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Abstract

In a communication network, the vulnerability measures the resis-
tance of the network to disruption of operation after the failure of certain
stations or communication links. To measure the vulnerability we have
some parameters which are connectivity, toughness, scattering number,
integrity, tenacity and their edge analogues. This paper includes several
results on the toughness and the scattering number of a gear graph as a
communication network. Firstly, we compute the scattering number and
toughness of a gear graph. In addition, the scattering number and tough-
ness of the complement of a gear graph, the cartesian product of two gear
graphs and the sequential join of gear graphs are computed. Finally, we
compare the results for the scattering number and toughness.
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1 Introduction

In a communication network, the vulnerability measures the resistance of the
network to disruption of operation after the failure of certain stations or com-
munication links. To measure the vulnerability we have some parameters which
are connectivity [3], toughness [4], scattering number [6], integrity [1], tenacity
[5] and their edge-analogues. In this paper we discuss the scattering number
and the toughness of a graph. The toughness of a graph G, denoted t(G), was
defined by Chvátal [4]. For the complete graph Kn we have t(Kn) = ∞; if G is
not complete, then

t(G) = min{ |S|
ω(G−S) : S ⊆ V (G) and ω(G− S) > 1}
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where ω(G− S) denotes the number of components in G− S.
The scattering number of a graph G, denoted sc(G), was introduced in

1978 by Jung [6]. For the complete graph Kn we have sc(Kn) = 2− n. If G is
not complete, then

sc(G) = max{ω(G− S)− | S |: S ⊆ V (G) and ω(G− S) 6= 1}
where ω(G− S) denotes the number of components in G− S.

The scattering number of a graph is closely related to the toughness of a
graph. Moreover Jung calls the scattering number the ”additive dual” of the
toughness. From the definitions of the toughness and the scattering number, it
is clear that these two parameters are very similar.

Geared systems are used in dynamic modelling. These are graph theoretic
models that are obtained by using gear graphs. Similarly the complement of a
gear graph, the cartesian product of gear graphs and the sequential join of gear
graphs can be used to design a gear network.

Consequently these considerations motivated us to investigate the vulnera-
bility of gear graphs by using the scattering number and the toughness. Now
we give the following definitions.

Definition 1.1 The wheel graph with n spokes, Wn, is the graph that consists
of an n-cycle and one additional vertex, say u, that is adjacent to all the vertices
of the cycle. In Figure 1 we display W6.

u

Figure 1: W6 Wheel graph

Definition 1.2 [2] The gear graph is a wheel graph with a vertex added between
each pair adjacent graph vertices of the outer cycle. The gear graph Gn has 2n+1
vertices and 3n edges. In Figure 2 we display G6.

Let G = (V,E) be a graph. By κ(G) we denote the connectivity of G.
α(G) and β(G), respectively, denotes the independence number and the covering
number of G.

Definition 1.3 The Cartesian product G1×G2 of graphs G1 and G2 has V (G1)×
V (G2) as its vertex set and (u1, u2) is adjacent to (v1, v2) if either u1 = v1 and
u2 is adjacent to v2 or u2 = v2 and u1 is adjacent to v1.
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Figure 2: G6 Gear graph

Definition 1.4 Let G1 and G2 be two graphs. The union G = G1 ∪ G2 has
V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2). The join is denoted
V (G1) + V (G2) and consists of V (G1) ∪ V (G2) and all edges joining V (G1)
with V (G2). For three or more disjoint graphs G1, G2, ..., Gn, the sequential
join G1 + G2 + ... + Gn is (G1 + G2) ∪ (G2 + G3) ∪ ... ∪ (Gn−1 + Gn).

Next we give some lower and upper bounds for the scattering number and
the toughness in terms of well known graph parameters. To have an idea about
minimum and maximum values of the scattering number and the toughness for
any graph G, we can use Theorems 1.1− 1.3.

Theorem 1.1 [4] Let G be a graph of order n. Then t(G) ≤ n−α(G)
α(G) .

Theorem 1.2 [11] Let G be a graph of order n. Then

2α(G)− n ≤ sc(G) ≤ α(G)− κ(G).

Theorem 1.3 [10] Let G be a graph of order n. Then t(G) ≥ κ(G)
κ(G)+sc(G) .

In Section 2 we compute the toughness of a gear graph. Also we give some
results about the toughness of graphs obtained from graph operations between
gear graphs. In Section 3 we first compute the scattering number of a gear
graph. Moreover we give some results connecting scattering number and graph
operations between gear graphs. In Section 4, we compare the results in Sections
2 and 3.

