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EXISTENCE RESULTS FOR SYSTEM OF

ITERATIVE AND CONFORMABLE TYPE

FRACTIONAL ORDER BOUNDARY VALUE PROBLEMS

Boddu Muralee Bala Krushna

Abstract. In this paper, we focus on the existence of at least one positive

solution for iterative system of boundary value problem involving conformable
fractional order derivative by implementing the properties of the Green func-
tions and the fixed point theorem on cone in a Banach space.

1. Introduction

Fractional calculus has been used to model many physical and engineering
procedures that are best depicted by differential equations of fractional order. The
conventional mathematical models of integer-order derivatives, along with nonlinear
models, often do not perform appropriately. It is a useful and effective tool for
modeling such nonlinear systems. In the past couple of decades, fractional calculus
has played a very significant role in various areas like those of mechanics, chemistry,
control structures, dynamic procedures, viscoelasticity, etc. [23, 14, 21, 12, 15,
6, 11].

Differential equations (DEqs) of fractional order combined with initial or bound-
ary conditions have become substantial and serve a leading role in branches of
applied mathematics. Foremost established industries namely automotive, biotech-
nology, chemistry, electronics and communications depend on boundary value prob-
lems (BVPs) to simulate diverse phenomenon at different intervals as well as to
design and produce high-tech products. In these applicable settings, positive solu-
tions appear to have an impact. In fact, applications in the disciplines of economics,
physics, and biology have been discovered in mathematical models in the type of
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116 BODDU MURALEE BALA KRUSHNA

the system of DEqs based on various boundary conditions, see [2, 24, 7, 16, 17,
18, 20].

The definition of the fractional order derivative used is now the type Riemann–
Liouville as well as the type Caputo, which includes an integral expression and
gamma function. A new definition has been developed and the conformable frac-
tional order derivative has been named, see [1, 8, 9, 10, 13]. In [4] authors stud-
ied the existence of at least one positive solution to the fractional order boundary
value problem (FBVP), which includes this new definition, and used a compression-
expansion functional fixed point theorem. Recently, Prasad and Krushna [19] de-
veloped sufficient conditions for the existence of multiple positive solutions to the
iterative system of BVPs concerning conformable fractional order derivative by im-
plementing six functionals fixed point theorem. In this article we are concerned
with a coupled system of iterative type fractional order DEqs

(1.1) Dn1Dm1w1(t) + f1
(
t, w1(t), w2(t)

)
= 0, t ∈ (0, 1),

(1.2) Dn2
Dm2

w2(t) + f2
(
t, w1(t), w2(t)

)
= 0, t ∈ (0, 1),

coupled with the Sturm–Liouville type conditions

(1.3)

{
ξ11w1(0)− ξ12Dm1w1(0) = 0,

ξ21w1(1) + ξ22Dm1w1(1) = 0,

(1.4)

{
ξ11w2(0)− ξ12Dm2w2(0) = 0,

ξ21w2(1) + ξ22Dm2w2(1) = 0,

where ξ11, ξ12, ξ21, ξ22 are positive real numbers and 0 < mi, ni < 1, Dmi , Dni , for
i = 1, 2 are the conformable fractional order derivatives.

We assume that the conditions given below stands hold throughout the paper:

(H1) ξ11, ξ12, ξ21, ξ22 are positive real numbers such that either ξ211+ ξ212 > 0 or
ξ221 + ξ222 > 0,

(H2) ∆1 = ξ21ξ12 + ξ11ξ22 +
ξ11ξ21
m1

> 0,

(H3) ∆2 = ξ21ξ12 + ξ11ξ22 +
ξ11ξ21
m2

> 0,

(H4) f1, f2 : [0, 1]× R2 → R+ are continuous.

According to a positive solution for the system of the problem (1.1)-(1.4), we
indicate (

w1(t), w2(t)
)
∈
(
Cm1+n1 [0, 1]× Cm2+n2 [0, 1]

)
satisfying (1.1)-(1.4) with

w1(t) > 0, w2(t) > 0, for all t ∈ [0, 1] and (w1, w2) ̸= (0, 0).

