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RECIPROCAL DEGREE DISTANCE OF

SOME DERIVED GRAPHS

K. Pattabiraman and Manzoor Ahmad Bhat

Abstract. A molecular graph is a graphical description of the structural for-
mula of a chemical compound with the help of graph theory. In the construc-
tion of a chemical graph, atoms are represented by vertices and bonds between
the atoms are represented by edges. The reciprocal degree distance (RDD),

which is a weight version of the Harary index, defined for a connected graph
G as vertex-degree-weighted sum of the reciprocal distances. In this paper, we
have determined expressions for RDD index of some derived graphs in terms
of the parameters of the parent graph. Especially,we establish expressions for

the RDD index of subdivision graph, vertex-semitotal graph, edge-semitotal
graph and total graph.

1. Introduction

The word topological index is used to characterize some graphical properties of
the molecule. It is the property that is used to preserve isomorphism of a graph. A
molecular graph is a graphical description of the structural formula of a chemical
compound with the help of graph theory. In the construction of a chemical graph,
atoms are represented by vertices and bonds between the atoms are represented
by edges [5]. In all major fields of chemistry, chemical graphs are used for many
different purposes [2]. As has already been proved in [4], the said indices are
useful for characterizing alkanes by an integer. Although the computed expression
does not have direct application, we believe that it can be used to compute the
said indices for chemical and molecular graphs, which are useful for characterizing
alkanes by an integer.

Dobrynin and Kochetova [4] and Gutman [7] independently proposed a vertex-
degree-weighted version of Wiener index called degree distance, which is defined for
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a connected graph G as

DD(G) =
1

2

∑
i,j∈V (G)

(dG(i) + dG(j))dG(i, j).

The reciprocal degree distance(RDD) of a connected graph G is defined in [1] as

RDD(G) =
1

2

∑
i,j∈V (G)

(dG(i) + dG(j))

dG(i, j)
.

Hua and Zhang [8] have obtained lower and upper bounds for the reciprocal degree
distance of graph in terms of other graph invariants. The mathematical behavior of
reciprocal degree distance of some composite graphs are obtained in [9, 10]. In this
paper, we have determined expressions for a RDD index of some derived graphs in
terms of the parameters of the parent graph. Especially, we establish expressions
for the RDD index of subdivision graph, vertex-semitotal graph, edge-semitotal
graph and total graph.

The Zagreb indices have been introduced more than thirty years ago by Gutman
and Trinajestic [6]. They are defined as

M1(G) =
∑

i∈V (G)

dG(i)
2 and M2(G) =

∑
ij∈E(G)

dG(i)dG(j).

As the sums involved run over the edges of the complement of G, such quantities
were called Zagreb coindices. More formally, the first and second Zagreb coindices
of a graph G are defined as

M1(G) =
∑

ij /∈E(G)

[dG(i) + dG(j)] and M2(G) =
∑

ij /∈E(G)

dG(i)dG(j).

2. Preliminaries

The degree of vertex i in G is denoted by dG(i) and is defined as the number
of edges incident with vertex i. Also, the degree of an edge e = ij in G is denoted
by dG(e) and is defined as the number of edges incident to both its end vertices, i
and j, that is, dG(e) = dG(i) + dG(j)− 2.

LetH andK be two subgraphs of G, such that V (H)∩V (K) = ϕ. Let i ∈ V (H)
and j ∈ V (K) be the vertices such that

dG(i, j) = min {dG(u, v) : u ∈ V (H), v ∈ V (K)} ,
then i and j are called the terminal vertices of subgraphs H and K in G. In graph
G, the distance between vertex c of H and the vertex f of K is 1, which is the
minimum of all vertices of H and K. So, c and f are known as terminal vertices of
H and K in G.

Harold Wiener introduced the Wiener index [11], which correlates to the boiling
point and structure of the molecule of paraffins. The Wiener index is the oldest
topological index and is defined as,

W (G) =
∑

i,j⊆V (G)

dG(i, j),
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where dG(i, j) is the distance in G.
The edge version of the Wiener index was introduced in 2010 [3], and is defined

as,

We(G) =
∑

{e,f}⊆E(G)

[dG(e, f) + 1],

where dG(e, f) denotes the distance between the edges e = xy and f = ij in G and
defined as;

dG(e, f) = min {(dG(x, i), dG(x, j), dG(y, i), dG(y, j)} .