2 Toughness

In this section we first calculate the toughness of a gear graph. In addition
we consider the graph operations that are complement, cartesian product and
sequential join. So we give several results about gear graphs and graph opera-
tions.

We begin with the toughness of a gear graph.

Theorem 2.1 Let Gn be a gear graph of order n ≥ 4. Then t(Gn) = n
n+1 .
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Proof. The graph Gn has a subgraph K1,n. Let x1, x2, ..., xn+1 be the
vertices of K1,n such that deg(x1) = n. Hence we have two cases:
Case 1: Suppose that S = {xi|xi ∈ K1,n, 2 ≤ i ≤ n + 1}, that is, S must
contain all the vertices of K1,n except x1. If we remove the vertices in S from
Gn, then we have exactly n+1 components. Hence

t(Gn) = n
n+1 (1)

Case 2: Let S be a vertex cut of Gn such that S 6= {xi|xi ∈ K1,n, 2 ≤ i ≤ n+1}.
If we remove |S| = r vertices from Gn where 1 ≤ r ≤ 2n , then we have at most
r components. Hence

t(Gn) ≥ min
r
{r

r
} = 1 (2)

By (1) and (2) we have t(Gn) = min{ n
n+1 , 1} = n

n+1 .
2

The following theorem gives the toughness of a complement of a gear graph.

Theorem 2.2 If Gn be a complement of a gear graph Gn. Then t(Gn) = n
2 .

Proof. Let S be a vertex cut of Gn. Hence if we remove |S| = r vertices from
Gn where n ≤ r ≤ 2n− 1 then we have exactly 2 components. Then

t(Gn) = min
S
{ |S|
ω(G− S)

} = min
r
{r

2
}.

Let f(r) = r
2 . The function f(r) takes its minimum value at r = n and

t(Gn) = n
2 . 2

Now we consider the cartesian product. Firstly we give the toughness of
graph K2 × Gn. Moreover we calculate the toughness of cartesian product of
two gear graphs.

Theorem 2.3 Let n ≥ 4 be a positive integer. Then t(K2 ×Gn) = 1.

Proof. The graph K2×Gn has 4n+2 vertices and has two subgraphs, namely
Gn1 and Gn2 . Gear graph contains vertices set of whell graph. Now we define
S1 and S2 as follows.

S1 = {xi|xi ∈ V (Wn1) and deg(xi) 6= n}
and

S2 = {xi|xi ∈ V (Gn2 − V (Wn2)} ∪ {xi|xi ∈ V (Wn2) and deg(xi) = n}.
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Case 1: Suppose that S = S1∪S2. If we remove the vertices in S from K2×Gn

then |S| = 2n + 1 and ω((K2 ×Gn)− S) = 2n + 1. Hence we have

t(K2 ×Gn) = 1 (3)

Case 2: Suppose that S 6= S1 ∪ S2. Hence if we remove |S| = r vertices from
K2 ×Gn where 1 ≤ r ≤ 4n + 2 then we have ω((K2 ×Gn)− S) < r. Then

t(K2 ×Gn) > 1 (4)

By (3) and (4) we have t(K2 ×Gn) = 1. 2

Theorem 2.4 Let m ≥ 3 and n ≥ 3 be positive integers. Then

t(Gm ×Gn) = 2mn+m+n
2mn+m+n+1 .

.

Proof. It is obvious that α(Gm ×Gn) = 2mn + m + n + 1 and
β(Gm ×Gn) = 2mn + m + n. To prove this theorem we have two cases.
Case 1: By Theorem 1.1 we have

t(Gm ×Gn) ≤ (2n+1)(2m+1)−(2mn+m+n+1)
2mn+m+n+1

= 2mn+m+n
2mn+m+n+1 (5)

Case 2: Since ω(G− S) ≤ α(G) for any graph G, we have

t(Gm ×Gn) ≥ min
S
{ |S|
α(Gm ×Gn)

}

• Let |S| = β(Gm ×Gn). Since β(Gm ×Gn) = 2mn + m + n we have

t(Gm ×Gn) ≥ min
S
{ |S|
α(Gm ×Gn)

} =
2mn + m + n

2mn + m + n + 1
(6)

• If |S| 6= β(Gm ×Gn) and |S| = r then ω((Gm ×Gn)− S) ≤ r. Then

t(Gm ×Gn) ≥ min
r
{r

r
} = 1 (7)

By (6) and (7) we have t(Gm ×Gn) ≥ 2mn+m+n
2mn+m+n+1 (8)

Consequently, by (5) and (8) we have

t(Gm ×Gn) = 2mn+m+n
2mn+m+n+1 . 2
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Let G3, G4, ..., Gn be gear graphs. In the following theorems, the toughness
of graph G3 + G4 + ... + Gn, which is obtained sequential join operation, is
calculated when n is odd and when n is even.

