left tri-ideal of $M$. Similarly we can show that $B$ is a right tri-ideal of $M$. Hence $B$ is a tri-ideal of $M$.

Corollary 3.1. If $B$ be a right bi-quasi ideal of a semiring $M$, then $B$ is a tri- ideal of $M$.

Corollary 3.2. If $B$ be a bi-quasi ideal of a semiring $M$, then $B$ is a triideal of $M$.

Theorem 3.3. If $B$ be a bi-interior ideal of a semiring $M$, then $B$ is a left triideal of $M$.

Proof. Suppose $B$ is a bi-interior ideal of the semiring $M$. Then

$$
M B M \cap B M B \subseteq B, \text { and } B M B B \subseteq M B M \cap B M B \subseteq B
$$

Hence $B$ is a left tri ideal of $M$.
Corollary 3.3. If $B$ be a bi-interior ideal of a semiring $M$, then $B$ is a right tri-ideal of $M$.

Corollary 3.4. If $B$ be a bi-interior ideal of a semiring $M$, then $B$ is a tri-ideal of $M$.

Theorem 3.4. If $B$ is a subsemiring of a semiring $M$ and $M B B \subseteq B$, then $B$ is a left tri- ideal of $M$.

Theorem 3.5. Every bi-ideal of a semiring $M$ is a left tri-ideal of a semiring M.

Proof. Let $B$ be a bi-ideal of the semiring $M$. Then $B M B B \subseteq B M B \subseteq B$. Therefore $B M B B \subseteq B$. Hence every bi-ideal of a semiring $M$ is a left tri-ideal of the semiring $M$.

Corollary 3.5. Every bi-ideal of a semiring $M$ is a right tri-ideal of $M$.
Corollary 3.6. Every bi-ideal of a semiring $M$ is a tri-ideal of $M$.
Theorem 3.6. Every bi-quasi interior ideal of a semiring $M$ is a left tri-ideal of a semiring $M$.

Proof. Let $B$ be a bi-quasi interior ideal of the semiring $M$. Then $B M B M B \subseteq$ $B$. Therefore $B M B B \subseteq B M B M B \subseteq B$. This completes the proof.

Corollary 3.7. Every bi-quasi interior ideal of a semiring $M$ is a right triideal of a semiring $M$.

Corollary 3.8. Every bi-quasi interior ideal of a semiring $M$ is a tri-ideal of a semiring $M$.

Theorem 3.7. Every interior ideal of a semiring $M$ is a left tri-ideal of $M$.

Proof. Let $I$ be an interior ideal of the semiring $M$. Then $I M I I \subseteq M I M \subseteq I$. Hence $I$ is a left tri-ideal of the semiring $M$.

Corollary 3.9. Every interior ideal of a semiring $M$ is a right tri-ideal of $M$.

Corollary 3.10. Every interior ideal of a semiring $M$ is a tri-ideal of $M$.
Theorem 3.8. Let $M$ be a semiring and $B$ be a subsemiring of $M$ and $B=B B$. Then $B$ is a left tri-ideal of $M$ if and only if there exist left ideal $L$ and a right ideal $R$ such that $R L \subseteq B \subseteq R \cap L$.

Proof. Suppose $B$ is a tri-ideal of the semiring $M$. Then $B M B B \subseteq B$. Let $R=B M$ and $L=M B$. Then $R$ and $L$ are a right ideal and a left ideal of $M$ respectively. Therefore $R L \subseteq B \subseteq R \cap L$.

Conversely suppose that there exist $R$ and $L$ are a right ideal and a left ideal of $M$ respectively such that $R \Gamma L \subseteq B \subseteq R \cap L$. Then

$$
B M B B \subseteq(R \cap L) M(R \cap L)(R \cap L) \subseteq R L \subseteq B
$$

Hence $B$ is a left tri-ideal of $M$.
Corollary 3.11. Let $M$ be a semiring and $B$ be a subsemiring of $M$ andB $=$ $B B$.Then $B$ is a right tri-ideal of $M$ if and only if there exist left ideal $L$ and $a$ right ideal $R$ of $M$ such that $R L \subseteq B \subseteq R \cap L$.