The rest of this article is organized as follows. Section 2 consists some auxiliary
results. The main theorems are presented in Section 3, and in Section 4, as an
application, we demonstrate our results with an example.
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2. Auxiliary Results

The Green functions for the homogeneous FBVPs are constructed and the
bounds for all of these Green functions are calculated, that are required to determine
the key results.

Definition 2.1. ([10]) Let g : [0,∞) → R, α ∈ (0, 1) and t > 0. The con-
formable fractional derivative of g is defined by

Dαg(t) = lim
ε→0

[
g(t+ εt1−α)− g(t)

ε

]
,

for t > 0 and the conformable fractional derivative at 0 is defined as

Dαg(0) = lim
t→0+

Dαg(t).

If g is differentiable then Dαg(t) = t1−αg′(t).

Definition 2.2. ([10]) Let α ∈ (0, 1). The conformable fractional integral of
a function g : [0,∞) → R of order α is denoted by Iαg(t) and is defined as

Iαg(t) =

∫ t

0

sα−1g(s)ds.

Lemma 2.1 ([1]). Let g : (0,∞) → R be differentiable and 0 < α 6 1. Then for
all t > 0, we have

IαDαg(t) = g(t)− g(0).

Let G1(t, p) be the Green’s function for the homogeneous DEqs

(2.1) −Dn1Dm1w1(t) = 0, t ∈ (0, 1),

satisfying the boundary conditions (1.3).

Lemma 2.2 ([4]). Suppose the condition (H1) is fulfilled. If h1(t) ∈ C[0, 1],
then the fractional order DEqs

(2.2) Dn1Dm1w1(t) + h1(t) = 0, t ∈ (0, 1),

satisfying the conditions (1.3) has a unique solution,

w1(t) =

∫ 1

0

G1(t, p)h1(p)dp,

where

(2.3) G1(t, p) =


1

∆1

[
ξ12 +

ξ11
m1

pm1

][
ξ22 +

ξ21
m1

(1− tm1)
]
, p 6 t,

1

∆1

[
ξ12 +

ξ11
m1

tm1

][
ξ22 +

ξ21
m1

(1− pm1)
]
, t 6 p.

Lemma 2.3. Suppose the conditions (H1) and (H2) are fulfilled. The Green’s
function G1(t, p) given in (2.3) is non-negative, for all (t, p) ∈ [0, 1]× [0, 1].
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Let us define 
Φ1(t) =ξ12 +

ξ11
m1

tm1 ,

Φ2(t) =ξ22 +
ξ21
m1

(1− tm1).

Lemma 2.4 ([19]). For t, p ∈ I =
[
1
4 ,

3
4

]
, then the Green’s function G1(t, p)

given in (2.3) satisfies the following inequality

(2.4) m∗
2G1(p, p) 6 G1(t, p) 6 G1(p, p),

where

m∗
2 = min

{
Φ1(

1
4 )

Φ1(
3
4 )

,
Φ2(

3
4 )

Φ2(
1
4 )

}
.

In a similar way, we construct the Green’s function G2(t, p) for the homogeneous
fractional order DEq

(2.5) −Dn2Dm2w2(t) = 0, t ∈ (0, 1),

satisfying the boundary conditions (1.4).

Lemma 2.5 ([4]). Suppose the condition (H1) is fulfilled. If h2(t) ∈ C[0, 1],
then the fractional order DEqs

(2.6) Dn2Dm2w2(t) + h2(t) = 0, t ∈ (0, 1),

satisfying the boundary conditions (1.4) has a unique solution,

w2(t) =

∫ 1

0

G2(t, p)h2(p)dp,

where

(2.7) G2(t, p) =


1

∆2

[
ξ12 +

ξ11
m2

pm2

][
ξ22 +

ξ21
m2

(1− tm2)
]
, p 6 t,

1

∆2

[
ξ12 +

ξ11
m2

tm2

][
ξ22 +

ξ21
m2

(1− pm2)
]
, t 6 p.

Lemma 2.6. Suppose the conditions (H1) and (H3) are fulfilled. The Green’s
function G2(t, p) given in (2.7) is non-negative, for all (t, p) ∈ [0, 1]× [0, 1].