Theorem 2.5 If n is an even number, then

t(G3 + G4 + ... + Gn) = 3n+10
n+6 .

Proof. To prove this theorem we have two cases.
Case 1: If we remove all the vertices of graphs G3, G5, ..., Gn−1, then the
remaining components are G4, G6, ..., Gn and the number of removing vertices
is

∑n
2−1
i=1 |V (G2i+1)| =

∑n
2−1
i=1 (4i + 3). Moreover, we must remove 2i more

vertices from each G2i where 2 ≤ i ≤ n
2 . Hence, 2i+1 components are obtained

from each G2i where 2 ≤ i ≤ n
2 . Then the number of removed vertices is exactly

|S| = ∑n
2−1
i=1 (4i + 3) +

∑n
2
i=2 2i

and the number of components is exactly

ω((G3 + G4 + ... + Gn)− S) =
∑n

2
i=2(2i + 1)

Therefore, we have
t(G3 + G4 + ... + Gn) = 3(−1+ n

2 )+ 1
2 (−2+n)n+ 1

4 (−2+n)(4+n)

−1+ n
2 + 1

4 (−2+n)(4+n)

t(G3 + G4 + ... + Gn) = 3n+10
n+6 (9)

Case 2: If we remove all the vertices of graphs G4, G6, ..., Gn, then the re-
maining components are G3, G5, ..., Gn−1 and the number of removed vertices is∑n

2
i=2 |V (G2i)| =

∑n
2
i=2(4i + 1). Moreover, we must remove 2i− 1 more vertices

from each G2i−1 where 2 ≤ i ≤ n
2 . Hence, 2i components are obtained from

each G2i where 2 ≤ i ≤ n
2 . Then the number of removed vertices is exactly

|S| = ∑n
2
i=2(4i + 1) +

∑n
2
i=2(2i− 1)

and the number of components is exactly

ω((G3 + G4 + ... + Gn)− S) =
∑n

2
i=2 2i

So

t(G3 + G4 + ... + Gn) =
3
4 (n−2)(n+4)
1
4 (n−2)(n+4)

= 3 (10)

By (9) and (10) we have
t(G3 + G4 + ... + Gn) = 3n+10

n+6 . 2
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Theorem 2.6 If n is an odd number, then

t(G3 + G4 + ... + Gn) = 3n2+4n−27
(n−1)(n+5) .

Proof. The proof follows directly from theorem 2.5. 2

3 Scattering number

In this section we first calculate the scattering number of a gear graph. Also
we calculate the scattering number of some graphs which are obtained by using
gear graphs and graph operations.

Now we give the scattering number of a gear graph.

Theorem 3.1 Let Gn be a gear graph of order n. Then sc(Gn) = 1.

Proof. Since α(Gn) = n + 1, then we have
sc(Gn) ≥ 1 (11)

by Theorem 1.2.
On the other hand, let S be a vertex cut of Gn and |S| = r. If we remove r

vertices from Gn, then ω(Gn − S) ≤ r + 1. Since ω(Gn − S)− |S| ≤ r + 1− r,
we have

sc(Gn) ≤ 1 (12)
By (11) and (12) we have sc(Gn) = 1. 2

The following theorem gives the scattering number of a complement of a
gear graph.

Theorem 3.2 Let Gn be a complement graph of a gear graph Gn. Then

sc(Gn) = 2− n.

Proof. The graph Gn has two complete subgraphs, namely Kn1 and Kn2. Each
vertices of Kn1 is joined to the vertices of Kn2 with (n − 2) edges. Let S be
a vertex cut of Gn and so n ≤ |S| ≤ 2n − 1. If we remove all the vertices
of S from Gn, then the number of remaining components is exactly 2. Then
sc(Gn) = max

S
{2−|S|}. The function 2−|S| takes its maximum value at |S| = n

and

sc(Gn) = 2− n. 2

Next we concentrate on the scattering number and cartesian product. Hence
we calculate the scattering number of graphs K2 ×Gn and Gm ×Gn.
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Theorem 3.3 Let Gn be a gear graph. Then sc(K2 ×Gn) = 0.