Corollary 3.12. Let $M$ be a semiring and $B$ be a subsemiring of $M$ and $B=$ $B B$.Then $B$ is a tri-ideal of $M$ if and only if there exist left ideal $L$ and a right ideal $R$ of $M$ such that $R L \subseteq B \subseteq R \cap L$.

Theorem 3.9. The intersection of a left tri-ideal B of a semiring Mand a right ideal $A$ of $M$ is always a left tri-ideal of $M$.

Proof. Suppose $C=B \cap A$. Then $C M C C \subseteq B M B B \subseteq B$ and $C M C C \subseteq$ $A M A A \subseteq A$. Since $A$ is a left ideal of $M$, we have $C M C C \subseteq B \cap A=C$. Hence the intersection of a left tri-ideal $B$ of the semiring $M$ and a left ideal $A$ of $M$ is always a left tri-ideal of $M$.

Corollary 3.13. The intersection of a right tri-ideal $B$ of a semiring $M$ and a right ideal $A$ of $M$ is always a right tri-ideal of $M$.

Corollary 3.14. The intersection of a tri-ideal B of a semiring $M$ and an ideal $A$ of $M$ is always a tri-ideal of $M$.

Theorem 3.10. Let $A$ and $C$ be left tri- ideals of a semiring $M, B=A C$ and $B$ is an additively subsemigroup of $M$. If $A A=A$ then $B$ is a left tri-ideal of $M$.

Proof. Let $A$ and $C$ be left tri-ideals of the semiring $M$ and $B=A C$. Then

$$
B B=A C A C=A C A A C \subseteq A M A A C \subseteq A C=B
$$

Therefore $B=A C$ is a subsemiring of $M$ and

$$
B M B B=A C M A C A C \subseteq A M A C \subseteq A C=B
$$

Hence $B$ is a left tri-ideal of $M$.

Theorem 3.11. Let $A$ and $C$ be subsemirings of a semiring $M$ and $B=A C$ and $B$ is additively subsemigroup of $M$. If $A$ is the left ideal of $M$, then $B$ is a tri-ideal of $M$.

Proof. Let $A$ and $C$ be subsemirings of $M$ and $B=A C$. Suppose $A$ is the left ideal of $M$. Then $B B=A C A C \subseteq A C=B$. Thus $B M B B=A C M A C A C \subseteq$ $A C=B$. Hence $B$ is a left tri-ideal of $M$.

Corollary 3.15. Let $A$ and $C$ be subsemirings of a semiring $M$ and $B=$ $A C$ and $B$ is additively subsemigroup of $M$. If $C$ is a right ideal then $B$ is a right tri-ideal of $M$.

Theorem 3.12. Let $M$ be a semiring and $T$ be a non-empty subset of $M$. If subsemiring $B$ of $M$ containing $T M T T$ and $B \subseteq T$, then $B$ is a left tri-ideal of semiring $M$.

Proof. Let $B$ be a subsemiring of $M$ containing TMTT. Then $B M B \subseteq$ $T M T T \subseteq B$. Therefore $B M B B \subseteq B$. Hence $B$ is a left tri-ideal of $M$.

Theorem 3.13. Let $B$ be a tri-ideal of a semiring $M$ and $I$ be an interior ideal of $M$. Then $B \cap I$ is a left tri-ideal of $M$.

Proof. Suppose $B$ is the tri-ideal of $M$ and $I$ is an interior ideal of $M$. Obviously $B \cap I$ is subsemiring of $M$. Then

$$
\begin{aligned}
& (B \cap I) M(B \cap I)(B \cap I) \subseteq B M B B \subseteq B \\
& \quad(B \cap I) M(B \cap I)(B \cap I) \subseteq I M I \subseteq I
\end{aligned}
$$

Therefore $(B \cap I) M(B \cap I)(B \cap I) \subseteq B \cap I$. Hence $B \cap I$ is a left tri-ideal of $M$.
Corollary 3.16. Let $B$ be a tri-ideal of a semiring $M$ and $I$ be an interior ideal of $M$. Then $B \cap I$ is a right tri-ideal of $M$.