The edge version of the Harary index is defined as,

He(G) =
∑

{e,f}⊆E(G)

1

dG(e, f) + 1
,

where dG(e, f) denotes the distance between the edges e = xy and f = ij in G.
The degree distance index of a connected graph G is defined as

DD(G) =
∑

i,j⊆V (G)

(dG(i) + dG(j))dG(i, j).

The edge version of degree distance index of a connected graph G is defined as

DDe(G) =
∑

{e,f⊆E(G)}

[dG(e) + dG(f)][dG(e, f) + 1],

where distance between the edge e = xy and a vertex i is defined as,

dG(e, i) = min {dG(i, x), dG(i, y)} .

The edge version of reciprocal degree distance index is defined as

RDDe(G) =
∑

{e,f⊆E(G)}

[dG(e) + dG(f)]

dG(e, f) + 1
.

3. Main Results

First we define four graphs related to a connected graph G.
(i) S(G) (subdivision graph) is the graph obtained by inserting an additional

vertex in each edge of G. Equivalently, each edge of G is replaced by a path of
length 2. Therefore,

|V (S)| = |V (G)|+ |E(G)| = n+m and |E(S)| = 2 |E(G)| = 2m.

(ii) R(G) is obtained from G by adding a new vertex corresponding to each
edge of G, then joining each new vertex to the end vertices of the corresponding
edge . Thus

|V (R(G))| = |V (G)|+ |E(G)| = n+m

and

|E(R(G))| = |E(S)|+ |E(G)| = 2m+m = 3m.
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(iii) Q(G) is obtained from G by inserting a new vertex in to each edge of G,
then joining with edges those pairs of new vertices on adjacent edges of G. We have

|V (Q(G))| = |E(G)|+|V (G)| = n+m and |E(Q(G))| = |E(S)|+|E(L)| = m+
M1

2
.

(iv) T (G)(total graph) has as its vertices the edges and vertices of G. Adjacency
in T (G) is defined as adjacency or incidence for the corresponding elements of G.
We have

|V (T (G))| = |V (G)|+ |E(G)| = n+m

and

|E(T (G))| = |E(G)|+ |E(S)|+ |E(L)| = 2m+
M1

2
.

In the above graphs, we consider the following edge partitions: E1 = {v1v2 : v1,
v2 ∈ V (G)}, E2 = {e1e2 : e1, e2 ∈ E(G)} and E3 = {v1e1 : v1 ∈ V (G), e1 ∈
E(G)}.

Theorem 3.1. Let S(G) be a subdivision graph of G. Then

RDD(S(G)) =
1

2
RDD(G) + 2He(G) + α,

where

α =
∑

v1∈V (G),e1∈E(G)

(dG(v1) + 2)

(2dG(v1, e1) + 1)
.

Proof. For any vertex vi of S(G), we have

dS(G)(vi) =

{
dG(vi), vi ∈ V (G)

2, otherwise.

Moreover,
dS(G)(v1, v2) = 2dG(v1, v2); v1, v2 ∈ V (G)
dS(G)(e1, e2) = 2[dG(e1, e2) + 1]; e1, e2 ∈ E(G)
dS(G)(v1, e1) = 2dG(v1, e1) + 1; v1 ∈ V (G), e1 ∈ E(G).
By taking the definition of reciprocal degree distance, we have

RDD(S(G)) =
∑

{u,v}⊆V (S(G))

dS(u) + dS(v)

dS(u, v)

=
∑

{v1,v2}⊆V (S(G))

dS(v1) + dS(v2)

dS(v1, v2)

+
∑

{e1,e2}⊆V (S(G))

dS(e1) + dS(e2)

dS(e1, e2)

+
∑

{v1,e1}⊆V (S(G))

dS(v1) + dS(e1)

dS(v1, e1)
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and

RDD(S(G)) =
∑

{v1,v2}⊆V (G)

(dG(v1) + dG(v2))

2dG(v1, v2)

+
∑

{e1,e2}⊆E(G)

(2 + 2)

2(dG(e1, e2) + 1)

+
∑

v1∈V (G),e1∈E(G)

(dG(v1) + 2)

(2dG(v1, e1) + 1)

=
1

2
RDD(G) + 2He(G) +

∑
v1∈V (G),e1∈E(G)

(dG(v1) + 2)

(2dG(v1, e1) + 1)
.