Let us define 
Φ∗

1(t) =ξ12 +
ξ11
m2

tm2 ,

Φ∗
2(t) =ξ22 +

ξ21
m2

(1− tm2).

Lemma 2.7 ([19]). For t, p ∈ I =
[
1
4 ,

3
4

]
, then the Green’s function G2(t, p)

given in (2.7) satisfies the inequality

(2.8) m∗∗
2 G2(p, p) 6 G2(t, p) 6 G2(p, p),

where

m∗∗
2 = min

{
Φ∗

1(
1
4 )

Φ∗
1(

3
4 )

,
Φ∗

2(
3
4 )

Φ∗
2(

1
4 )

}
.
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Property P1. Let P be a cone in a Banach space E and Ω be a bounded
open subset of E with 0 ∈ Ω. Then a continuous functional α : P → [0,∞) is said
to satisfy Property P1 if one of the following conditions hold:

(a) α is convex, α(0) = 0, α(x) ̸= 0 if x ̸= 0 and inf
x∈P∩∂Ω

α(x) > 0,

(b) α is sublinear, α(0) = 0, α(x) ̸= 0 if x ̸= 0 and inf
x∈P∩∂Ω

α(x) > 0,

(c) α is concave and unbounded.

Property P2. Let P be a cone in a Banach space E and Ω be a bounded
open subset of E with 0 ∈ Ω. Then a continuous functional β : P → [0,∞) is said
to satisfy Property P2 if one of the following conditions hold:

(a) β is convex, β(0) = 0, β(x) ̸= 0 if x ̸= 0,

(b) β is sublinear, β(0) = 0, β(x) ̸= 0 if x ̸= 0,

(c) β(x+ y) > β(x) + β(y) for all x, y ∈ P, β(0) = 0, β(x) ̸= 0 if x ̸= 0.

In getting the existence criteria for iterative system of FBVP (1.1)-(1.4), the
following fixed point theorem of cone expansion and compression of functional type
due to Avery, Henderson and O’Regan [5], which generalizes the fixed point theo-
rems of Anderson–Avery [3] and Sun–Zhang [22].

Theorem 2.1 ([5]). Let Ω1,Ω2 be two bounded open sets in a Banach Space E
such that 0 ∈ Ω1 and Ω1 ⊂ Ω2 in E. Suppose T : P ∩ (Ω2\Ω1) → P is completely
continuous operator, α and β are non-negative continuous functional on P, and one
of the two conditions:

(i) α satisfies Property P1 with α(Tx) > α(x), for all x ∈ P ∩ ∂Ω1 and β
satisfies Property P2 with β(Tx) 6 β(x), for all x ∈ P ∩ ∂Ω2

(ii) β satisfies Property P2 with β(Tx) 6 β(x), for all x ∈ P ∩ ∂Ω1 and α
satisfies Property P1 with α(Tx) > α(x), for all x ∈ P ∩∂Ω2, is satisfied.

Then T has at least one fixed point in P ∩ (Ω2\Ω1).

3. Main Results

We consider the Banach space B = E × E , where E =
{
w1 : w1 ∈ C[0, 1]

}
endowed with the norm ∥(w1, w2)∥ = ∥w1∥0 + ∥w2∥0, for (w1, w2) ∈ B and we
denote the norm,

∥w1∥0 = max
t∈[0,1]

|w1(t)|.

Define a cone P ⊂ B by

P =
{
(w1, w2) ∈ B : w1(t), w2(t) are non− negative and increasing on [0, 1]

and min
t∈I

[
w1(t) + w2(t)

]
> η∥(w1, w2)∥

}
,

where I =

[
1

4
,
3

4

]
and

(3.1) η = min
{
m∗

2,m
∗∗
2

}
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Let

Θ1 = min

{∫ 1

0

G1(p, p)dp,

∫ 1

0

G2(p, p)dp

}
and

Θ2 = max

{∫ 3
4

1
4

ηG1(p, p)dp,

∫ 3
4

1
4

ηG2(p, p)dp

}
,

where η is given in (3.1).
Now let us define continuous functionals α and β on the cone P by

α(w1, w2) = min
t∈I

{∣∣w1

∣∣+ ∣∣w2

∣∣} and

β(w1, w2) = max
t∈[0,1]

{∣∣w1

∣∣+ ∣∣w2

∣∣} = w1(1) + w2(1) =
∥∥(w1, w2)

∥∥.
For all (w1, w2) ∈ P, it is evident that α(w1, w2) 6 β(w1, w2).