Corollary 3.17. Let $B$ be a tri-ideal of a semiring $M$ and $I$ be an interior ideal of $M$. Then $B \cap I$ is a tri-ideal of $M$.

Theorem 3.14. Let $M$ be a semiring and $T$ be a subsemiring of $M$. Then every subsemiring of $T$ containing TMTT is a left tri-ideal of $M$.

Proof. Let $C$ be a subsemiring of $T$ containing TMTT. Then

$$
C M C C \subseteq T M T T \subseteq C
$$

Hence $C$ is a left tri-ideal of $M$.
Theorem 3.15. The intersection of left tri-ideals $\left\{B_{\lambda} \mid \lambda \in A\right\}$ of a semiring $M$ is a left tri-ideal of $M$.

Proof. Let $B=\bigcap_{\lambda \in A} B_{\lambda}$. Then $B$ is a subsemiring of $M$. Since $B_{\lambda}$ is a left triideal of $M$, we have $B_{\lambda} M B_{\lambda} B_{\lambda} \subseteq B_{\lambda}$, for all $\lambda \in A$. Then $\cap B_{\lambda} M \cap B_{\lambda} \cap B_{\lambda} \cap B_{\lambda} \subseteq$ $\cap B_{\lambda}$ and thus $B M B B \subseteq B$. Hence $B$ is a left tri-ideal of $M$.

Theorem 3.16. Let $B$ be a left tri-ideal of asemiring $M, e \in B, e B \subseteq B$ and $e$ be $\beta$-idempotent. Then $e B$ is a left tri-ideal of $M$.

Proof. Let $B$ be a left tri-ideal of the semiring $M$. Suppose $x \in B \cap e \Gamma M$. Then $x \in B$ and $x=e y, y \in M$. Thus $x=e y=e e y=e(e y)=e x \in e B$. Therefore $B \cap e M \subseteq e B, e B \subseteq B$ and $e B \subseteq e M$. Thus $e B \subseteq B \cap e M$ and $e B=B \cap e M$. Hence $e B$ is a left tri-ideal of $M$.

Corollary 3.18. Let $M$ be a semiring $M$ and e be idempotent. Then eM and $M e$ are left tri-ideal and right tri-ideal of $M$ respectively.

Theorem 3.17. Let $M$ be a semiring. If $M=M a$, for all $a \in M$. Then every left tri-ideal of $M$ is a quasi ideal of $M$.

Proof. Let $B$ be a left tri-ideal of the semiring $M$ and $a \in B$. Then $M a \subseteq M B$ and $M \subseteq M B \subseteq M$. Thus $M B=M$ and $B M=B M B \subseteq B M B B \subseteq B$. So, $M B \cap B M \subseteq M \cap B M \subseteq B M \subseteq B$. Therefore $B$ is a quasi ideal of $M$. Hence the theorem.

## 4. Tri-simple semiring, regular semiring and minimal tri- ideals of a semiring

In this section, we introduce the notion of left tri-simple semiring and characterize the left tri-simple semiring using left tri- ideals of semiring and study the properties of minimal left tri- ideals of a semiring

Definition 4.1. A semiring $M$ is a left (right) simple semiring if $M$ has no proper left (right) ideals of $M$.

Definition 4.2. A semiring $M$ is said to be simple semiring if $M$ has no proper ideals of $M$.

Definition 4.3. A semiring $M$ is said to be bi- simple semiring if $M$ has no proper bi- ideals of $M$.

Definition 4.4. A semiring $M$ is said to be left(right) tri- simple semiring if $M$ has no left(right) tri-ideal other than $M$ itself.

Definition 4.5. A semiring $M$ is said to be tri- simple semiring if $M$ has no tri-ideal other than $M$ itself.