Proof. Since t(K2 ×Gn) = 1 by Theorem 2.3, then we have

κ(K2×Gn)
κ(K2×Gn)+sc(K2×Gn) ≤ 1

by Theorem 1.3. So

sc(K2 ×Gn) ≥ 0 (13)

On the other hand let S be a vertex cut of K2 × Gn and |S| = r. If we
remove r vertices from K2 ×Gn then ω((K2 ×Gn)− S) ≤ r and
ω((K2 ×Gn)− S)− |S| ≤ r − r. So

sc(K2 ×Gn) ≤ 0 (14)

By (13) and (14) we have sc(K2 ×Gn) = 0. 2

Theorem 3.4 Let m ≥ 3 and n ≥ 3 be positive integers. Then

sc(Gm ×Gn) = 1.

Proof. Since α(Gm×Gn) = 2mn+m+n+1 and |V (Gm×Gn)| = (2m+1)(2n+1),
then we have

sc(Gm ×Gn) ≥ 1 (15)

by Theorem 1.2.
Now let S be a vertex cut of Gm ×Gn and |S| = r. If we remove r vertices

from Gm ×Gn, then ω((Gm ×Gn)− S) ≤ r + 1. Hence we have

sc(Gm ×Gn) ≤ 1 (16)

By (15) and (16) we have sc(Gm ×Gn) = 1. 2

The following theorems give some results on the scattering number and se-
quential join operation.

Theorem 3.5 Let n ≥ 5 be a positive integer. Then

sc(G3 + G4 + ... + Gn) = −7.

Proof. Let S be a vertex cut of graph G3 + G4 + ... + Gn and set |S| = r. Since
|S| ≥ κ(G) for any graph G and κ(G3 + G4 + ... + Gn) = 9, we have two cases:
Case 1: If we remove r vertices from G3 + G4 + ... + Gn, then
ω((G3 + G4 + ... + Gn)− S) ≤ r − 7. So
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sc(G3 + G4 + ... + Gn) ≤ −7 (17)

Case 2: Since the set S is a vertex cut, we have ω((G3 +G4 + ...+Gn)−S) ≥ 2.
So

ω((G3 + G4 + ... + Gn)− S)− |S| ≥ 2− r

and

sc(G3 + G4 + ... + Gn) ≥ max
r
{2− r}

The function 2-r takes its maximum value at r=9 and

sc(G3 + G4 + ... + Gn) ≥ −7 (18)

By (17) and (18) we have sc(G3 + G4 + ... + Gn) = −7. 2

Remark 3.1 One can easily show that sc(G3 + G4) = −6.

4 Conclusion

A network has often as considerable an impact on network’s performance as
the vertices themselves. Performance measures for the networks are essential
to guide the designer in choosing an appropriate topology. In order to measure
the performance we are interested the following performance metrics:
1. The number of the components of the remaining network,
2. The diameter of the network,
3. The average distance between node pairs,
4. The probability that the network becomes disconnected,
They measure the extent to which the network can withstand the failure of links
and vertices while still remaining functional [8, 9].

If the network does get disconnected, then remaining components should
continue to function with reduced capacity. We would prefer a network which
would disconnect in such a way that its capacity is almost seem as before. That
is, we have the fundamental question: ”How difficult is it to reconstruct the
network?”. This question is analyzed by considering the number of components
of the remaining graph. Therefore, we are concerned with the toughness and
scattering number of a graph as a measure of graph vulnerability.

In order to reconstruct a disrupted network easily, the number of connected
components, formed after the vertices deleted, should be possibly small. In
the following Table 1, if we consider the graphs Gn and Gm × Gn for both
measures the number of components is always more than the number of deleted
vertices. But if the difference is only one, this case shows that the graphs Gn

and Gm ×Gn are neither very strong nor very weak. If we examine the graphs
Gn and G3 + G4 + ... + Gn , regardless of the number of deleted vertices we can
say that the number of components is quite small and according to these results
the reconstruction of these two graphs is very easy.
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toughness scattering number
Gn

n

n + 1
1

Gn
n

2
2− n

Gm ×Gn
2mn + m + n

2mn + m + n + 1
1

G3 + G4 + · · ·+ Gn
3n + 10
n + 6

-7

Table 1
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