�

Theorem 3.2. If R(G) is the edge-semitotal graph G, then

RDD(R(G)) 6 1

4
[RDD(G) +M1(G) + M̄1(G)] +RDDe(G) + β,

where

β =
∑

v1∈V (G),e1∈E(G)

(dG(v1) + dG(v2) + 2)

(dG(v1, e1) + 1)
.

Proof. For any vertex vi of R(G), we get

dR(G)(vi) =

{
dG(vi), vi ∈ V (G)

dG(vi) + 2, otherwise.

Also,
dR(G)(v1, v2) = dG(v1, v2) + 1; v1, v2 ∈ V (G),
dR(G)(e1, e2) = [dG(e1, e2) + 1]; e1, e2 ∈ E(G)
dR(G)(v1, e1) = dG(v1, e1) + 1; v1 ∈ V (G), e1 ∈ E(G).
By using the definition of RDD, we obtain

RDD(R(G)) =
∑

{u,v}⊆V (R(G))

dR(G)(u) + dR(G)(v)

dR(G)(u, v)

=
∑

{v1,v2}⊆V (R(G))

dR(G)(v1) + dR(G)(v2)

dR(G)(v1, v2)

+
∑

{e1,e2}⊆V (R(G))

dR(G)(e1) + dR(G)(e2)

dR(G)(e1, e2)

+
∑

{v1,e1}⊆V (dR(G))

dR(G)(v1) + dR(G)(e1)

dR(G)(v1, e1)
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and

RDD(R(G)) =
∑

{v1,v2}⊆V (G)

[dG(v1) + dG(v2)]

dG(v1, v2) + 1

+
∑

{e1,e2}⊆E(G)

[dG(v1) + dG(v2) + 4]

[dG(e1, e2) + 1]

+
∑

v1∈V (G),e1∈E(G)

[dG(v1) + dG(v2) + 2]

[dG(v1, e1) + 1]

=
∑

{v1,v2}⊆V (G)

[dG(v1) + dG(v2)]

dG(v1, v2) + 1

+
∑

{e1,e2}⊆E(G)

[dG(e1) + dG(e2)]

[dG(e1, e2) + 1]

+
∑

v1∈V (G),e1∈E(G)

[dG(v1) + dG(v2) + 2]

[dG(v1, e1) + 1]

From Jensen’s inequality, we have,

1

dG(u1, v1) + dG(u2, v2)
6 1

4dG(u1, v1)
+

1

4dG(u2, v2)
,

with equality if and only if dG(u1, v1) + 1 = 1. Therefore,

RDD(R(G)) 6 1

4

[ ∑
{v1,v2}⊆V (G)

[dG(v1) + dG(v2)]

dG(v1, v2)

+
∑

{v1,v2⊆E(G)}

(dG(v1) + dG(v2))]

+RDDe(G) +
∑

v1∈V (G),e1∈E(G)

[dG(v1) + dG(v2) + 2]

[dG(v1, e1) + 1]

=
1

4

[ ∑
{v1,v2}⊆V (G)

[dG(v1) + dG(v2)]

dG(v1, v2)
+

∑
v1v2∈E(G)

(dG(v1) + dG(v2))

+
∑

v1v2 /∈E(G)

(dG(v1) + dG(v2))

]
+RDDe(G)

+
∑

v1∈V (G),e1∈E(G)

[dG(v1) + dG(v2) + 2]

[dG(v1, e1) + 1]

=
1

4
[RDD(G) +M1(G) + M̄1(G)] +RDDe(G)

+
∑

v1∈V (G),e1∈E(G)

(dG(v1) + dG(v2) + 2)

(dG(v1, e1) + 1)
.

�
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Theorem 3.3. If Q(G) is the vertex-semi total graph G, then

RDD(Q(G)) 6 2RDD(G) +He(G) +
m(m− 1)

2
+ 2γ,

where

γ =
∑

v1∈V (G),e1∈E(G)

(dG(v1) + 1)

(dG(v1, e1) + 1)
.

Proof. Note that for any vertex vi of Q(G), we have

dQ(G)(vi) =

{
2dG(vi), vi ∈ V (G)

2, otherwise.