Theorem 4.1. If $M$ is a division semiring then $M$ is a tri- simple semiring.
Proof. Let $B$ be a proper left tri-ideal of the division semiring $M, x \in M$ and $0 \neq a \in B$. Since $M$ is a division semiring, there exists $b \in M$ such that $a b=1$. Then $a b x=x=x a b$. Therefore $x \in B M$ and $M \subseteq B M$. We have $B M \subseteq M$. Hence $M=B M$. Similarly we can prove $M B=M$.

$$
M=M B=B M B=B M B B \subseteq B, M \subseteq B
$$

Therefore $M=B$ and $M=B M=B B M B \subseteq B, M \subseteq B$. Therefore $M=B$. Hence division semiring $M$ has no proper -tri-ideals.

Theorem 4.2. Let $M$ be a left simple semiring. Every left tri-ideal of $M$ is a right ideal of $M$.

Proof. Let $M$ be a left simple semiring and $B$ be a left tri-ideal of $M$. Then $B M B B \subseteq B$ and $M B$ is a left ideal of $M$. Since $M$ is a left simple semiring, we have $M B=M$. Therefore $B M B B \subseteq B$. Thus $B M \subseteq B$. Hence the theorem.

Corollary 4.1. Let $M$ be a right simple semiring. Every right tri-ideal is a left ideal of $M$.

Corollary 4.2. Let $M$ be a left and a right simple semiring. Every tri-ideal is an ideal of $M$.

ThEOREM 4.3. Let $M$ be a semiring. $M$ is a left tri-simple semiring if and only if $\langle a\rangle=M$, for all $a \in M$ where $\langle a\rangle$ is the smallest left tri-ideal generated by a.

Proof. Let $M$ be a semiring. Suppose $M$ is the left tri-simple semiring, $a \in M$ and $B=M a$. Then $B$ is a left ideal of $M$. Therefore, by Theorem 4.1, $B$ is a left tri-ideal of $M$. Therefore $B=M$. Hence $M a=M$, for all $a \in M$. Then $M a \subseteq<a>\subseteq M$ and $M \subseteq<a>\subseteq M$. Therefore $M=<a>$.

Suppose $<a\rangle$ is the smallest left tri-ideal of $M$ generated by $a,<a\rangle=M$, $A$ is the left tri-ideal and $a \in A$. Then $<a>\subseteq A \subseteq M$ and $M \subseteq A \subseteq M$. Therefore $A=M$. Hence $M$ is a left tri-ideal simple semiring.

Theorem 4.4. If semiring $M$ is a left simple semiring then every left tri-ideal of $M$ is a right ideal of $M$.

Proof. Let $B$ be a left tri-ideal of the left simple semiring $M$. Then $M B$ is a left ideal of $M$ and $M B \subseteq M$. Therefore $M B=M$. Then $B M B B \subseteq B$ and $B M B \subseteq B$. Thus $B M \subseteq B$. Hence every left tri-ideal is a right ideal of $M$.

Corollary 4.3. If semiringl $M$ is right simple semiring then every right triideal of $M$ is a left ideal of $M$.

Corollary 4.4. Every tri-ideal of left and right simple semiring $M$ is an ideal of $M$.

Theorem 4.5. Let $M$ be a semiring and $B$ be a left tri-ideal of $M$. Then $B$ is a minimal left tri-ideal of $M$ if and only if $B$ is a left tri- simple subsemiring of $M$.

Proof. Let $B$ be a minimal left tri-ideal of the semiring $M$ and $C$ be a left tri-ideal of $B$. Then $C B C C \subseteq C$ and $C B C C$ is a left tri-ideal of $M$. Since $C$ is a tri-ideal of $B$, we hve $C B C C=B$ and $B=C B C C \subseteq C$. Thus $B=C$.

Conversely suppose that $B$ is a left tri-simple subsemiring of $M$. Let $C$ be a left tri-ideal of $M$ and $C \subseteq B$. Then $C B C C \subseteq C M C C \subseteq B M B B \subseteq B$. Therefore $C$ is a left tri-ideal of $B$. Thus $B=C$ since $B$ is a left tri-simple subsemiring of $M$. Hence $B$ is a minimal left tri-ideal of $M$.