The operators A1 and A2 are denoted by A1 : P → E , A2 : P → E and are
defined as 

A1

(
w1, w2

)
(t) =

∫ 1

0

G1(t, p)f1
(
p, w1(p), w2(p)

)
dp,

A2

(
w1, w2

)
(t) =

∫ 1

0

G2(t, p)f2
(
p, w1(p), w2(p)

)
dp.

Theorem 3.1. Assume condition (H4) is satisfied. Suppose there exist positive
real numbers ρ, Ψ with ρ < ηΨ such that fj , j = 1, 2 satisfies the conditions:(

C1
)
fj
(
t, w1, w2

)
> 1

2

ρ

ηΘ2
, ∀ t ∈ I and

(
w1, w2

)
∈
[
ρ,Ψ

]
,(

C2
)
fj
(
t, w1, w2

)
6 1

2

Ψ

Θ1
, ∀ t ∈ [0, 1] and

(
w1, w2

)
∈
[
0,Ψ

]
.

Then the system of FBVP (1.1)-(1.4) has at least one positive and nondecreasing
solution, (w•

1 , w
•
2) satisfying ρ 6 α(w•

1 , w
•
2) with β(w•

1 , w
•
2) 6 Ψ.

Proof. The completely continuous operator A : P → B is simply described
as

A(w1, w2) =
(
A1(w1, w2),A2(w1, w2)

)
.

It can be evident that a fixed point of A is the solution of the FBVP (1.1)-(1.4). We
seek a fixed point of A. First, we show that A : P → P. Let (w1, w2) ∈ P. Clearly,
A1(w1, w2)(t) > 0 and A2(w1, w2)(t) > 0 for t ∈ [0, 1]. Also, for (w1, w2) ∈ P,

∥A1(w1, w2)∥0 6
∫ 1

0

G1(p, p)f1
(
p, w1(p), w2(p)

)
dp,

∥A2(w1, w2)∥0 6
∫ 1

0

G2(p, p)f2
(
p, w1(p), w2(p)

)
dp,
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and

min
t∈I

A1(w1, w2)(t) =min
t∈I

[ ∫ 1

0

G1(t, p)f1
(
p, w1(p), w2(p)

)
dp

]
>m∗

2

∫ 1

0

G1(p, p)f1
(
p, w1(p), w2(p)

)
dp

>η∥A1(w1, w2)∥0.

Similarly min
t∈I

A2(w1, w2)(t) > η∥A2(w1, w2)∥0. Therefore

min
t∈I

{
A1(w1, w2)(t) +A2(w1, w2)(t)

}
> η∥A1(w1, w2)∥0 + η∥A2(w1, w2)∥0

= η∥(A1(w1, w2),A2(w1, w2))∥
= η∥A(w1, w2)∥.

Thus A(w1, w2) ∈ P which implies that A : P → P . Moreover the operator A is a
completely continuous. Let Ω1 =

{
(w1, w2) : α(w1, w2) < ρ

}
and Ω2 =

{
(w1, w2) :

β(w1, w2) < Ψ
}
. It is easy to see that 0 ∈ Ω1, and Ω1, Ω2 are bounded open subsets

of B. Let (w1, w2) ∈ Ω1, then we have

ρ > α(w1, w2) = min
t∈I

2∑
i=1

[
wi(t)

]
> η

2∑
i=1

∥∥∥wi

∥∥∥ = ηβ(w1, w2).

Thus Ψ >
ρ

η
> β(w1, w2), i.e., (w1, w2) ∈ Ω2, so Ω1 ⊆ Ω2.

Claim 1: α
(
A(w1, w2)

)
> α(w1, w2), for (w1, w2) ∈ P ∩ ∂Ω1. To show this let

(w1, w2) ∈ P ∩ ∂Ω1 then Ψ = β(w1, w2) >
2∑

i=1

[
wi(p)

]
> α(w1, w2) = ρ, for p ∈ I.