Also,
dQ(G)(v1, v2) = dG(v1, v2); v1, v2 ∈ V (G)
dQ(G)(e1, e2) = [dG(e1, e2) + 2]; e1, e2 ∈ E(G)
dQ(G)(v1, e1) = dG(v1, e1) + 1; v1 ∈ V (G), e1 ∈ E(G)

Hence by the definition of RDD, we have

RDD(Q(G)) =
∑

{u,v}⊆V (Q(G))

dQ(G)(u) + dQ(G)(v)

dQ(G)(u, v)

=
∑

{v1,v2}⊆V (Q(G))

dQ(G)(v1) + dQ(G)(v2)

dQ(G)(v1, v2)

+
∑

{e1,e2}⊆V (Q(G))

dQ(G)(e1) + dQ(G)(e2)

dQ(G)(e1, e2)

+
∑

{v1,e1}⊆V (Q(G))

dQ(G)(v1) + dQ(G)(e1)

dQ(G)(v1, e1)

=
∑

{v1,v2}⊆V (G)

[2dG(v1) + 2dG(v2)]

dG(v1, v2)
+

∑
{e1,e2}⊆E(G)

(2 + 2)

[dG(e1, e2) + 2]

+
∑

v1∈V (G),e1∈E(G)

[2dG(v1 + 2]

[dG(v1, e1) + 1]

= 2
∑

{v1,v2}⊆V (G)

[dG(v1) + dG(v2)]

dG(v1, v2)
+ 4

∑
{e1,e2}⊆E(G)

1

[dG(e1, e2) + 2]

+
∑

v1∈V (G),e1∈E(G)

[2dG(v1) + 2]

[dG(v1, e1) + 1]
.

From Jensen’s inequality, we have,

1

dG(u, v) + dG(u2, v2)
6 1

4dG(u1, v1)
+

1

4dG(u2, v2)
,
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with equality if and only if dG(u1, v1) + 1 = 1, also we have∑
{e1,e2}⊆E(G)

(1) =
m(m− 1)

2
.

Therefore,

RDD(Q(G)) 6 2RDD(G) +
∑

{e1,e2}⊆E(G)

1

[dG(e1, e2) + 1]
+

∑
{e1,e2}⊆E(G)

(1)

+ 2
∑

v1∈V (G),e1∈E(G)

[dG(v1) + 1]

[dG(v1, e1) + 1]

= 2RDD(G) +He(G) +
m(m− 1)

2
+ 2

∑
v1∈V (G),e1∈E(G)

[dG(v1) + 1]

[dG(v1, e1) + 1]
.

�

Theorem 3.4. If T (G) is the total graph G, then

RDD(T (G)) = 2RDD(G) +RDDe(G) +
∑

v1∈V (G),e1∈E(G)

[2dG(v1) + dG(v2) + 2]

[dG(v1, e1) + 1]
.

Proof. For any vertex vi of T (G), we get

dT (G)(vi) =

{
2dG(vi), vi ∈ V (G)

dG(vi) + 2, otherwise.

Also,
dT (G)(v1, v2) = dG(v1, v2); v1, v2 ∈ V (G)
dT (G)(e1, e2) = [dG(e1, e2) + 1]; e1, e2 ∈ E(G)
dT (G)(v1, e1) = dG(v1, e1) + 1; v1 ∈ V (G), e1 ∈ E(G).

We have reciprocal degree distance,

RDD(T (G)) =
∑

{u,v}⊆V (T (G))

dT (G)(u) + dT (G)(v)

dT (G)(u, v)

=
∑

{v1,v2}⊆V (T (G))

dT (G)(v1) + dT (G)(v2)

dT (v1, v2)

+
∑

{e1,e2}⊆V (T (G))

dT (G)(e1) + dT (G)(e2)

dT (G)(e1, e2)

+
∑

{v1,e1}⊆V (T (G))

dT (G)(v1) + dT (G)(e1)

dT (G)(v1, e1)
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and

RDD(T (G)) =
∑

{v1,v2}⊆V (G)

[2dG(v1) + 2dG(v2)]

dG(v1, v2)

+
∑

{e1,e2}⊆E(G)

[dG(e1) + dG(e2) + 4]

[dG(e1, e2) + 1]

+
∑

v1∈V (G),e1∈E(G)

[2dG(u1) + dG(v2) + 2]

[dG(v1, e1) + 1]

= 2RDD(G) +RDDe(G)

+
∑

v1∈V (G),e1∈E(G)

[2dG(v1) + dG(v2) + 2]

[dG(v1, e1) + 1]
.

�
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