Corollary 4.5. Let $M$ be a semiring and $B$ be a right tri-ideal of $M$. Then $B$ is a minimal right tri-ideal of $M$ if and only if $B$ is a right tri- simple subsemiring of $M$.

Corollary 4.6. Let $M$ be a semiring and $B$ be a tri-ideal of $M$. Then $B$ is a minimal tri-ideal of $M$ if and only if $B$ is a tri- simple subsemiring of $M$.

Theorem 4.6. Let $M$ be a commutative idempotent semiring. Then $M$ is a regular semiring if and only if $B M B B=B$ for all tri- ideals $B$ of $M$.

Proof. Suppose $M$ is a regular commutative idempotent semiring, $B$ is a triideal of $M$ and $x \in B$. Then $B M B B \subseteq B$ and there exists $y \in M, x=x y x x \in$ $B M B B$. Therefore $x \in B M B B$. Hence $B M B B=B$.

Conversely suppose that $B M B B=B$ for all tri- ideals $B$ of $M$. Let $B=R \cap L$, where $R$ and $L$ are ideals of $M$. Then $B$ is tri- ideal of $M$. Therefore

$$
(R \cap L) M(R \cap L)(R \cap L)=R \cap L
$$

and $R \cap L=(R \cap L) M(R \cap L)(R \cap L)$. Thus $R M R L \subseteq R L \subseteq R \cap L$ since $R L \subseteq L$ and $R L \subseteq R$. Therefore $R \cap L=R L$. Hence $M$ is a regular semiring.

## 5. Conclusion

As a further generalization of ideals, we introduced the notion of a tri-ideal of semiring as a generalization of ideal, left ideal, right ideal, bi-ideal,quasi ideal, biquasi ideal, bi-interior ideal,bi-quasi interior ideal and interior ideal of semiring and studied some of their properties. We introduced the notion of tri- simple semiring and characterized the tri-simple semiring of semiring. We proved every bi-quasi ideal of semiring and bi-interior ideal of semiring are tri-ideals and studied some of the properties of bi-interior ideals of semiring. In continuity of this paper, we study prime tri-ideals,prime, maximal and minimal tri-ideals of semiring.