Thus it follows from (C1), Lemma 2.4 and Lemma 2.7 that

α
(
A
(
w1, w2

)
(t)

)
= min

t∈I

2∑
j=1

[ ∫ 1

0

Gj(t, p)fj
(
p, w1(p), w2(p)

)
dp

]

>
2∑

j=1

[ ∫ 3
4

1
4

ηGj(p, p)fj
(
p, w1(p), w2(p)

)
dp

]

> 1

2

ρ

ηΘ2

∫ 1

η

ηG1(p, p)dp+
1

2

ρ

ηΘ2

∫ 3
4

1
4

ηG2(p, p)dp

=
ρ

2
+

ρ

2
= ρ = α(w1, w2).

Claim 2: β
(
A(w1, w2)

)
6 β(w1, w2), for (w1, w2) ∈ P ∩ ∂Ω2. To show this let

(w1, w2) ∈ P ∩∂Ω2 then

2∑
i=1

[
wi(p)

]
6 β(w1, w2) = Ψ, for p ∈ [0, 1]. Thus it follows
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from (C2), Lemma 2.4 and Lemma 2.7 yields

β
(
A
(
w1, w2

)
(t)

)
= max

t∈[0,1]

2∑
j=1

[ ∫ 1

0

Gj(t, p)fj
(
p, w1(p), w2(p)

)
dp

]

6
2∑

j=1

[ ∫ 1

0

Gj(p, p)fj
(
p, w1(p), w2(p)

)
dp

]

6 1

2

Ψ

Θ1

∫ 1

0

G1(p, p)dp+
1

2

Ψ

Θ1

∫ 1

0

G2(p, p)dp

6 Ψ

2
+

Ψ

2
= Ψ = β(w1, w2).

Evidently, α meets Property P1(c) and β meets Property P2(a). Therefore the
condition (i) of Theorem 2.1 is fulfilled and thus A has at least one fixed point
(w•

1 , w
•
2) ∈ P∩(Ω2\Ω1). Hence the system of FBVP (1.1)-(1.4) has at least one posi-

tive and nondecreasing solution (w•
1 , w

•
2) satisfying ρ 6 α(w•

1 , w
•
2) with β(w•

1 , w
•
2) 6

Ψ. �

Theorem 3.2. Assume condition (H4) is satisfied. Suppose there exist positive
real numbers ρ, Ψ with ρ < Ψ such that fj , j = 1, 2 satisfies the conditions:(

C3
)
fj
(
t, w1, w2

)
6 1

2

ρ

Θ2
, ∀ t ∈ [0, 1] and

(
w1, w2

)
∈
[
0, ρ

]
,

(
C4

)
fj
(
t, w1, w2

)
> 1

2

Ψ

ηΘ1
, ∀ t ∈ I and

(
w1, w2

)
∈
[
Ψ,

Ψ

η

]
.

Then the system of FBVP (1.1)-(1.4) has at least one positive and nondecreasing
solution, (w•

1 , w
•
2) satisfying ρ 6 β(w•

1 , w
•
2) with α(w•

1 , w
•
2) 6 Ψ.

Proof. Let Ω3 = {(w1, w2) : β(w1, w2) < ρ} and Ω4 = {(w1, w2) : α(w1, w2) <
Ψ}. We have 0 ∈ Ω3 and Ω3 ⊆ Ω4 with Ω3 and Ω4 are bounded open subsets of B.

Claim 1: β
(
A(w1, w2)

)
6 β(w1, w2), (w1, w2) ∈ P ∩ ∂Ω3. To establish this

let (w1, w2) ∈ P ∩ ∂Ω3 then
2∑

i=1

[
wi(p)

]
6 β(w1, w2) = ρ, for p ∈ [0, 1], and so it

follows from the condition (C3), Lemma 2.4 and Lemma 2.7 that yields

β
(
A
(
w1, w2

)
(t)

)
= max

t∈[0,1]

2∑
j=1

[ ∫ 1

0

Gj(t, p)fj
(
p, w1(p), w2(p)

)
dp

]

6
2∑

j=1

[ ∫ 1

0

Gj(p, p)fj
(
p, w1(p), w2(p)

)
dp

]