## References

[1] P. J. Allen. A fundamental theorem of homomorphism for semirings. Proc. Amer. Math. Soc., 21(2)(1969), 412-416.
[2] T. K. Dutta and S. K. Sardar. On the operator semirings of a $\Gamma$-semiring. Southeast Asian Bull. Math., 26(2)(2002), 203-213.
[3] R. A. Good and D. R. Hughes. Associated groups for a semigroup. Bull. Amer. Math. Soc., 58 (1952), 624-625.
[4] M. Henriksen. Ideals in semirings with commutative addition. Notices Amer. Math. Soc., 6(1958), 321.
[5] K. Iseki. Ideal theory of semiring. Proc. Japan Acad., 32(8((1956), 554-559.
[6] K. Iseki. Ideals in semirings. Proc. Japan Acad., 34(1)(1958), 29-31.
[7] K. Iseki. Quasi-ideals in semirings without zero. Proc. Japan Acad., 34(2)(1958), 79-84.
[8] K. Izuka. On the Jacobson radical of a semiring. Tohoku Math. J., 11(3)(1959), 409-421.
[9] R. D. Jagatap and Y. S. Pawar. Quasi-ideals and minimal quasi-ideals in $\Gamma$-semirings. Novi Sad J. Math., 39(2)(2009), 79-87.
[10] R. D. Jagatap and Y. S. Pawar. Bi-ideals in $\Gamma$ - semirings. Bull. Int. Math. Virtual Inst., 6(2)(2016), 169-179.
[11] S. Lajos. On the bi-ideals in semigroups. Proc. Japan Acad., 45(8)(1969), 710-712.
[12] S. Lajos and F. A. Szasz. On the bi-ideals in associative ring. Proc. Japan Acad., 46(6)(1970), 505-507.
[13] H. Lehmer. A ternary analogue of Abelian groups. Amer. J. Math., 54(2)(1932), 329-338.
[14] W. G. Lister. Ternary rings. Trans. Amer. Math. Soc., 154 (1971), 37-55.
[15] N. Nobusawa. On a generalization of the ring theory. Osaka. J. Math., 1(1)(1964), 81-89.
[16] M. M. K. Rao. $\Gamma$-semirings - I. Southeast Asian Bull. Math., 19(1)(1995), 49-54.
[17] M. M. K. Rao. Г-semirings - II. Southeast Asian Bull. Math., 21(3)(1997), 281-287.
[18] M. M. K. Rao. The Jacobson radical of $\Gamma$-semiring. Southeast Asian Bull. Math., 23(1)(1999), 127-134
[19] M. M. K. Rao and B. Venkateswarlu. Regular $\Gamma$-incline and field $\Gamma$-semiring. Novi Sad J. Math., 45(2)(2015), 155-171.
[20] M. M. K. Rao. Г- semiring with identity. Disc. Math. Gen. Alg. Appl., 37(2)(2017), 189207.
[21] M. M. K. Rao. Bi-quasi-ideals and fuzzy bi-quasi ideals of $\Gamma$-semigroups. Bull. Int. Math. Virtual Inst., 7(2)(2017), 231-242.
[22] M. M. K. Rao. Ideals in ordered $\Gamma$-semirings. Disc. Math. Gen. Alg. and Appl., 38(1)(2018), 47-68.
[23] M. M. K. Rao. Bi-interior Ideals in semigroups. Disc. Math. Gen. Alg. Appl., 38(1)(2018), 69-78.
[24] M. M. K. Rao. Left bi-quasi ideals of semirings. Bull. Int. Math. Virtual Inst., 8(1)(2018), 45-53.
[25] M. M. K. Rao. A study of bi-quasi interior ideal as a new generalization of ideal of generalization of semiring. J. Int. Math. Virtual Inst., 9(1)(2019), 19-35.
[26] M. M. K. Rao. Quasi - interior ideals of semirings. Bull. Int. Math. Virtual Inst., 9(1)(2019), 231-242.
[27] M. M. K. Rao and B. Venkateswarlu. On generalized right derivations of incline. J. Int. Math. Virtual Inst., 6(2016), 31-47.
[28] M. M. K. Rao and B. Venkateswarlu. Right derivation of ordered $\Gamma$-semirings. Disc. Math. Gen. Alg. Appl., 36 (2016), 209-221.
[29] M. M. K. Rao, B. Venkateswarlu and N. Rafi. Left bi-quasi-ideals of $\Gamma$-semirings. Asia Paci. J. Math., 4(2)(2017), 144-153.
[30] M. M. K. Rao and B. Venkateswarlu. Bi-interior ideals in $\Gamma$ - semirings. Disc. Math. Gen. Alg. and Appl., 38(2)(2018), 209-221.
[31] M. K. Sen. On $\Gamma$-semigroup. Proceedings of International Conference of Algebra and its Application, 1981 (pp. 301-308). Lecture Notes in Pure and Appl. Math. 91, Dekker, New York, 1984.
[32] A. M. Shabir, A. Ali and S. Batod. A note on quasi ideal in semirings. Southeast Asian Bull. Math., 27(5)(2004), 923-928.
[33] O. Steinfeld. Uher die quasi ideals, Von halb gruppen. Publ. Math., Debrecen, 4 (1956), 262-275.
[34] H. S. Vandiver. Note on a simple type of algebra in which cancellation law of addition does not hold. Bull. Amer. Math. Soc.(N.S.), 40(12)(1934), 914-920.

Receibed by editors 13.12.2018; Revised version 14.08.2019; Available online 26.08.2019.
Department of Mathematics, GIt, GItaM University, Visakhapatnam - 530045 , A.P., India

E-mail address: mmarapureddy@gmail.com


[^0]:    2010 Mathematics Subject Classification. 16Y60, 06Y99.
    Key words and phrases. tri-ideal, bi-quasi-interior ideal, quasi-interior ideal, bi-interior ideal, bi-quasi ideal, bi-ideal, quasi ideal, interior ideal.