6 1

2

ρ

Θ2

∫ 1

0

G1(p, p)dp+
1

2

ρ

Θ2

∫ 1

0

G2(p, p)dp

=
ρ

2
+

ρ

2
= ρ = β(w1, w2).
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Claim 2: If (w1, w2) ∈ P∩∂Ω4 then α
(
A(w1, w2)

)
> α(w1, w2). To see this let

(w1, w2) ∈ P ∩ ∂Ω4 then
Ψ

η
=

α(w1, w2)

η
> β(w1, w2) >

2∑
i=1

[
wi(p)

]
> α(w1, w2) =

Ψ, for p ∈ I. Thus it follows from (C4), Lemma 2.4 and Lemma 2.7 that

α
(
A
(
w1, w2

)
(t)

)
= min

t∈I

2∑
j=1

[ ∫ 1

0

Gj(t, p)fj
(
p, w1(p), w2(p)

)
dp

]

>
2∑

j=1

[ ∫ 3
4

1
4

ηGj(p, p)fj
(
p, w1(p), w2(p)

)
dp

]

> 1

2

Ψ

ηΘ1

∫ 3
4

1
4

ηG1(p, p)dp+
1

2

Ψ

ηΘ1

∫ 3
4

1
4

ηG2(p, p)dp

=
Ψ

2
+

Ψ

2
= Ψ = α(w1, w2).

Thus it is verified that α fulfills Property P1(c) and β fulfills Property P2(a).
The condition (ii) of Theorem 2.1 is therefore satisfied and hence A has at least
one fixed point (w•

1 , w
•
2) ∈ P ∩ (Ω4\Ω3), i.e., the system of FBVP (1.1)-(1.4) has

at least one positive and nondecreasing solution (w•
1 , w

•
2) satisfying ρ 6 β(w•

1 , w
•
2)

with α(w•
1 , w

•
2) 6 Ψ. �

4. Example

We present a relevant example to demonstrate the use of Theorem 3.1. Consider
the system of FBVP,

(4.1) D0.7D0.8w1(t) + f1(t, w1, w2) = 0, t ∈ (0, 1),

(4.2) D0.8D0.7w2(t) + f2(t, w1, w2) = 0, t ∈ (0, 1),

(4.3)

{
13w1(0)− 7D0.8w1(0) = 0,

15w1(1) + 8D0.8w1(1) = 0,

(4.4)

{
13w2(0)− 7D0.7w2(0) = 0,

15w2(1) + 8D0.7w2(1) = 0,

where 
f1(t, w1, w2) =

13 sin t

12
+

(t2 + 2)(w1 + w2)

9
+

63

65
,

f2(t, w1, w2) =
381t2(w1 + w2)

2500
+

233e−(w1 + w2)
2

250
.

By means of straightforward computations, we obtain η = 0.0643, Θ1 = 15.3125
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and Θ2 = 1534.6023. If we choose ρ = 7, Ψ = 120 and then ρ < ηΨ and fj , for
j = 1, 2 satisfies

◦ fj
(
t, w1, w2

)
> 0.035467 =

1

2

ρ

ηΘ2
, t ∈

[
0.25, 1

]
and

(
w1, w2

)
∈
[
7, 120

]
,

◦ fj
(
t, w1, w2

)
6 3.918367 =

1

2

Ψ

Θ1
, t ∈ [0, 1] and

(
w1, w2

)
∈
[
0, 120

]
.

Therefore all the conditions of Theorem 3.1 are fulfilled. Thus by Theorem 3.1, the
system of FBVP (4.1)-(4.4) has at least one positive and nondecreasing solution.
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References

[1] T. Abdeljawad. On conformable fractional calculus. J. Comput. Appl. Math., 279(2015),
57–66.

[2] R. P. Agarwal, D. O’Regan and P. J. Y. Wong. Positive solutions of differential, Difference
and integral Equations. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999.

[3] D. R. Anderson and R. I. Avery. Fixed point theorem of cone expansion and compression of
functional type. J. Diff. Equ. Appl., 8(11)(2002), 1073–1083.

[4] D. R. Anderson and R. I. Avery. Fractional order boundary value problem with Sturm–

Liouville boundary conditions. Electron. J. Diff. Equ.. 2015(2015), No. 29, 1–10.
[5] R. I. Avery, J. Henderson and D. O’Regan. Functional compression - expansion fixed point

theorem. Electron. J. Diff. Eqn., 2008(2008), No. 22, 1–12.
[6] K. Diethelm and M. Ford. Analysis of fractional differential equations. J. Math. Anal. Appl.,

265(2)(2002), 229–248.
[7] C. S. Goodrich. Existence of a positive solution to systems of differential equations of frac-

tional order. Comput. Math. Appl., 62(3)(2011), 1251–1268.
[8] M. A. Hammad and R. Khalil. Abel’s formula and Wronskian for conformable fractional

differential equations. Int. J. Diff. Equ. Appl., 13(3)(2014), 177–183.
[9] U. Katugampola. A new fractional derivative with classical properties. J. American Math.

Soc., arXiv:1410.6535v2.
[10] R. Khalil, M. A. Horani, A. Yousef and M. Sababheh. A new definition of fractional deriva-

tive. J. Computational Appl. Math., 264(2014), 65–70.
[11] A. A. Kilbas, H. M. Srivasthava and J. J. Trujillo. Theory and applications of fractional

differential equations. North-Holland Mathematics Studies. vol. 204, Elsevier Science, Ams-
terdam, 2006.

[12] F. Mainadri. Fractional Calculus: Some basic problems in continuum and statistical mechan-
ics, In: A. Carpinteri and F. Mainardi (Eds.). Fractals and Fractional Calculus in Continuum
Mechanics (pp. 291–348), Springer, New York, 1997.

[13] S. Meng and Y. Cui. The extremal solution to conformable fractional differential equations
involving integral boundary condition. Mathematics. 7(2)(2019), 186–194.

[14] K. S. Miller and B. Ross. An introduction to fractional calculus and fractional differential
equations. John Wiley and Sons, New York, 1993.

[15] I. Podulbny. Fractional diffrential equations. Academic Press, San Diego, 1999.
[16] K. R. Prasad and B. M. B. Krushna. Multiple positive solutions for a coupled system of

Riemann–Liouville fractional order two-point boundary value problems. Nonlinear Studies.
20(4)(2013), 501–511.



SYSTEM OF ITERATIVE AND CONFORMABLE TYPE FBVPS 125

[17] K. R. Prasad and B. M. B. Krushna. Eigenvalues for iterative systems of Sturm–Liouville
fractional order two-point boundary value problems. Fract. Calc. Appl. Anal., 17(3)(2014),
638–653.

[18] K. R. Prasad and B. M. B. Krushna. Multiple positive solutions for the system of (n, p)-type

fractional order boundary value problems. Bull. Int. Math. Virtual Inst., 5(1)(2015), 1–12.
[19] K. P. Prasad and B. M. B. Krushna. Existence of multiple positive solutions for a coupled

system of iterative type fractional order boundary value problems. J. Nonlinear Funct. Anal.,

2015(2015), 1–15.
[20] V. V. R. R. B. Raju and B. M. B. Krushna. On a coupled system of fractional order dif-

ferential equations with Riemann–Liouville type boundary conditions. J. Nonlinear Funct.
Anal., 2018(2018), 1–12.

[21] S. G. Samko, A. A. Kilbas and O. I. Marichev. Fractional integral and derivatives: Theory
and applications. Gordon and Breach, Longhorne, PA, 1993.

[22] J. Sun and G. Zhang. A generalization of the cone expansion and compression fixed point
theorem and applications. Nonlinear Anal., 67(2)(2007), 579–586.

[23] S. Timoshenko. Theory of elastic stability. McGraw-Hill, New York, 1961.
[24] Y. Zhou and Y. Xu. Positive solutions of three-point boundary value problems for systems of

nonlinear second order ordinary differential equations. J. Math. Anal. Appl., 320(2)(2006),
578–590.

Received by editors 29.06.2019; Revised version 08.07.2019; Available online 00.00.201X.

Department of Mathematics,
MVGR College of Engineering (Autonomous), Vizianagaram, 535 005, India

E-mail address: muraleebalu@yahoo.com


